Digital Investigation 28 (2019) S88—S94

Contents lists available at ScienceDirect =
DFRWS 2019 EUROPE

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

Check for
updates

Improving file-level fuzzy hashes for malware variant classification

lan Shiel, Stephen O'Shaughnessy”

TU Dublin, Blanchardstown, Dublin, Ireland

ARTICLE INFO ABSTRACT

Article history: Malware analysts need to be able to accurately and swiftly predict family membership as well as to
determine that a suspect file contains malicious content. Previous research has shown that fuzzy hashing
can be used to determine whether a file is malicious and to cluster like files together, but it does not
specifically address the problem of malware variant classification. Existing tools such as VirusTotal
maintain file and section level cryptographic hashes and ssdeep file digests but they do not maintain
section-level similarity hashes or provide a means to submit similarity hashes and compare them to
previously analyzed samples.

This paper presents a study on the feasibility of using section-level similarity hashing as a means of
classifying malware variants. The aim of the study was to produce a method to overcome the limitations
of file-level similarity hashing, such as poor performance against obfuscated malware. Section-level
similarity hashing involves splitting malware executables into their binary headers and sections and
applying a similarity digest on each resulting binary chunk. Experiments with known malware families
were conducted using file and section level digests where each method was used to predict malware
family membership. The performance of both methods was evaluated using precision, recall and accu-
racy metrics.

The results show that similarity digests can be used to classify malware in Windows Portable
Executable (PE) files and that section-level hashing and comparison produces considerably better results
than at file-level.
© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Malware
Classification
Similarity digest
Fuzzy hash
File-level
Section-level

PE file

Introduction long been used in digital forensics to verify that two objects are
identical and to prove integrity (e.g. a forensic investigation has not
modified the original evidence).

Malware variants defeat traditional cryptographic hash signa-

Malware variants

A high percentage of current malware is not “new” per se but
variants of existing malware families. According to the 2017
Symantec Internet Security Threat Report (Symantec ISTR, 2018,
2018) published in March 2018, the total number of malware var-
iants detected increased by 88% from just over 357M in 2016 to
almost 670M in 2017. Variants of the “Kotver” Trojan accounted for
78% of this increase.

Malware analysts need to be able to quickly and accurately
predict malware family membership as well as to determine that an
executable contains malicious content. During static analysis, an
analyst may compare a cryptographic hash of the suspect file to a
set of known hashes to determine whether the file has previously
been identified. Cryptographic hashes such as MD5 and SHA1 have

* Corresponding author.
E-mail address: stephen.o'shaughnessy@itb.ie (S. O'Shaughnessy).

https://doi.org/10.1016/j.diin.2019.01.018

tures as a change in a single bit of the file produces a very different
hash result. The continuing increase in malware variants can
largely be attributed to the ease of access to automated obfuscation
tools. Malware attackers no longer need to have an in-depth
knowledge of file or code modification, as these tools essentially
do all of this through a graphical user interface. The result is an
alarming level of modified malware variants appearing on a daily
basis, which has vastly increased the number of suspect files that
must be manually examined, the complexity of the triage effort and
therefore the time and cost.

Similarity digests have potential use in the classification of
malware variants, but there are limitations to be overcome.

Similarity digests

While malware variants will not be identical to each other, they

1742-2876/© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:stephen.o'shaughnessy@itb.ie
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2019.01.018&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2019.01.018
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2019.01.018
https://doi.org/10.1016/j.diin.2019.01.018

1. Shiel, S. O'Shaughnessy / Digital Investigation 28 (2019) S88—S94 S89

should be similar, for example, large parts of the code may be the
same as other variants. Cryptographic hashes are not designed to
identify similarities but there are other hashing mechanisms which
perform this function. These mechanisms are known as “similarity
digests” or “fuzzy hashes” and they can be used not only to identify
similarities but also to provide a measure of how similar files and
objects are to each other. There are a number of fuzzy hashing al-
gorithms, two of the best known are Kornblum's’ “ssdeep”
(Kornblum, 2006) and Roussev's “sdhash” (Roussev, 2010). These
hashes output a score between 0 and 100 to indicate similarity
between the compared objects. 0 represents no or very little sim-
ilarity and 100 represents very high similarity or identicality. A
given input will always produce the same similarity hash, but this
does not mean that inputs that produce the same similarity hash
are identical — just that they are very similar. Identicality is checked
with a cryptographic hash and this should be done before using a
similarity hash as it is much faster to compute and comparison
involves a single keyed-lookup which is not the case with a simi-
larity hash as many inputs can produce the same hash.

While cryptographic hashes have been used in forensics and
malware analysis for identity, integrity and classification purposes,
fuzzy hashes have been used to find modified documents and
partial files of interest to investigators. They have also been used to
find files such as photographs embedded in other files. Previous
researchers have used fuzzy hashes at file-level to identify malware
families and a combination of file and section hashes to confirm
whether a file contains malware or to cluster malware by type
(virus, worm, Trojan etc.).

Issues with file-level fuzzy hashing

Windows PE files share a structure of headers and details (sec-
tions) which in the header contents may be identified as being
similar. The MS DOS header in a PE file usually contains the words
“This program cannot be run in DOS mode” which will appear in
the majority of PE files.

If a malware author inserts contrived redundant sections that
are common to benign programs this will increase the similarity of
the PE file to benign executables and decrease its similarity to other
members of the malware family.

A second issue with similarity hashing at file-level is that in
addition to content, the level of similarity depends on sequence.
Executable file formats are highly structured, but it is a relatively
trivial task for a malware author to insert redundant and unused
sections into executables and to move sections from their normal
position. Such interventions will not impact the loading and
running of the software but will affect file-level similarity
comparisons.

When testing executables for similarities (Pagani et al., 2018)
found that relatively minor modifications to the source code such
as swapping the sequence of instructions had a marked effect on
file-level similarity reducing it to zero in some cases where 99.8% of
the program was unchanged.

A common method used by malware authors to obfuscate their
executables is to compress them using a wrapping packer utility
such as UPX (UPX, 2017) or ASpack (What is ASpack?, 2018). These
utilities “wrap” the compressed executable inside a small execut-
able stub which decompresses the malware into memory and
transfers control to it when executed. The compressed data is very
different to the original unpacked version and will score close to
zero when compared with a similarity hash. If two objects are
compared in a packed and unpacked state, the similarity scores for
the packed comparison are typically much lower than those of the
unpacked comparison.

Section-level hashing involves using a third-party library

function to split the Windows PE file into its headers and sections
and applying a similarity hash function to each section. This paper
presents a novel method of section-level hashing to overcome the
limitations of file-level hashing. It calculates the ssdeep similarity
hashes of each instance and section of a set of known malicious PE
files and stores them in a database. File and section hashes are
calculated for previously unseen malwares and compared to the set
in the database for family classification. To reduce incorrect clas-
sifications, sections that are identical in multiple families are
excluded from the comparisons.

Related work
Early research

Detecting similarity between files and other data objects has
been a research topic that can be traced back at least to the early
1990s (Roussev et al., 2006). “Manber (1994) developed the “sif”
tool, which seeks to identify file similarity based on approximate
fingerprinting (essentially, selective hashing).” In 2002, Tridgell
(2018) developed the “spamsum” algorithm to identify emails
which were similar to, but not identical to known spam messages.

In (Ligh et al., 2010) the authors describe some use cases for
similarity hashes including detection of shared code, finding
related malware, detecting infections in memory dumps of multi-
ple computers and comparing malware on disk to that in memory
to identify self-modifying or metamorphic malware).

ssdeep — 2006

As described in (Kornblum, 2006), Kornblum developed an al-
gorithm based on Trigdells' spamsum which he termed “Context
Triggered Piecewise Hash” (CTPH) and implemented in a computer
program which he called “ssdeep”. This was probably the first
similarity hashing algorithm widely applied in computer forensics.

The algorithm combined piecewise hashing (where multiple
hashes are generated for fixed-length input file segments) and a
rolling hash (which maintains state based on the last few input
bytes). In the CTPH, the fixed-length of the input file segments
piece-wise hashing calculation is replaced with the rolling hash,
when the rolling hash produces a pre-defined “trigger” value the
piecewise hash is recorded and reset. The final output is the ssdeep
hash value or “signature™ for the input file. The signatures for two
files can be compared using ssdeep with a different command line
option, to determine if they have a common origin (i.e. are similar).
Similarity is measured on a linear percentage scale where 100
represents almost (possibly fully) identical and O represents no
similarities. A weakness with ssdeep is that it cannot compare files
and objects whose sizes are less than half or more than twice the
size of the comparison file.

Other hashes and sdhash

Later research produced several other similarity hashes each
claiming to perform better than ssdeep. This included MRS (2007)
(Roussev et al., 2007), BitShred (2010) (Jang et al., 2010), bbhash
(2012) (Frank and Baier, 2012), mvHash-B (Frank et al., 2013) and
FirstByte (Upchurch and Zhou, 2013) in 2013. While BitShred was
the first similarity algorithm specifically designed for malware
triage, perhaps the best known and most widely implemented
similarity hash other than ssdeep is “sdhash” (Roussev, 2010)
developed in 2010. This incorporated the selection of statistically
improbable features in binary files, screening out weak features and
using Bloom filters to support the comparison of different sized
objects.

S90 L. Shiel, S. O'Shaughnessy / Digital Investigation 28 (2019) S88—S94

Performance metrics

In 2015 (Upchurch and Zhou, 2015) presented a framework
specifically for testing programs that used similarity comparisons
to identify malware variants which they named “Variant”. In
addition to a fixed dataset, the authors proposed performance ac-
curacy measures based on measuring true/false and positive/
negative results which they termed Precision, Recall and F-Measure
defined as follows:

e Precision: The fraction of retrieved samples that are classified
correctly.

e Recall: The sensitivity of the algorithm to retrieve relevant
instances.

e F-Measure: The harmonic mean of Precision and Recall (har-
monic means are used in statistics in place of arithmetic means
when dealing with averages of rates and ratios).

Effectiveness comparison

In 2016 (Forensic malware analysis, 2016), examined the effec-
tiveness of four different similarity hashing implementations for
identification of malware similarities in executable files previously
classified by the VirusTotal platform. Using file-level ssdeep,
sdhash, mvHash and mrsh v2 (Breitinger and Baier, 2012), they
found that ssdeep was “suitable for matching similarities not only
from malware of the same family but also from emerging families”.
They concluded that fuzzy hashing was an effective identification
method and that it was capable of identifying new variants. Of the
four algorithms tested, the authors presented sdhash as having the
highest identification rate when used with a threshold of 21. In
addition, only sdhash correctly identified a particular piece of
malware as a variant.

Malware detection

In (Namanya et al., 2016) the authors studied the use of simi-
larity hashing with Evidence Combinational Theory to calculate the
similarity of Portable Executable files to ascertain whether a given
PE file was malicious/not.

The authors used fuzzy logic and certainty factor models from
Evidence Combinational Theory to calculate Common Factors (CFs)
to assign a “degree of belief” weighting to each hash type.

Using a set of known malicious PE files, the researchers built a
database containing ssdeep file and PE resource section hashes,
ImpHash (a hash calculated from the PE file import section
(Tracking Malware with Import Hashing, 2014)) and PeHash (a hash
of the structural data in a PE file header and its sections (Wicherski,
2009))

They compared the database hashes from the known malicious
files to those obtained from a second dataset containing both ma-
licious and benign files, counting the true and false negatives and
positives for each hash type. The counts were then used to calculate

Table 1
Libraries and utilities.

the Common Factors (CFs) for each hash type. The resultant CFs
were normalized and used to weight similarity scores for each hash
type in subsequent comparisons to calculate an overall malicious
score (effectively a measure of how likely the file is to be malicious)
for each file being examined which is presented to the analyst.

Their experiments showed that their combination method
yielded overall recall (98.65%), accuracy (98.16%) and precision
(99.33%) metrics which outperformed the results for individual
hashes. These results were for the detection of malicious files, the
experiments did not classify the files into malware families. The
authors conclude that their method provides a means of detecting
malicious PE files only needing dynamic analysis in cases where
their system produces an inconclusive result.

Methodology
Experimental environment & sample data

The research experiments were conducted using specially
developed Python application programs on Ubuntu 16.04 LTS. The
Ubuntu machine was a VMware Workstation 12 Pro virtual ma-
chine with 6 GB RAM, 4 CPUs and 1.5 TB disk.

The March 2018 Windows 32 EXE and DLL PE file malware
collection was downloaded from VirusTotal (VirusTotal private API,
2018). This comprised 96 GB in 69,632 executables, 5112 families
and their associated VirusTotal classification data in JSON files. The
JSON files included the details of the engines that analyzed the
malware and their output family names.

Table 1 details the third-party libraries and utilities used.

The “malicia/AvClass” malware labelling tool (AVClass malware
labeling tool, 2018) was used to extract the most likely family
names from the VirusTotal JSON files. To increase the likelihood
that the majority of VirusTotal engines agreed on the family name,
only cases where 10 or more engines analyzed the executable and
where at least 60% of those agreed on the family name were
included. This reduced the dataset to 32,812 executables in 398
families. Each VirusTotal malware detection engine uses its own
family naming conventions to group executables. The AVclass tool
uses aliases to combine these different family names together. In
addition, details of 1000 Windows 8.1 32-bit PE files were added to
the dataset using a family name of “BENIGN".

Selection of malware families

Table 2 shows the four malware families used in the research
experiments and the number of members in each family. The family
names are those selected by the AvClass tool as described in the
preceding section.

100 random non-obfuscated samples of each of the four families
in the reference dataset and database were selected by calculating
the entropy of the PE file. A compressed (packed) or encrypted PE
file has a higher entropy than a non-obfuscated sample. Choosing
the files with lower entropy scores therefore is more likely to yield
non-obfuscated files. This was further verified by attempting to

Name Purpose

fuzzyhashlib

Generate ssdeep similarity hashes (Python hashlib-like wrapper for several fuzzy hash algorithms, 2018)

Pefile Decompose PE file into sections (pefile, 2017)

malicia/AvClass
file_entropy
SQLite
UPX/ASpack

Mass malware labeler (AVClass malware labeling tool, 2018)
Calculate file entropy (Python Entropy calculator, 2010)
Database library (About SQLite, 2018)

Executable packers (UPX, 2017), (What is ASpack?, 2018)

1. Shiel, S. O'Shaughnessy / Digital Investigation 28 (2019) S88—S94 S91

Table 2

Malware families.
Name Members
Virut 2936
Wabot 694
virlock 607
coinminer 139

pack the selected files and discarding any that failed.

100 PE files belonging to a mix of families excluding those in
Table 2 were selected using the process detailed above. This mixed
family set was used to measure classification performance for each
experiment.

The effect of obfuscation was also evaluated by packing both the
mixed family and 100 non-obfuscated sample sets and comparing
them. Both sets were packed with UPX and ASpack packing tools.

Data collection

Data collection was performed using two Python programs. The
first program generates and stores similarity hashes for the known
executables. The second compares hashes of a sample of execut-
ables to those stored in the database to predict family membership.

Creation of the reference database

PE files are passed as input, their MD5 hash is generated and
used to check that the file details are not already in the database.
SHA256 and ssdeep hashes (Python hashlib-like wrapper for
several fuzzy hash algorithms, 2018) are then generated. The
hashes are subsequently stored in the “FileDetails” table in the
database as shown in Table 3.

The “ShortFamily” and “LongFamily” fields are populated using
the “AvClass” tool as described in section 3.1.

The files are then parsed into sections, using the “pefile” library
(pefile, 2017). For each section, an MD5 and ssdeep hash are
generated and stored in the “Sections” table, along with metadata in
the form of section name and size in bytes. The record layout for
this “Sections” table is shown in Table 4.

The MD5 hashes uniquely identify the parent PE file and the
combination of PE file and section. This ensures that there are no
duplicates. If a PE file has been previously examined and stored in
the database, its MD5 can be used to report its family without the
need to compute and compare the similarity hashes. (This latter
function was disabled for the experiments).

Comparison of input PE file & section hashes to the reference
database

The second Python program takes an individual PE file or a
directory of PE files to be compared to the reference database as
input. It calculates the MD5 and ssdeep hash values for the PE file
and its sections, stores them in an array and compares these to the
MD5 and ssdeep hash values stored in the reference database. The

Table 3

Database “FileDetails” table.
Field Name Type Purpose
FileMD5 Text PE file MD5 hash
FileSHA256 Text PE file SHA256 hash
FileSSdeep Text PE file ssdeep hash
ShortFamily Text Majority family name
LongFamily Text List of family names

Table 4

Database “Sections” table.
Field Name Type Purpose
FileMD5 Text PE file MD5 hash
SectionMD5 Text PE section MD5 hash
SectionName Text PE section name
SectionSize Integer Raw section size (bytes)
SectionSSdeep Text Section ssdeep hash

Table 5

Database “IgnoreSections” table.
Field Name Type Purpose
SectionMD5 Text MD?5 hash to ignore.

results can then be printed to standard output or re-directed to a
text file. Section MD5 hashes that should be excluded from
counting (e.g. those that occur in multiple families) may be added
to the “IgnoreSections” table (Table 5).

The program allows the user to specify the ssdeep threshold (the
value below which ssdeep comparison results are not reported) and
whether to output the most likely family name or all family names
of matches.

As section names in PE files may be renamed by a malware
author, each section in the input PE file must be compared against
all section records in the reference database. Considering only
those hashes for sections that match an identically named input PE
section would risk omitting highly similar sections with non-
standard names.

Detailed explanation of comparison logic

At the file comparison level, the tool compares the ssdeep digest
of each input file to the ssdeep digest of all other files on the
database. All similarity scores above the threshold specified are
counted and accumulated by malware family as recorded on the
database. The tool selects the malware family with the highest
number of similarity scores at or above the threshold as being the
most likely family to which the input file belongs. The database
record for the input file itself is excluded from the counts.

At the section level, the tool splits the input PE file into sections
and compares the ssdeep similarity digest of each input section to
that of all other sections in the database — ignoring input and
database sections whose MD5 is in the “IgnoreSections” table. Each
section record in the database contains the malware family of the
parent PE file from which it was extracted when it was added to the
database. All section similarity scores above a specified threshold
are counted and accumulated by malware family as recorded on the
database. The tool selects the malware family with the highest
number of similarity scores above the threshold as being the most
likely family to which the input section belongs. The family pre-
dictions for each section are counted and the family prediction for
the input file is the family with the highest number of sections
assigned to it. As with the file level comparisons, the database re-
cords for the input sections are excluded from the counts.

The “IgnoreSections” table is required as initial experiments
showed that identical sections appear in many PE files across
multiple malware families. Excluding these sections is needed to
reduce the mis-classifications that would otherwise result. The
“IgnoreSections” table is used in preference to removing the section
details from the “Sections” table and as a fast means of identifying
sections read from comparison PE files that should be ignored.

S92 L. Shiel, S. O'Shaughnessy / Digital Investigation 28 (2019) S88—S94

Performance metrics and calculations

The four possible outcomes in malware detection are explained
as follows:

True Positive (TP): The method correctly identifies that a known
malicious executable is malware.

True Negative (TN): The method correctly identifies that a
known benign executable is not malware.

False Positive (FP): The method incorrectly identifies a known
benign executable as malicious.

False Negative (FN): The method incorrectly identifies a known
malicious executable as benign.

The performance accuracy measures proposed are calculated as:

Precision = TP | (TP + FP) - The ratio of correct positive to all
positive (correct & incorrect) diagnoses.

Recall = TP / (TP + FN) - The ratio of correct positive diagnoses to
correct positive and incorrect negative diagnoses (when the inputs
are all malware)

F-Measure = 2 * (Precision * Recall) /(Precision + Recall).

Experiments

The 100 non-obfuscated PE files from each of the four families
were used as input to the comparison tool at thresholds of 1, 30, 40,
50, 60 & 75 in turn and the results were recorded as follows:-

e True Positive: The tool correctly predicted the malware family of
the input PE file

o False Negative: The tool incorrectly predicted that the input PE
file was a member of a different family than it actually was.

e Unknown: The tool could not determine the malware family to
which the input PE file belonged.

The 100 non-obfuscated mixed-family samples were used to
provide true negatives and false positives. i.e.

o True Negative: The tool correctly predicted that the input PE file
was NOT a member of the family.

e False Positive: The tool incorrectly predicted that the input PE
file WAS a member of the family being examined when in fact, it
was not.

e Unknown: The tool could not determine the malware family to
which the input PE file belonged.

The four experiments were then repeated using the packed PE
files from each family with the packed mixed-family sample and
the results were recorded in the same manner.

Results
Non-obfuscated input files

For the sake of brevity, the file and section-level results for all 4
families are summed and presented in Tables 6 and 7. Optimal re-
sults are displayed in bold. Precision and Accuracy column headings
are shortened to “Prec.” and “Acc.” respectively.

The minimum threshold is set to 1 to select only sections where
the similarity score exceeds zero (no similarity).

In both cases, unknowns have been included with either false
negatives or false positives as appropriate to provide a family vs-all-

Table 6

Non-obfuscated file-level ssdeep results.
T TP EN TN FP Prec. Recall Acc.
1 187 213 374 26 0.88 0.47 0.70
30 182 218 374 26 0.88 0.46 0.70
40 164 236 370 30 0.85 0.41 0.67
50 139 261 370 30 0.82 0.35 0.64
60 120 280 366 34 0.78 0.30 0.61
75 97 303 360 40 0.71 0.24 0.57

Table 7

Non-obfuscated section level ssdeep results.
T TP FN N FP Prec. Recall Acc.
1 358 42 396 4 0.99 0.90 0.94
30 358 42 395 5 0.99 0.90 0.94
40 352 48 395 5 0.99 0.88 0.93
50 347 53 394 6 0.98 0.87 0.93
60 337 63 392 8 0.98 0.84 0.91
75 333 67 387 13 0.96 0.83 0.90

others comparison. The unknowns increase with threshold
explaining the counter-intuitive increase of “FP” with threshold.

As can be seen from the tables, the section-level method per-
forms much better than the file-level equivalent on all metrics and
especially on recall.

Obfuscated (packed) input files

As in the case of the non-obfuscated files, the file and section
level results are summed and presented in Tables 8 and 9. Optimal
results are shown in bold.

While it is evident that the metrics are not as favorable for either
method in comparison to their non-obfuscated equivalents, when
the file and section results are compared, the section method
outperforms the file-level method by 1.89—2.6 times.

The results show that while packing does reduce the similarities
in the files to the point where the file-level precision, recall and
accuracy drop below 44% at all thresholds, the section level method
remains above 68% at thresholds lower than 75. The packed
section-method also returns superior recall and accuracy results
than the non-obfuscated file-level method at thresholds of 60 and
under.

Table 10 shows the calculated F-measures for each method.

(a) Non-obfuscated file.

(b) Non-obfuscated section.

(c) Obfuscated (packed) file.

(d) Obfuscated (packed) section.

The F-measure combines the precision and recall results giving a
single metric (in this case where both are weighted equally). From
Table 10 it can be clearly seen that the non-obfuscated section
method (b) shown in bold is superior to the other methods while

Table 8

Packed file-level ssdeep results.
T TP FN N FP Prec. Recall Acc.
1 171 229 120 280 0.38 043 0.36
30 162 238 119 281 0.37 0.41 0.35
40 150 250 109 291 0.34 0.38 0.32
50 148 252 96 304 0.33 0.37 0.31
60 136 264 86 314 0.30 0.34 0.28
75 114 286 58 342 0.25 0.29 0.22

1. Shiel, S. O'Shaughnessy / Digital Investigation 28 (2019) S88—S94 S93

Table 9

Packed section-level ssdeep results.
T TP FN TN FP Prec. Recall Acc.
1 322 78 322 78 0.81 0.81 0.81
30 320 80 322 78 0.80 0.80 0.80
40 317 83 309 91 0.78 0.79 0.78
50 317 83 295 105 0.75 0.79 0.77
60 323 77 256 144 0.69 0.81 0.72
75 232 168 182 218 0.52 0.58 0.52

Table 10

F-measures.
T (a) (b) (c) (d)
1 0.61 0.94 0.40 0.81
30 0.60 0.94 0.38 0.80
40 0.55 0.93 0.36 0.78
50 0.49 0.92 0.35 0.77
60 043 0.90 0.32 0.75
75 0.36 0.89 0.27 0.55

the obfuscated file method (c) returns the poorest results.

Conclusions & further work

The aim of this research was to improve the results obtained by
file-level fuzzy hashing generation and comparison for malware
family identification & classification. It has been achieved using
section-level ssdeep hashing while ignoring sections that are
common to multiple families.

The objective was to create a framework for calculating, storing,
retrieving and comparing similarity digests, and to use this
framework to conduct experiments comparing the two methods.

The experiments were conducted on a variety of malware types,
families and variants and with non-obfuscated and packed mal-
ware. Using the ssdeep hashing algorithm they have shown that
when unknowns are included as being an incorrect diagnosis,
section-level digests are superior to file-level. When the best per-
forming results of each method are compared, the section-level
method returns 92% more true positives for non-obfuscated mal-
ware and 88% more for packed malware than the file-level method.

Results for packed malware can be improved by calculating its
entropy to determine whether the file is packed, identifying which
packer has been used with PEiD (PEiD, 2018) or VirusTotal,
unpacking the PE file and using the unpacked file as input to the
framework.

In terms of performance, when the measurement framework
proposed by (Upchurch and Zhou, 2015) is used to compare the
results of both methods, section-level digests significantly and
consistently outperform file-level on precision, recall and accuracy
metrics.

Optimal results for both packed and non-obfuscated malware
were achieved when the ssdeep threshold level was set between 1
and 30. Results dis-improve at thresholds of 75 or higher for both
types but more markedly so for packed malware.

A limitation of the section-level method is that it tends to pro-
duce more false negatives than the file-level method however these
are compensated for when unknowns are included as false.

A further limitation is the speed of comparison. The initial
version of the comparison tool requires reading every section re-
cord in the database to retrieve and compare its ssdeep hash to that
of the input. Potential optimizations include loading the database
into a numpy array and only comparing ssdeep hashes that are
within a power of two of that of the input section.

An important discovery was that there are a lot of identical (as
opposed to similar) PE sections which appear in many different
malware families. These sections cause unwarranted similarity
between malware variants and must be excluded from the pre-
diction process to obtain accurate results. Two particularly preva-
lent examples are the “empty string” hash and the hash of the UPX0
section inserted by the UPX packer. In 1952 UPXO section MD5
hashes, only 17 variants existed in the database. Furthermore, the
raw size of the UPX0 segment was zero in 1715 of the executables.
This adjustment is not possible with file-level analysis.

Some suggestions for future work:

e Optimizing the comparison tool as outlined above.

o Identifying particular sections which could be used to classify

malware. This would have to go beyond using the section name

for identification as these can be renamed. Such an optimization

would reduce storage requirements and comparison times.

Extending the framework to include the sdhash and tlsh algo-

rithms and comparing the results to ssdeep. This could also

include experiments to determine which algorithm is most

resistant to deliberate attempts to frustrate similarity hashing

(Baier and Breitinger, 2011).

Broadening the work done by (Namanya et al., 2016) to include

ssdeep hashes of sections other than the resource section,

incorporating sdhash and tlsh digests and extending it to mal-

ware variant classification

e Investigating the method to classify encrypted malware.

e Incorporate supplementary sources of ground truth e.g. Mal-
pedia (Malpedia).

Acknowledgements

Mr. Stephen Tomkin, fuzzyhashlib author for his assistance with
using the library.

VirusTotal for providing access to sample malware PE files and
their classification data.

References

About SQLite, 2018. URL https://www.sqlite.org/about.html. Date Retrieved 24 Aug
2018.

AVClass malware labeling tool, 19 Feb 2018. URL https://github.com/malicialab/
avclass. Date Retrieved 5 Jun 2018.

Baier, H., Breitinger, F, 2011. Security aspects of piecewise hashing in computer
forensics. In: IT Security Incident Management and IT Forensics (IMF), 2011
Sixth International Conference on, pp. 21-36.

Breitinger, F., Baier, H., 2012. Similarity preserving hashing: eligible properties and a
new algorithm mrsh-V2. In: International Conference on Digital Forensics and
Cyber Crime, pp. 167—182.

Forensic Malware Analysis: the Value of Fuzzy Hashing Algorithms in Identifying
Similarities, 2016. IEEE Trustcom/BigDataSE/ISPA, Trustcom/BigDataSE/ISPA,
2016 IEEE, TRUSTCOM-BIGDATASE-ISPA, p. 1782, 2016.

Frank, Breitinger, Baier, Harald, 2012. A fuzzy hashing approach based on random
sequences and hamming distance. In: Proceedings of the Conference on Digital
Forensics, Security and Law. Association of Digital Forensics, Security and Law,
p. 89.

Frank, Breitinger, Asteb, Knut Petter, Baier, Harald, Busch, Christoph, 2013. mvhash-
b-a new approach for similarity preserving hashing. In: IT Security Incident
Management and IT Forensics (IMF), 2013 Seventh International Conference on.
IEEE, pp. 33—44.

Jang, Jiyong, Brumley, David, Venkataraman, Shobha, 2010. Bitshred: Fast, Scalable
Malware Triage. Cylab, vol. 22. Carnegie Mellon University, Pittsburgh, PA.
Technical Report CMU-Cylab-10.

Kornblum, Jesse, 2006. Identifying almost identical files using context triggered
piecewise hashing. Digit. Invest. 3, 91-97.

Ligh, Michael, Adair, Steven, Blake, Hartstein, Richard, Matthew, 2010. Malware
Analyst's Cookbook and DVD: Tools and Techniques for Fighting Malicious Code.
Wiley Publishing.

Malpedia. URL https://malpedia.caad.fkie.fraunhofer.de/.

Namanya, Anitta Patience, Ali Mirza, Qublai Khan, Mohannadi, Hamad Al,
Awan, Irfan U, Disso, Jules Ferdinand Pagna, 2016. Detection of malicious
portable executables using evidence combinational theory with fuzzy hashing.
In: Future Bibliography 99 Internet of Things and Cloud (FiCloud), 2016 IEEE 4th

https://www.sqlite.org/about.html
https://github.com/malicialab/avclass
https://github.com/malicialab/avclass
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref3
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref3
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref3
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref3
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref4
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref4
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref4
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref4
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref5
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref5
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref5
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref6
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref6
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref6
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref6
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref7
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref7
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref7
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref7
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref7
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref8
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref8
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref8
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref9
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref9
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref9
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref10
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref10
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref10
https://malpedia.caad.fkie.fraunhofer.de/
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref12
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref12
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref12
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref12

S94 I. Shiel, S. O'Shaughnessy / Digital Investigation 28 (2019) S88—S594

International Conference on. IEEE, pp. 91-98.

Pagani, F,, Dell'’Amico, M., Balzarotti, D., 2018. Beyond precision and recall: under-
standing uses (and misuses) of similarity hashes in binary analysis. In: Pro-
ceedings of the Eighth ACM Conference on Data and Application Security and
Privacy, pp. 354—365.

pefile 5 Nov 2017. URL https://github.com/erocarrera/pefile. Date Retreived 31 May
2018.

PEiD, 24 Apr 2018. https://www.softpedia.com/get/Programming/Packers-Crypters-
Protectors/PEiD-updated.shtml. (Accessed 24 August 2018).

Python Entropy calculator, 29 Nov 2010. URL https://github.com/ActiveState/code/
tree/3b27230f418b714bc9a0f897cb8eal89c3515e99. Date Retrieved 26 Jul
2018.

Python hashlib-like wrapper for several fuzzy hash algorithms, 3 June 2018. URL
https://github.com/sptonkin/fuzzyhashlib. Date Retrieved 31 May 2018.

Roussev, Vassil, 2010. Data fingerprinting with similarity digests. In: IFIP Interna-
tional Conference on Digital Forensics. Springer, pp. 207—226.

Roussev, Vassil, Chen, Yixin, Bourg, Timothy, Richard III, G., 2006. md5bloom:
forensic filesystem hashing revisited. Digit. Invest. 3, 82—90.

Roussev, Vassil, Richard III, G., Marziale, Lodovico, 2007. Multi-resolution similarity
hashing. Digit. Invest. 4, 105—113.

Symantec ISTR 2018, 2018. URL https://www.symantec.com/security-center/threat-
report. Date Retrieved 30 Mar 2018.

Tracking Malware with Import Hashing, 23 Jan 2014. URL https://www.fireeye.com/
blog/threat-research/2014/01/tracking-malware-import-hashing.html/ Date
Retrieved 10 Oct 2018.

Tridgell, A.. Spamsum. http://samba.org/ftp/unpacked/junkcode/spamsum/
README. (Accessed 4 April 2018).

Upchurch, Jason, Zhou, Xiaobo, 2013. First byte: force-based clustering of fitered
block n-grams to detect code reuse in malicious software. In: Malicious and
Unwanted Software:" The Americas"(MALWARE), 2013 8th International Con-
ference on. IEEE, pp. 68—76.

Upchurch, Jason, Zhou, Xiaobo, 2015. Variant: a malware similarity testing frame-
work. In: 2015 10th International Conference on Malicious Unwanted Software
(MALWARE), p. 31.

UPX, 12 May 2017. The Ultimate Packer for eXecutables. https://upx.github.io/.
(Accessed 24 August 2018).

VirusTotal private APIL. URL https://www.virustotal.com/en/documentation/private-
api Date Retrieved 30 Mar 2018.

What is ASpack?, 2018. URL http://www.aspack.com/aspack.html. Date Retrieved
24 Aug 2018.

Wicherski, Georg, 2009. peHash: a novel approach to fast malware clustering. In:
LEET’09 Proceedings of the 2nd USENIX Conference on Large-Scale Exploits and
Emergent Threats: Botnets, Spyware, Worms, and More, vols. 1-1.

http://refhub.elsevier.com/S1742-2876(19)30028-3/sref12
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref12
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref13
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref13
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref13
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref13
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref13
https://github.com/erocarrera/pefile
https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
https://github.com/ActiveState/code/tree/3b27230f418b714bc9a0f897cb8ea189c3515e99
https://github.com/ActiveState/code/tree/3b27230f418b714bc9a0f897cb8ea189c3515e99
https://github.com/sptonkin/fuzzyhashlib
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref18
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref18
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref18
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref19
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref19
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref19
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref20
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref20
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref20
https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
http://samba.org/ftp/unpacked/junkcode/spamsum/README
http://samba.org/ftp/unpacked/junkcode/spamsum/README
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref24
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref24
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref24
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref24
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref24
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref25
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref25
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref25
https://upx.github.io/
https://www.virustotal.com/en/documentation/private-api
https://www.virustotal.com/en/documentation/private-api
http://www.aspack.com/aspack.html
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref29
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref29
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref29
http://refhub.elsevier.com/S1742-2876(19)30028-3/sref29

	Improving file-level fuzzy hashes for malware variant classification
	Introduction
	Malware variants
	Similarity digests
	Issues with file-level fuzzy hashing

	Related work
	Early research
	ssdeep – 2006
	Other hashes and sdhash
	Performance metrics
	Effectiveness comparison
	Malware detection

	Methodology
	Experimental environment & sample data
	Selection of malware families
	Data collection
	Creation of the reference database
	Comparison of input PE file & section hashes to the reference database
	Detailed explanation of comparison logic
	Performance metrics and calculations

	Experiments
	Results
	Non-obfuscated input files
	Obfuscated (packed) input files

	Conclusions & further work
	Acknowledgements
	References

