72DFRWS

DIGITAL FORENSIC RESEARCH CONFERENCE

Hash-Based Carving: Searching Media For Complete Files
And File Fragments With Sector Hashing And Hashdb

By
Simson Garfinkel and Michael McCarrin

From the proceedings of
The Digital Forensic Research Conference
DFRWS 2015 USA
Philadelphia, PA (Aug 9% - 13%™)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics
research. Ever since it organized the first open workshop devoted to digital forensics
in 2001, DFRWS continues to bring academics and practitioners together in an
informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,
annual conferences and challenges to help drive the direction of research and
development.

http:/dfrws.org

Digital Investigation 14 (2015) S95—-S105

Contents lists available at ScienceDirect

Digital Investigation

ELSEVIER

journal homepage: www.elsevier.com/locate/diin

DFRWS 2015 US

Hash-based carving: Searching media for complete files and
file fragments with sector hashing and hashdb

@ CrossMark

Simson L. Garfinkel ", Michael McCarrin °

@ National Institute of Standards and Technology, USA
b Naval Postgraduate School, USA

ABSTRACT

Keywords: Hash-based carving is a technique for detecting the presence of specific “target files” on
Hash-based carving digital media by evaluating the hashes of individual data blocks, rather than the hashes of
Hashdb entire files. Unlike whole-file hashing, hash-based carving can identify files that are
gsil;gf’;t;:l;tgr fragmented, files that are incomplete, or files that have been partially modified. Previous
Similarity s efforts at hash-based carving have looked for evidence of a single file or a few files. We
attempt hash-based carving with a target file database of roughly a million files and
discover an unexpectedly high false identification rate resulting from common data
structures in Microsoft Office documents and multimedia files. We call such blocks “non-
probative blocks.” We present the HASH-SETS algorithm that can determine the presence
of files, and the HASH-RUNS algorithm that can reassemble files using a database of file
block hashes. Both algorithms address the problem of non-probative blocks and provide
results that can be used by analysts looking for target data on searched media. We
demonstrate our technique using the bulk_extractor forensic tool, the hashdb hash data-

base, and an algorithm implementation written in Python.
Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

It is common for forensic practitioners to use databases
of cryptographic hashes to search for known files. For
example, some law enforcement organizations maintain
databases of hash values of illegal images and videos. When
media is obtained in a case, every file is cryptographically
hashed and those hashes are compared to the hash data-
base. Matches indicate the presence of a target file.

“Hash-based carving” is an alternative approach that
relies on comparing hashes of physical sectors of the media
to a database of hashes created by hashing every block of
the target files (Collange et al., 2009b). One use-case is
searching for child pornography: a block-hash database

* Corresponding author.
E-mail addresses: simsong@acm.org (S.L. Garfinkel), mrmccarr@nps.
edu (M. McCarrin).

http://dx.doi.org/10.1016/j.diin.2015.05.001

developed from a corpus of objectionable content should
allow investigators to readily detect fragments of movies or
still images on a storage device, even if the files have been
deleted and partially overwritten. Sector hashing should
also identify files that have been slightly modified—for
example, files that have had a few bytes of random data
appended for the explicit purpose of defeating file hashing
(as may be done by an anti-forensics tool). Sector hashing
can also be combined with random sampling to statistically
sample the searched media, producing a high probability of
finding target data within a relatively short amount of time.
Finally, hash-based carving should also be able to find
sectors of files in virtual memory swap files.

Although there has been some interest in hash-based
carving in recent years, the technique is not widely used,
and we are aware of no published algorithm describing
how to assemble files from a database of sectors and sector
hashes.

1742-2876/Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

S96 S.L. Garfinkel, M. McCarrin / Digital Investigation 14 (2015) S95—S105

Contributions

In this paper we present our real-world experience
attempting to use hash-based carving on a non-trivial
problem. We build two block-hash databases, one for a
small corpus of 78 target files, and one for a larger corpus of
approximately 1 million document files (Garfinkel et al.,
2009). We use the small database to demonstrate that in-
dividual target files can be easily identified on searched
media; we use the large database to explore issues that
arise when searching for files with a large target database.

Until now, the primary difficulty of implementing hash-
based carving was thought to be the substantial demands
that the approach places on the block hash database: since
a 1 TB hard drive contains 2 billion sectors, processing such
a drive in 5 h requires a database that can perform roughly
100,000 hash lookups per second. Conventional databases
cannot provide such performance: a custom database
written specifically for hash-based carving is required. We
developed hashdb for this purpose (Allen, 2014) and used it
to implement HASH-SETS, a simple algorithm that can
determine the presence of target files on searched media.

With database in hand, we discovered that a significant
hurdle to hash-based carving was resolving chance
matches that occur between individuals blocks on the
searched media and individual blocks in the data-
base—matches that happened not because the target files
were once present on the searched media, but because
identical 4KiB blocks happen to be present in many
different files.

Foster (2012) identified the existence of such “common
blocks” and proposed identifying and ignoring them based
on the fact that they appeared multiple times in a single
database. We found that, to the contrary, even a database
with a million files having many blocks that appeared to be
“singleton,” or unique, nevertheless contained many
chance matches to other files on the searched media. If such
blocks are not explicitly anticipated, an examiner may incor-
rectly believe that unique blocks from a target file are present
on a piece of searched media, falsely implying that the target
file was once present, when in fact the blocks are not unique
but merely uncommon.

We therefore present a new approach for classifying
single blocks that combines frequency and content to
determine which blocks are useful for identifying the
presence of target files and which are not. We use this
approach in a matching algorithm for hash-based carving
called HASH-RUNS that reports the location of specific
consecutive disk sectors on searched media that can be
unambiguously mapped to a specific target file.

Prior work

As part of his solution to the DFRWS 2006 Carving
Challenge, Garfinkel introduced the technique of hash-
based carving, calling it “the MD5 trick.” Garfinkel (2006)
extracted text from the carving challenge and used it to
identify the original target documents on the Internet. He
then block-hashed the target files, sector-hashed the
Carving Challenge, and manually matched the two sets to
identify the location of the target files in the Challenge.

Three years later, Garfinkel (2009) released frag_find, a tool
that automated the process. A more complete description
of the tool appears in Garfinkel et al. (2010).

Dandass et al. (2008) performed a survey of disk sector
hashes in 2008 and found no wild collisions for the MD5 or
SHA1 algorithms in a sample of 528 million sectors
extracted from 433,000 files. In 2009 Collange et al. intro-
duced the term “hash-based carving” in a pair of publica-
tions (Collange et al., 2009a, b) that explored the use of
GPUs to speed the hashing load, but did not address the
question of what kind of database would be required to
look up hashes produced at such a rate, and did not discuss
how to match files given the fact that the same block
hashes appear in many different files.

Key (2013) developed the File Block Hash Map Analysis
(FBHMA) EnScript, a tool that both creates a hash-map of
file blocks from a master file list and searches selected areas
of a target drive for the blocks. Similar to frag_find, FBHMA
can only search for a few files at one time.

Garfinkel et al. (2009) created the GOVDOCS corpus for
the purpose of enabling research on file-based digital fo-
rensics. The corpus consists of approximately 1 million files
downloaded from US Government web servers. Garfinkel
et al. (2009) also created the M57-Patents scenario, a
collection of disk images, memory dumps, and network
packet captures from a fictional company called M57. The
scenario consists of three interwoven crimes. We make
extensive use of both corpora in this paper.

Garfinkel et al. (2010) discussed using distinct blocks to
detect the presence of known files on target media, but
presented no algorithms for doing so.

Foster (2012) examined 50 randomly chosen blocks that
were shared between different files in the GOVDOCS corpus
and attempted to determine the reason for their repetition.

Young et al. (2012) expanded the idea of using a data-
base of distinct block hashes of target files to detect the
presence of those files on media being searched. The article
provided an overview of the basic idea and timing of a
variety of database options, as well as counts regarding the
prevalence of distinct hashes in the GOVDOCS corpus, and
discussed the initial implementation of the hashdb hash
database.

Taguchi (2013) examined coverage/time trade-offs for
different sample sizes when using random sampling and
sector hashing for drive triage. He concluded that a 64KiB
read size was optimal in a wide variety of circumstances.

Background: hash-based carving
Terminology

We use the phrase “hash-based carving” to describe the
process of recognizing a target file on a piece of searched
media by hashing same-sized blocks of data from both the
file and the media and looking for hash matches.

The phrases “hash” and “hash value” refer to the output
of a hash algorithm. In our implementation we use the
MD5 hash algorithm because of its speed; the fact that
MD?5 is not collision resistant (Wang and Yu, 2005) is not
relevant here, as we are using MD5 to search for known

S.L. Garfinkel, M. McCarrin / Digital Investigation 14 (2015) S95—S105 S97

content, rather than to screen out content that is to be
ignored.

A “file block” is a block of data from the target file that is
hashed. Our implementation uses 4KiB blocks. The result-
ing hashes are stored in a database of file block hashes.

A “sector” is the minimum allocation unit of the
searched media. Many modern hard drives use 4KiB sectors
internally but present 512-byte sectors to the operating
system for backwards compatibility. Likewise, modern file
systems generally do not allocate single 512-byte sectors,
but instead allocate data in blocks of 4KiB or larger.
(Microsoft allocates data in clusters that are 4KiB or larger
for all NTFS file systems since Windows NT 4.0 and for all
FAT file systems on volumes larger than 256 MB (Microsoft
Corporation, 2014).) We recommend using 4KiB sectors if
they are directly supported by the drive. Otherwise, we
combine 8 adjacent 512B sectors into a single 4096-byte
super-sector for hashing; this block can be thought of as
corresponding to a Windows NTFS disk cluster.

Finally, we use the phrase “probative” to describe data
that conveys a high probability that an entire file (or a file
based on the entire target file) was once present. Garfinkel
et al. (2010) called such blocks “distinct.” We changed ter-
minology after discovering that many blocks that appear to
be distinct in one dataset are not distinct when a larger file
corpus is considered.

Scenarios for matches

The basic idea of hash-based carving is thus to compare
the hashes of 4KiB sector clusters from a storage device
(“search hashes”) with the hashes of every 4KiB block from
a file block hash database and identify files based on hashes
that the two sets have in common.

Hash matches result from a variety of scenarios,
including:

e A copy of an intact target file is present on the searched
media. Because hash-based carving is file system
agnostic, it makes no difference if the file is allocated,
deleted, or in free space.

e A copy of the target file might have been placed on the
searched media at some time in the past and later
deleted and partially overwritten. In this case, there may
be small fragments of a target file on searched media
that are probative.

e A file that has many sectors in common with the target
file may be on the searched media. In this case, hash-
based carving will identify the blocks shared between
the two similar files.

e A target file may be embedded in a larger carrying file,
provided that the file is embedded on an even sector
boundary. (Microsoft's “.doc” format embeds objects
such as JPEG files on 512B boundaries, but the “.docx”
format does not.)

Ideally, the hash-based carving algorithm should
address all of these cases simultaneously.

A hash-based carving process
We approach hash-based carving as a four-step process:

1. DATABASE BUILDING: Create a database of file block
hashes from the target files.

2. MEDIA SCANNING: Scan the searched media by hashing
4KiB of sectors and searching for those hashes in the
database. This produces a set of hash values that can be
matched to target files.

3. CANDIDATE SELECTION: Some sector hashes map to a
single file, while others map to many possible files in the
database. This step determines the set of target files that
are likely to be present on the searched media based on
the hashes observed.

4. TARGET ASSEMBLY: For each identified candidate,
attempt to identify runs of matching blocks on the
searched media and map these back to the corre-
sponding target files.

Common blocks

A significant complication arises from the fact that the
same 4KiB block may be present in many different target
files. Foster (2012) called such blocks “common blocks.”
The most common block is the block of all NULLs, which is
used to initialize blank media and is also found in many
document and database files. The NULL block thus poses a
special challenge for hash-based carving and must be
specially handled, since building a list of every NULL sector
on a drive would result in significant inefficiencies and
possibly memory exhaustion.

A second common block pattern identified by Foster is a
block of monotonically increasing 32-bit numbers. For
example, Fig. 1 shows an excerpt from a Microsoft Excel file
that is part of the file's Sector Allocation Table (SAT) data
structure, defined by the Microsoft Office Compound File
Binary Format. Any Microsoft Office file that contains an
embedded 1 MB object (for example, a JPEG), will have 8KiB
of data devoted to such a pattern, with the initial value
depending on the location of the embedded file. The result
is a low probability of a match between the SAT structures
of any two specific Microsoft Office files, but a high chance
that there will be a few matches between two large col-
lections of Office files.

The existence of such common blocks complicates hash-
based carving in two ways. First, because these blocks
match multiple files, they cannot be used for Candidate
Selection: finding a block that appears in a hundred files
should not be taken as evidence that any of those hundred
files are present. A second problem is that the larger we
make the database, the more common blocks we discover.

8102 0000 8202 0000 8302 0000 8402 0000
8502 0000 8602 0000 8702 0000 8802 0000
8902 0000 8a02 0000 8b02 0000 8c02 0000
8d02 0000 8e02 0000 8£f02 0000 9002 0000

Fig. 1. 64 bytes from the file 007533.xls shows the “ramp” structure of the
Microsoft Office Sector Allocation Table.

S98 S.L. Garfinkel, M. McCarrin / Digital Investigation 14 (2015) S95—S105

We need an approach for recognizing common blocks
before we even encounter a collision because it is simply
not possible to collect and enumerate all such blocks in
advance.

Sector size and alignment issues

One of the clear advantages of using 4KiB blocks over
512B blocks is that hashes of 4KiB blocks represent eight
times as much data. This is especially important for hash-
based carving, as it is critical to hold the entire database
in RAM to support the high-speed access required.

The problem with using a 4KiB block size is file system
alignment. The hashed sectors must be aligned with the file
system allocation blocks, so the sector hashes will align
with the file block hashes. This alignment is achieved by
aligning the sector hashes with the start of the file system.

In some cases it is not possible to determine the start of
the file system. This happens if the partition table is cor-
rupted, or if there is a previous file system that was created
with a different starting point.

If the partition offset is not known, or if examiner
wishes to account for the possibility that there may have
been a previous partitioning scheme, our solution is to hash
overlapping blocks with a 4KiB sliding window over the
entire drive, moving the window one sector (512B) at a
time (Fig. 2). This results in eight distinct sets of 4KiB sector
hashes, one where every group of 8 hashed sectors has a
starting sector number of (mod 8) = 0, one where every
group has a start of (mod 8) = 1, and so on. Because all of
the 4KiB blocks from the same file system will necessarily
have the same sector alignment, each alignment set can be
processed independently.

Generating and searching overlapping hashes may seem
to create needless work, since the result of calculating over-
lapping hashes is that the 4KiB block size requires the same
number of hash operations and database lookups as the 512B
block size. However, hashing every 512B need only be per-
formed on drives with a 512B sector size, and only if the
examiner is unsure of the partition start, or if there is a chance
that the drive was previously partitioned with a different
partitioning scheme. Moreover, even with overlapping sector
hashes, the hash database is still an eighth the size when
using 4KiB blocks vice 512B blocks, because only the disk
sectors need to be hashed with an overlapping window.

Experimental setup

In this section we discuss our setup used to develop and
test hash-based carving algorithms.

One of the fictional crimes in the M57-Patents datasets
involves an employee named Jo who is collecting photo-
graphs of cats. The photographs come from the “Monterey
Kitty” dataset, a set of 82 JPEG files, 2 QuickTime files, and 4
MPEG4 files (201 MB in total) recorded in Monterey CA.
This dataset was used as a surrogate for child pornography.
In the scenario, the employee's computer was decom-
missioned on 2009-11-20 by the IT coordinator and
replaced with another computer. The remainder of this
discussion focuses on the disk image jo-2009-11-20-
oldComputer, which we will call oldComputer for brevity.

We performed sector hashing of the oldComputer image
using bulk_extractor (Garfinkel, 2013), an open source dig-
ital forensics tool, and hashdb, a special-purpose database
for storing cryptographic hashes (Allen, 2014). Included
with bulk_extractor is a scanner called scan_hashdb that
can import block hashes into a new database or can scan
sector hashes against a pre-existing hash database. We use
these features for the first two steps of hash-based carving,
described in the next two subsections.

DATABASE BUILDING: creating the target hashdb

Using bulk_extractor, we created a hashdb database
containing 4KiB block hashes corresponding to each 4KiB
block of the Monterey Kitty files! and renamed the output
database as kitty.hdb. The hashdb “size” command reports
that the database has 50,206 hashes from 88 different files.
The hashdb “histogram” command reports that all of these
hashes are “distinct”—that is, there are no 4KiB blocks in
the input files that have the same content.

We also used bulk_extractor to create a larger hashdb
containing block hashes from the GOVDOCS corpus. The
resulting hashdb contained 119,687,300 hashes from
909,815 files. (We did not hash files smaller than 4KiB). Of
these, 117,213,026 hashes appeared only once in the data-
set, 514,238 appeared twice, 60,317 appeared three times,
and so on. At the other end of the distribution there was
one hash that was present in 11,434 different locations.
(Our software skips over the block containing all NULLs.)
We call this database govdocs.hdb.

We added the two databases together to create a third
4KiB block hash database called kitty + govdocs.

MEDIA SCANNING: finding instances of known content on the
searched media

Next, we used the kitty + govdocs database to search the
M57 disk image using the bulk_extractor hashdb scanner.?
This command took an average of 116 s on our 64-core
reference system to scan the 13 GB disk image. bulk_ex-
tractor breaks the disk image into 16MiB “pages” and only
processes pages that are not blank. Each page is broken into
32,768 overlapping 4KiB blocks, each block is hashed with
the MD5 algorithm and the resulting hash is used to query
the block hash database. (Bytes at the end of a page are
joined with the bytes from the beginning of the next by
bulk_extractor's “margin” system.) In all, 394 pages were
scanned, for a total of 6.3 GB, which translates to roughly
12.9 million sector hashes. The computation of the hashes
is multi-threaded, but the version of hashdb that we used
was single-threaded. The database was therefore per-
forming over 111K lookups/sec.

The bulk_extractor program reported being [/O
bound—a predictable result of running on a system with 64

1 bulk_extractor -S hashdb_mode=import -E hashdb -o out-
kitty -R 2009-m57-patents/KittyMaterial/.

2 bulk_extractor -S hashdb_mode=scan -S hashdb_scan_
path_or_socket=kitty.hdb -E hashdb -o out-kitty2 jo-
2009-11-20-oldComputer.E01.

S.L. Garfinkel, M. McCarrin / Digital Investigation 14 (2015) S95—S105 S99

File Blocks O

Disk Sectors

3

f—— (mod8)=7

Fig. 2. 4096-byte file blocks align with groups of eight 512-byte disk sectors. By reading many sectors at once and chunking them into 4KiB runs with an 8-sector
sliding window, it is possible to account for different file system offsets. A file system that starts on sector 63 will have valid data in runs that have a starting
sector number of (mod 8) = 7, while a file system that starts on sector 2048 will have valid data in those blocks that have an offset of (mod 8) = 0.

cores. If the program had been CPU bound, performance
could have been improved by telling the program to hash
non-overlapping 4KiB blocks,? although the (mod 8) offset
of the file system's partition would have needed to be
known in advance.* We did this as an experiment and saw
the running time decrease to an average of 103 s.

Matching sector hashes are reported in bulk_extractor's
identified_blocks.txt file. In this run 33,847 matches were
found. Each hash may match one or more target files, as
indicated by the “count” value. An excerpt of the file ap-
pears in Fig. 3.

Lines 1—3 indicate that the same 4KiB block is found at
three overlapping locations that are 512B apart. Examining
the media we found that the sectors consist of a repeating
pattern of “ffff ff00” for 5120 bytes. The “count”:39 notation
states that this 4KiB block appears 39 times in the hash
database; of these 39 times, one is from the file
172023 .doc, one is from the file 175907 .doc, and the
remaining 37 are from the file 395714 .doc. The contents
of the “flags” field indicates whether the 4KiB block
matches one or more of the three rules we used to suppress
non-probative blocks (in this case, the “histogram” rule).
Section 4.1 describes these rules in detail.

Lines 4—6 are three consecutive 4KiB blocks on the drive
that correspond to Monterey Kitty file DSC00051.JPG.
Line 4 satisfies the histogram rule, explained below.

Line 7 is a block that matches two different files and is
flagged by the histogram and whitespace rules.

Matched hashes are used in both the “candidate selection”
and “target assembly” phases, first to identify target files that
may be on the searched media, then to attempt to reassemble
them. These steps are discussed in the following sections.

3 To avoid hashing overlapping blocks, use the -s hashdb_scan_
sector_size=4096 option.

4 In this example, the (mod 8) offset is 7, so the flag -v 3584 would
need to be added.

Identifying non-probative blocks to improve
candidate selection

Our initial attempt at hash-based carving did not
include an explicit candidate selection step. Instead, we
attempted to reassemble any file containing a block with a
hash that matched the searched media. The problem with
this approach is that some identified sectors are present in
thousands of different files. Attempting to reassemble each
of these files caused significant performance degradation
and needlessly notified the human analyst with reports of
files that were only referenced by these extremely common
blocks.

Our second attempt at an algorithm included a
candidate selection step, but we selected candidates
based on the presence of locally distinct blocks—that is, a
block on the media that was present just once in our
database. Restricting candidate selection to locally
distinct blocks reduced the number of candidates, but still
left hundreds of false positives. The problem was that
even though our database contained just one copy of the
block, associated with a single file, in the wild the block
actually appeared in many different files. Inspection
revealed these blocks typically contained binary data
structures produced by Microsoft Office and Adobe
Acrobat. Even though we saw no collisions within GOV-
DOCS, each time we searched another drive the chances
for a collision increased.

A second problem with basing candidate selection on
locally distinct blocks is that there may be legitimate rea-
sons for the hashes of low-probability blocks to appear
multiple times in the block hash database. For example, our
database might include two versions of the same video: a
full-length 60 min version, and a truncated 50 min version.
If candidate selection is based solely on the property of
being locally distinct, then the first 50 min of the video
would be ignored.

S100 S.L. Garfinkel, M. McCarrin / Digital Investigation 14 (2015) S95—S105

86435328 736d99610d0097be78651lecdaed714bb
86435840 736d99610d0097be78651lecdaed714bb
86436352 736d99610d0097be78651lecdaed714bb
1231920640 90ccbdf24a74c8c05094032b4cel825d
1231924736 9403elcac89e860b93570ac452d232a5
1231928832 b59246507f2bedb21957fae92bcf37d0
1351669248 1e79c17035c597269%9b6fedf614663ale

{"count":39,"flags":"H"}
"count":39,"flags":"H"}

{"count":39,"flags":"H"}

{"count":1,"flags":"H"}

{"count":1}

{"count":1}

{"count":2,"flags":"HW"}

Fig. 3. Seven lines selected from the identified_blocks.txt file that resulted from scanning the jo-2009-11-20-oldComputer disk image with the kitty+govdocs block
hash database. The first column is the byte offset from the beginning of the disk image at which the 4KiB block appears; the second column is the MD5 hash value
of the block; the third column contains metadata including the count of the number of target files in which the block appears and any content-specific flags.

Instead, we re-designed candidate selection to take into
account both the frequency with which the block occurs in
our dataset and the characteristics of the pattern of bytes of
which the block is composed. These rules are applied
during media scanning and non-probative blocks are tag-
ged as such so that they will not be used in candidate
selection.

Finding rules for non-probative blocks

To develop rules for identifying non-probative blocks,
we looked for common block hashes between the GOV-
DOCS hash database and the oldComputer disk image. We
assumed all matches between the two datasets would
be non-probative blocks, since we did not think that
there would be any of the GOVDOCS files on the old-
Computer image. We conducted the experiment by
hashing each block on the oldComputer image and
filtering against the GOVDOCS block hash database using
a modified implementation of the HASH-SETS algorithm
(described below) in which candidate selection had been
disabled.

Much to our surprise, we found that there were four
complete files from the GOVDOCS corpus present on the
oldComputer image: File 466749.csv is a reference on Sec-
tion 508 compliance; file 809089.eps is the “tcl Powered”
logo. Files 574989.csv and 466982.csv are database dumps
containing names, addresses, and dollar values. The csv
files were likely downloaded by the students constructing
the scenario, while the logo was present in a Python dis-
tribution on the searched drive (Fig. 1).

Eliminating these files, we found a total of 677 distinct
blocks that were shared with 235 other files in the GOV-
DOCS set. We categorized the content of these spurious
matches into three primary types and developed ad-hoc
rules to identify and eliminate them. The next sections
describe the rules and discuss our unsuccessful attempt to
use Shannon entropy on 16-bit values as an alternative.
(Fig. 4)

0000 6400 0000 O1ff ffff 9c00 0000 0100
0000 6400 0000 O1ff ffff 9c00 0000 0200
0000 0000 0000 0100 0000 6400 0000 OI1ff
ffff 9c00 0000 0100 0000 6400 0000 O1ff
ffff 9c00 0000 0100 0000 6400 0000 O1ff
f£ff 9c00 0000 0100 0000 6400 0000 O1ff
ffff 9c00 0000 0100 0000 6400 0000 O1ff
ffff 9c00 0000 0100 0000 6400 0000 O1ff

Fig. 4. An example of the low-entropy pattern found in both the QuickTime
file KittyMontage.mov and in the PowerPoint file 182853.ppt.

The ramp test

By far the most common non-probative blocks identi-
fied by this test are those that appear to contain Microsoft
Office Sector Allocation Tables (SAT). These data structures
are defined by their length (typically 4KiB-12KiB) and their
starting value, which corresponds to the ordinal number of
the 512B block where the content stream appears in the
disk file. There are thus tens of thousands of different 4KiB
“ramp” blocks that can be observed for a given Microsoft
Office file, with the result that the chance of a collision
between any two Office files is small, but the chance of
collision within a corpus of a few thousand Office files is
quite high.

We developed a simple test that returns True if half of
the bytes in a buffer match the ramp pattern, which was
sufficient to weed out many cases in which the 4KiB block
contained the SAT and other binary structures, or where the
SAT referenced a few objects.

The White space test

Another kind of block that we have encountered are
blocks consisting of blank lines of 100 spaces, each termi-
nated by a newline character. Such blocks are commonly
seen in JPEG files that were produced with Adobe Photo-
Shop, and are the result of whitespace padding located
within the Extensible Metadata Platform XMP section
(Adobe, 2012, p.10). Because the sections can appear on any
1-byte boundary, there are 101 different such common
blocks filled with whitespace as a result of alignment is-
sues. The end of the whitespace section typically has
patterned data as well, resulting in tens of thousands of
possible blocks that are mostly spaces but contain addi-
tional common material. Our whitespace test classifies
blocks as non-probative if three-quarters or more of the
block contains whitespace.

The 4-byte histogram test

Another common structure that we discovered with
manual analysis is a block of patterned 4-byte values, either
repeating or alternating 4-byte values. Analysis revealed
these data structures in both Apple QuickTime and Micro-
soft Office file formats.

We devised a rule for eliminating sectors which contain
a few repeating 4-grams. The rule treats the 4KiB buffer as a
sequence of 1024 4-byte integers and computes a histo-
gram of those numbers. It suppresses the sector if any
single 4-gram is present more than 256 times (more than a

S.L. Garfinkel, M. McCarrin / Digital Investigation 14 (2015) S95—S105 S101

quarter of the block). This rule is unlikely to trigger on
either text or image data, since neither typically have long
runs of the same 4-byte values.

The entropy test

Foster (2012) observed that common blocks tended to
contain low entropy data. This observation holds for the
many of the non-probative blocks we examined while
creating our ramp, whitespace and histogram tests. We
hoped that we could replace our ad-hoc non-probative tests
with a single test for low entropy data.

Our entropy test treated each 4KiB buffer as a collection
of 16-bit unsigned integers and calculated the Shannon
entropy for each. This method yields an entropy score of 6.0
for buffers flagged by the “ramp” test, and a score between
0 and 1 for blocks matching the whitespace test. The vast
majority of blocks flagged by the histogram test scored less
than 5, though these blocks had the widest range overall,
with some blocks scoring as low as 0 and as high as 8.373.

We experimented with a range of threshold values and
found that flagging blocks with an entropy value of less
than 7.0 produced results that closely corresponded to the
union of the sets identified by the whitespace, ramp and
histogram tests.

Determining the effectiveness of the rules

We applied the rules described in this section to the 677
distinct blocks in the GOVDOCS dataset that matched the
oldComputer drive and were not in the four identified files.
The ramp rule matched 200 blocks and the histogram rule
matched 400. An entropy threshold of 7 also identified a set
of 600 blocks as non-probative. This set was identical to
that given by the combination of histogram and ramp rules,
except that it omitted one block flagged by the histogram
rule, and included one additional block that was not flagged
by any other rule.

We examined each of the remaining, unflagged blocks
and could discern no obvious patterns in the data. We
suspect that they may contain shared binary structures,
fonts, or other kinds of information.

Although both the rules and the Shannon entropy
threshold appear to be effective at eliminating spurious
matches in our experiment, we need to evaluate them also
with respect to the number of probative blocks that they
suppress. Among the 21,469 blocks belonging to either the
kitty materials or the four identified GOVDOCS files, the ad
hoc rules match 126 blocks, whereas the entropy threshold
test flags 149. A total of 78 blocks are matched by both
methods, and 197 are identified as non-probative either
because they match one of the rules or because their en-
tropy is below 7.0.

We inspected each of these 197 blocks and found that
they were divided more or less equally into two types: non-
probative blocks consisting of metadata, unpopulated ar-
rays, control structures, etc., and hybrid blocks containing a
mix of data and long strings of nulls.

Because our carving technique tolerates the elimination
of some probative blocks, we conclude that either classifi-
cation method is adequate as long as it does not eliminate

the majority of the blocks in a given target file. We per-
formed a full analysis of all the blocks in our database and
found that, unfortunately, there are some cases where this
does occur. Specifically, we found that 1.6% of the files in
our corpus had over 90% of their blocks flagged by the ad
hoc tests, and over 90% of the blocks in a target file fell
below the 7.0 entropy threshold for 12.5% of all target files.
The probability of carving these files is obviously greatly
reduced if fewer than 10% of their blocks can be chosen as
candidates. These numbers led us to prefer the rule-based
approach over the entropy threshold.

The candidate selection implementation

We implement candidate selection with the combina-
tion of two programs: hashdb and a post-processing script
called report_identified_runs.py.

We first use hashdb's explain_identified_blocks command
to determine the files to which these block hashes corre-
spond.”> Because some hashes match thousands of target
files, and some hashes appear in tens of thousands of lo-
cations on searched media, hashdb implements a data
reduction algorithm: the program reads the identified_-
blocks.txt file and builds an in-memory set of de-duplicated
sector hashes. For each block, if the block maps to fewer
than N files (the default is 20), those files are added to the
set of candidate files. Finally, the program writes out a new
file called explain_identified_blocks.txt with a list of the de-
duplicated sector hashes, the number of times that the hash
appeared in the original file, and all of the source files in
which the hash appears. The database also creates a list
mapping the source file IDs to the repository, filenames,
original file sizes, and file hashes. An excerpt is shown in
Fig. 5.

Next, we run the program report_identified_runs.py
which reads the identified_blocks_explained.txt file. For each
identified block, the block's source_id is added to the set
candidate sources if the block is not flagged by any of the ad
hoc tests described in the previous section. This is easily
implemented using the explain_identified_blocks.txt output
file: if the hash has no flags, the hash's sources are added to
the set of candidate files.

Target matching

After the candidate files have been selected, the block
hashes corresponding to candidates are grouped into
source files and eventually tallied or reassembled into runs
of matching blocks with the HASH-SETS and HASH-RUNS
algorithms.

HASH-SETS: reporting the fraction of target files

HASH-SETS is a simple, memory efficient algorithm that
uses block hashes to report the fraction of blocks associated
with each target file that is present on the searched media.

5 hashdb explain_identified_blocks kitty.hdb out-kitty2/
identified_blocks. txt > out-kitty2/identified_blocks_
expanded. txt.

S102 S.L. Garfinkel, M. McCarrin / Digital Investigation 14 (2015) S95—S105

["0a99....9187", {"count":1,"flags":"H"}, [{"source_1id":137363,"file_offset":98304}]]
["1e79....3ale", {"count":2,"flags" :"HW"}, [{"source_1id":461464,"file_offset":536576},
{"source_id":942213,"file_offset":675840}]]

["90cc....825d", {"count":1,"flags:"H"},

["9403....32a5", {"count":1},
["b592....37d0", {"count":1},

[{"source_id":974751,"file_offset":4096}]]
[{"source_id":974751,"file_offset": 8192}1]]
[{"source_1id":974751,"file_offset":12288}]]

{"source_id":137363, "repository_name":"default_repository","filename":"/govdocs/736/736684.ppt",
"filesize":819200, "file_hashdigest":"43b9964b1585015d6£888e46£7851557"}

{"source_1id":974751, "repository_name":"default_repository",
"filename":"KittyMaterial/HighQuality/DSC00051.JPG",
"filesize":1050508, "file_hashdigest":"blee6681fa420932319b75bdle36eb21"}

Fig. 5. Applying hashdb's explain_identified_blocks command to the excerpt in Fig. 3, the first set of hashes located in 39 separate sources are suppressed, while
the remaining are annotated in the JSON output indicating the source files and the offsets within the files. Information on each source is then presented. The
hashes are shortened and spaces are added for brevity and clarity. The remaining hashes map to the files 736684.ppt and DSC00051.JPG.

The algorithm gets its efficiency by not tracking the exact
location of each block hash on the media. The imple-
mentation is straightforward:

1. A list of candidate targets is determined using the
candidate selection algorithm in the previous section.
2. For each block hash H in the file identified
_blocks_explained.txt:
(a) For each target T that matched against H:
i. If T is a Candidate target, add 1 to that target's
score.

3. For each target T, compute the fraction of the file present
by dividing the score by the number of blocks in the
target file.

4. The targets are sorted in inverse order using the fraction
present as the key.

5. If the fraction recovered exceeds a predetermined
threshold, the target file name, number of recovered
blocks, and fraction recovered are reported.

An earlier version of this algorithm scored each block
using inverse document frequency (1/N), but we changed
the algorithm to simply count the number of blocks so that
the score would be solely a function of the target file and
the searched drive, and not of the construction of the hash
database.

Searching oldComputer for Monterey Kitty

We ran HASH-SETS on the identified files associated
with the oldComputer disk image. The algorithm
completely recovered 86 files, including 82 of the Monterey
Kitty files and 4 of the GOVDOCS files (which were also on
the drive). However, the algorithm could only recover 67%
of the file Cat.mov, as the QuickTime file contains 463
blocks that are entirely filled with NULLs. We address this
problem in the next section.

The search of oldComputer also identified the presence
of the GOVDOCS file 153348.png with a fraction detected of
0.18, and 34 other files with a fraction detected below 0.03
(Table 1). We think that these files were not present, but
that they share a few non-probative blocks with other files
on the drive. These files were not screened out by the
candidate selection process because in each case they

contained at least a single block that was identical to a
block found in the disk image and that was not eliminated
by our non-probative block rules. Presumably, these blocks
contained binary data structures created by Acrobat or
Office.

HASH-RUNS: locating target files

HASH-SETS detects the presence of target files but does
not report their location, as location is discarded during the
data reduction step. The HASH-RUNS algorithm reports
location and has additional improvements:

o It gracefully handles the case when the target file is on
the searched media in multiple locations.

o [t takes advantage of the fact that adjacent logical sec-
tors in a file tend to occupy adjacent physical sectors of
the searched media.

e [t takesinto account the fact that different blocks in a file
will have the same (mod 8) value.

e It can detect when runs of recognized blocks are sepa-
rated by NULL blocks and combine them.

The algorithm starts with the data structures created by
the HASH-SETS implementation. It then identifies all of the
block runs on the physical disk that correspond to logical
runs of the target files. These blocks are sorted by logical
block number in the target file and reported to the analyst.

Table 1

Some matched files from GOVDOCS on the oldComputer disk, sorted by
fraction detected. The first four files in bold could be completely recovered
from the oldComputer drive. Only a few blocks from the other files are
recovered. These are non-probative blocks which occur by chance in both
GOVDOCS and on the searched drive.

File 4KiB blocks Blocks Fraction
in file detected detected
466982.csv 848 848 1
809089.eps 6 6 1
574989.csv 6 6 1
466749.csv 3 3 1
153348.png 11 2 0.18
569152.pdf 395 11 0.028
284845.ps 113 3 0.027
393395.eps 60 1 0.017

30 more files ...

S.L. Garfinkel, M. McCarrin / Digital Investigation 14 (2015) S95—S105 S103

. The algorithm first reads the identified_blocks
_explained.txt file (previously produced by the hashdb
program) and builds an in-memory database that
maintains the set of sector hashes associated with each
target file.

. For each (target file, sector hash) pair, the algorithm
builds a second database that records the set of block
numbers in the target file where the block appears. So if
target file A has 6 blocks, and both blocks 1 and 4 match
sector hash H1, then the element (A,H1) of the database
contains the set {1,4}.

. Next, the algorithm reads the identified_blocks.txt file
and, for each sector hash that was found in a target file,
records the disk block at which the hash was found
(where the disk block number is the sector number, or
the offset in bytes from the beginning of the disk,
divided by 512.)

. Now comes the target matching step. For each (target
file, mod8) combination:

(a) The algorithm builds an array consisting of ele-
ments in the form:

[disk block, {file blocks}, count]

Where disk block is the physical disk block, {file
blocks} is a set of blocks within the target file where
the hash was found, and count is the number of times in
the sector hash database that the sector hash was found.
(The count is not used by the algorithm but is included

here for illustrative purposes.) (Table 2)

(b) The array is sorted by disk block. For the hypo-
thetical carving example in Fig. 6, the array would
look like this:

[1024, {0}, 1]

[1032, {1, 4}, 2]

[1040, {2}, 1]

[1056, {3}, 1]

[1064, {1, 4}, 2]

(¢) The algorithm runs a sliding window over the rows
of the array to identify rows that represent
sequential disk blocks and file blocks. Such se-
quences satisfy the constraint that, for each
consecutive pair in the sequence, diskSectorB
== diskSectora+8 and there exists an element
in the set fileBlocksB that is 1 larger than an
element in the set fileBlocksA. A new array of
block runs is created, where each element in the
array has the values:

o [dentified File (from the hash database)

e Score (The number of identified blocks)

e Physical sector start

e Logical block start

e Logical block end
For our demo, the first three elements in the array can
be combined, as can the last two, producing these two
runs:

[Demo, 3, 1024, 0, 2]

[Demo, 2, 1056, 4, 5]

(d) Two block run elements are combined if the num-
ber of bytes in the sector gap between the two runs
matches the number of bytes in the logical blocks,
and if all of the sectors on the drive corresponding
to the gap contain only NULLs. (This step is required

because the block of all NULLs is not indexed by our
sector hash database engine.) This is the only step
that requires access to the original disk image.
For our demo, the two elements in the array of rows
would be combined to create a single element:

[Demo, 6, 1024, 0, 5]

(e) Block runs that are smaller than a predetermined
threshold are dropped. (By default, we drop those
smaller than 3 logical blocks.)

(f) Finally, for every reported run, we use SleuthKit to
determine the allocated or deleted file that corre-
sponds to the first block in the run.® This reporting
is solely for the benefit of the analyst and is not
used in the algorithm.

The algorithm is implemented in the Python program
report_identified_runs.py included with the bulk_extractor
release. The program's output is a CSV file that can be
readily imported into Microsoft Excel.

Algorithm results

We probed the oldComputer drive wusing the
kitty + govdocs database and the HASH-RUNS algorithm.
The algorithm was able to provide significant information
beyond the fraction of blocks present (reported by the
HASH-SETS algorithm):

e HASH-RUNS determined that the entire Cat.mov file was
present on the drive, since the recovered runs were
separated by blank blocks and could be combined using
the algorithm presented in the previous section.

e Unlike the HASH-SETS algorithm, HASH-RUNS detected
several instances in which multiple copies of target files
were present in multiple locations on the searched
media.

e The number of false positive possible matches was
reduced considerably. Whereas HASH-SETS identified
46 possible matches to the GOVDOCS corpus, HASH-
RUNS identified the 4 correct matches and just 4 miss-
matches due to common blocks. The higher precision
is a result of the added requirement that recovered
sectors form runs in which the sector number and the
logical block number increase in step and at the
appropriate rate.

o All of the miss-matches had scores of 3 or less and sector
(mod 8) values (4, 5 and 6) that were different from the
recovered files. Recall that all of the files within a single
file system should have the same (mod 8) value (in this
case 7). This is another indication that the files are in fact
miss-matches.

6 The actual determination is made using the SQLite3 database pro-
duced by SleuthKit's tsk_loaddb program and the rather complicated SQL
statement SELECT B.parent_path||B.name,size from tsk_file_
layout as AJOIN tsk_filesasBonA.obj_id=B.obj_id JOIN tsk_
fs_infoasConB.fs_obj_id=C.obj_id where byte_start+img_
offset < BOFF and byte_start+img_offset+byte_len> BOFF,
where BOFF is the byte offset of the run from the beginning of the disk
image.

S104 S.L. Garfinkel, M. McCarrin / Digital Investigation 14 (2015) S95—S105

Table 2

An excerpt of the output of the report_identified_runs.py program, in tabular form, and sorted by (mod 8) values. The files in bold are actually present on the
media, whereas the others represent miss-matches from non-probative blocks. Notice that the files 466982.csv and 574989.csv are both present in their

entirety, but in multiple runs that are not combined together in this report.

Target File name Score Start Start End Sector Percent Allocated File on Target Media
Sector Block Block (mod 8) Recovered
569152.pdf 3 18433052 373 375 4 n/a
569152.pdf 3 19652860 373 375 4 4% /WINDOWS/Fonts/courbd.ttf
970013.pdf 2 18433380 279 280 4 0.2% n/a
970013.pdf 2 19653188 279 280 4 0.2% /WINDOWS/Fonts/courbi.ttf
215955.ps 3 18192573 571 573 5 0.2% /Program Files/ ... Datal.cab
235835.ps 2 18192598 11503 11504 6 0.02% /Program Files/Adobe/Reader 9.0/ ... Datal.cab
MontereyKittyHQ.m4v 6132 18639703 0 6131 7 100% /Documents and Settings/ ... /MontereyKittyHQ.m4v
TiggerTheCat.m4v 3059 3532519 0 3058 7 100% /Documents and Settings/ ... /TiggerTheCat.m4v
KittyMaterial/Cat.mov 1374 18696759 0 1393 7 100% /Documents and Settings/ ... /Cat.mov
466982.csv 4 2932551 0 3 7 0% ... /Cache/F5433139d01
466982.csv 8 2833023 4 11 7 1% ... [Cache/F5433139d01
466982.csv 16 2800423 12 27 7 2% ... /Cache/F5433139d01
466982.csv 36 10062599 28 63 7 4% ... /Cache/F5433139d01
DSC00072.JPG 234 14306831 0 233 7 100% /Documents and Settings/ ... /DSC00072JPG
809089.eps 6 11907023 0 5 7 100% /Python26/ ... /[pwrdLogo.eps
574989.csv 4 3713503 0 3 7 67% ... [Cache/4787E2CCd01
574989.csv 2 3713359 4 5 7 33% ... /Cache/4787E2CCd01
466749.csv 2 5032175 0 1 7 100% ... Cache/_CACHE_003_
moving the classification process to the target ingestion
Logieal | pogieal | Logical | Logleal | Logical | Logieal stage, we open the possibility for more computationally
hashAA | hashBB | hashCC | Blank | hashBB | hash DD intensive tests, since there is no longer the need to keep up
T T T with speed of the disk scanning process. Finally, we can
Physical . . .
disk 1004 1082 1040 1048 1056 1084 avoid storing files that are composed entirely of non-

sectors:

Fig. 6. A hypothetical hash-based carving exercise in which a file with 6
logical blocks is recovered with the HASH-RUNS algorithm. Logical blocks 1
and 4 are identical, whereas Logical block 3 is blank.

Conclusion

We have presented a hash-based carving system that
uses the bulk_extractor program to create a block hash
database of target files and a sector hash record of searched
media, supported by the hashdb hash database to provide
rapid lookups and perform initial correlation steps. As-
sembly of individually recognized block hashes into carved
runs is performed by a post-processing Python script.

Although there has been considerable interest in hash-
based carving for nearly a decade, to the best of our
knowledge this article presents the first workable algo-
rithm and reference implementation that can work with a
large database of target file block hashes.

Possible improvements

Additional efficiency gains could be realized by flagging
non-probative blocks during the database construction
phase and storing the flag status in the target database. This
alteration would permit each test to be run only once per
distinct block, rather than repeating each time the block is
encountered on the searched media. Furthermore, by

probative blocks and are therefore not recoverable by this
method.

Another improvement is to consider file allocation sta-
tus in addition to considering (mod 8). In general, we would
expect all of the blocks associated with a target file to be in
the same file allocation status—either allocated or unallo-
cated. (When the target file is written to the media it is
allocated; if it is later deleted, it is unallocated.) File allo-
cation status could be considered by simply adding another
filtering step. However, computing file allocation status on
a per-block level is computationally expensive and would
not improve the accuracy of the file recovery in our ex-
amples here.

Limitations

If the media contains an encrypted file system, it is
necessary to first decrypt the file system so that the
unencrypted blocks can be accessed. This is typically done
by mounting the media using an appropriate decrypting
driver.

Acknowledgments

Bruce Allen is the primary developer of the hash data-
base; Joel Young contributed to hashdb's initial design. Rob
Beverly, Kevin Fairbanks and the anonymous reviewers
provided useful comments on this article.

S.L. Garfinkel, M. McCarrin / Digital Investigation 14 (2015) S95—S105 S105

References

Adobe. XMP specification part 1: data model, serializaiton, and core
properties. 2012. http://www.adobe.com/devnet/xmp.html.

Allen B. hashdb. 2014. https://github.com/simsong/hashdb.git.

Collange S, Dandass YS, Daumas M, Defour D. Using graphics processors
for parallelizing hash-based data carving. CoRR abs/0901.1307. 2009.,
http://arxiv.org/abs/0901.1307.

Collange S, Daumas M, Dandass YS, Defour D. Using graphics processors
for parallelizing hash-based data carving. In: Proceedings of the 42nd
Hawaii International Conference on System Sciences; 2009. Last
accessed 03.12.11, http://hal.archives-ouvertes.fr/docs/00/35/09/62/
PDF/ColDanDauDef09.pdf.

Dandass YS, Necaise NJ, Thomas SR. An empirical analysis of disk sector
hashes for data carving.] Digit Forensic Pract Apr. 2008;2(2):95—104.
http://dx.doi.org/10.1080/15567280802050436.

Foster K. Using distinct sectors in media sampling and full media analysis
to detect presence of documents from a corpus. Master’s thesis. Naval
Postgraduate School; Sep. 2012.

Garfinkel S. Digital media triage with bulk data analysis and bulk_
extractor. Comput Secur Feb. 2013;32:57—72.

Garfinkel S, Nelson A, White D, Roussev V. Using purpose-built functions
and block hashes to enable small block and sub-file forensics. In: Proc.

of the Tenth Annual DFRWS Conference. Portland, OR: Elsevier; 2010.
S13—23. http://simson.net/clips/academic/2010.DFRWS.SmallBlock
Forensics.pdf.

Garfinkel SL. Dfrws 2006 challenge report. 2006. http://sandbox.dfrws.
org/2006/garfinkel/part1.txt.

Garfinkel SL. Announcing frag_find: finding file fragments in disk images
using sector hashing. Mar. 2009. http://tech.groups.yahoo.com/
group/linux_forensics/message/3063.

Garfinkel SL, Farrell P, Roussev V, Dinolt G. Bringing science to digital
forensics with standardized forensic corpora. In: Proceedings of the
9th Annual Digital Forensic Research Workshop (DFRWS). Quebec,
CA: Elsevier; Aug. 2009.

Key S. File block hash map analysis. 2013. https://www.guidancesoftware.
com/appcentral/.

Microsoft Corporation. Default cluster sizes for ntfs, fat and exfat. 2014.
http://support.microsoft.com/KB/140365.

Taguchi JK. Optimal sector sampling for drive triage. Master’s thesis. Naval
Postgraduate School; 2013.

Wang X, Yu H. How to break md5 and other hash functions. Adv Cryptol
Lect Notes Comput Sci 2005;3494:19—35.

Young], Foster K, Garfinkel S, Fairbanks K. Distinct sector hashing for
target detection. IEEE Comput Dec. 2012:28—35. http://simson.net/
clips/academic/2012.IEEE.SectorHashing.pdf.

	Hash-based carving: Searching media for complete files and file fragments with sector hashing and hashdb
	Introduction
	Contributions
	Prior work

	Background: hash-based carving
	Terminology
	Scenarios for matches
	A hash-based carving process
	Common blocks
	Sector size and alignment issues

	Experimental setup
	DATABASE BUILDING: creating the target hashdb
	MEDIA SCANNING: finding instances of known content on the searched media

	Identifying non-probative blocks to improve candidate selection
	Finding rules for non-probative blocks
	The ramp test
	The White space test

	The 4-byte histogram test
	The entropy test
	Determining the effectiveness of the rules
	The candidate selection implementation

	Target matching
	HASH-SETS: reporting the fraction of target files
	Searching oldComputer for Monterey Kitty
	HASH-RUNS: locating target files
	Algorithm results

	Conclusion
	Possible improvements
	Limitations

	Acknowledgments
	References

