
DIGITAL FORENSIC RESEARCH CONFERENCE

The Impact Of Microsoft Windows Pool Allocation

Strategies On Memory Forensics

By

Andreas Schuster

Presented At

The Digital Forensic Research Conference

DFRWS 2008 USA Baltimore, MD (Aug 11th - 13th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized

the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners

together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working

groups, annual conferences and challenges to help drive the direction of research and development.

http:/dfrws.org

2008-08-12Andreas Schuster / DFRWS 2008 1

The impact of Microsoft Windows pool
allocation strategies on memory forensics
Andreas Schuster

2008-08-12Andreas Schuster / DFRWS 2008 3

Introduction.
A simulated attack.

� Attacker
� launches shell (cmd.exe)
� launches “payload” (nc.exe)
� launches fu.exe to hide payload
� closes shell

� Incident Responder
� launches (trusted) shell
� obtains memory image

2008-08-12Andreas Schuster / DFRWS 2008 4

� payload (netcat listener nc.exe) is visible, but “isolated”
� no evidence of terminated programs
(attacker’s shell and rootkit)

Introduction.
Expectation vs. Observation

Persistence of pool allocations.

2008-08-12Andreas Schuster / DFRWS 2008 6

Persistence of memory pool allocations.
Related work.

� Farmer and Venema (2004) measured decay of freed memory on FreeBSD 4.1 and
RedHat Linux 6.2. After “some ten minutes, about 90 percent of the monitored
memory was changed“.

� Walters and Petroni (2007) counted changed memory pages on Windows XP SP2
running as VMware guest. After 15 hours of idle activity, 85% of 512 MB RAM were
unchanged.

� Solomon, Huebner, Bem and Szeżynska (2007) used probe processes to measure
the decay of userland data. “The majority of pages persisted for less than 5 min[utes]
with single pages only lasting longer.”

� Chow, Pfaff, Garfinkel and Rosenblum (2005) filled network buffers in kernel space
with marked and timestamped data. After 14 days of “everyday work” 3 MB out of
initially 4 MB were still accessible.

2008-08-12Andreas Schuster / DFRWS 2008 7

Persistence of memory pool allocations.
Test environment.

� Goal #1: avoid as much unwanted activity as possible

� deactivated unneeded system services
� firewall,
� background file transfer,
� NTP client…

2008-08-12Andreas Schuster / DFRWS 2008 8

Persistence of memory pool allocations.
Test environment.

� Goal #2: sampling shall not change the state of the observable

� run observed OS as guest in VMware
� see Walters and Petroni, 2007
� suspend VM to obtain the memory dump

2008-08-12Andreas Schuster / DFRWS 2008 9

Persistence of memory pool allocations.
Test environment.

� Goal #3: experiments shall be reproducible

� OS with prepared analysis environment (shell, debugger) stored as snapshot
� probe binaries and log files kept on host, accessed through VMware’s shared

folder
� test plan implemented as CMD batch

2008-08-12Andreas Schuster / DFRWS 2008 10

Persistence of memory pool allocations.
Test plan.

1. launch probes no. 1 to 100
2. give the system time to settle down (5 minutes)
3. obtain memory image (reference) and scan for EPROCESS structures
4. terminate all probes
5. obtain memory image and scan for EPROCESS structures
6. repeat 1, 5, 15, 30, 60 minutes and 24 hours thereafter

2008-08-12Andreas Schuster / DFRWS 2008 11

Persistence of memory pool allocations.
Results.

low file system activity:
� 90 EPROCESS structures

after 24 hours

� 8 ETHREAD, belonging to
SYSTEM and svchost.exe

� 1 network related
� 1 not identified

high file system activity:
� 88 EPROCESS structures

after 24 hours

� 7 file system related data,
e.g. MFT entries of probe files

� 3 ETHREAD belonging to background
activity (svchost.exe, services.exe)

� 1 network related
� 1 VAD

Reuse of pool allocations.

2008-08-12Andreas Schuster / DFRWS 2008 13

Reuse of pool allocations.
Related work.

� SoBeIt (2005): How to exploit Windows kernel memory pool.
http://xcon.xfocus.org/xcon2005/archives/2005/Xcon2005_SoBeIt.pdf

� Johnson (2007): Memory Allocator Attack and Defense.
http://seattle.toorcon.org/talks/richardjohnson.pptx

� Kortchinsky (2008): Real World Kernel Pool Exploitation.
http://www.immunitysec.com/downloads/KernelPool.odp
� detailed description of data structures and algorithms
� offensive usage
� highly recommended!

2008-08-12Andreas Schuster / DFRWS 2008 14

0
1
2

3

4

511

...

8 bytes

24 bytes 24 bytes 24 bytes

0
1
2

3

4

511

...

8 bytes

24 bytes 24 bytes 24 bytes

0
1
2

3

4

511

...

8 bytes

24 bytes 24 bytes 24 bytes

0

…

79

80

…

511

POOL_DESCRIPTOR
ListHeads

POOL_HEADER
ex ETHREAD

POOL_HEADER
ex EPROCESS

POOL_HEADER
ex EPROCESSBl

oc
kS

iz
e

Reuse of pool allocations.
Keeping track of free allocations.

2008-08-12Andreas Schuster / DFRWS 2008 15

Reuse of pool allocations.
POOL_HEADER (allocated)

kd> dt _POOL_HEADER
nt!_POOL_HEADER

+0x000 PreviousSize : Pos 0, 9 Bits
+0x000 PoolIndex : Pos 9, 7 Bits
+0x002 BlockSize : Pos 0, 9 Bits
+0x002 PoolType : Pos 9, 7 Bits
+0x004 PoolTag : Uint4B
+0x008 Payload

2008-08-12Andreas Schuster / DFRWS 2008 16

Reuse of pool allocations.
POOL_HEADER (free)

+0x000 PreviousSize : Pos 0, 9 Bits
+0x000 PoolIndex : Pos 9, 7 Bits
+0x002 BlockSize : Pos 0, 9 Bits
+0x002 PoolType : Pos 9, 7 Bits
+0x004 PoolTag : Uint4B
+0x008 FreeList : _LIST_ENTRY

+0x000 Flink : Ptr32
+0x004 Blink : Ptr32

+0x010 RemainingPayload

2008-08-12Andreas Schuster / DFRWS 2008 17

Reuse of pool allocations.
Test plan.

1. launch probes no. 1 to 3
2. terminate all probes in reverse order
3. obtain memory image and scan for EPROCESS structures
4. launch probe no. 4
5. obtain memory image and scan for EPROCESS structures

2008-08-12Andreas Schuster / DFRWS 2008 18

Reuse of pool allocations.
Results.

Probe
no. PID EPROCESS Page Directory

Base Address

1 464 0x04c9a020 0x06bf1000

2 492 0x04878da0 0x01876000

3 500 0x01082da0 0x04b9f000

4 540 0x04c9a020 0x039f9000

Conclusion.

2008-08-12Andreas Schuster / DFRWS 2008 20

Conclusion.
Nonpaged pool.

� contains lots of meta-data about kernel objects and other objects (processes,
threads, modules, files, network connections)

� no signs of active wiping and pool compaction

� data persists until
� block of memory is reused
� whole page is unused and gets removed from the pool

2008-08-12Andreas Schuster / DFRWS 2008 21

Conclusion.
Reuse of pool allocations.

� join adjacent free blocks

� reallocate:
� matching size
“EPROCESS overwrites EPROCES”

� if there’s no free allocation of matching size, then use a larger one
“ETHREAD overwrites EPROCESS”

� prefer free allocations near the borders over those in the middle of the pool
(buddy algorithm by Donald E. Knuth))

2008-08-12Andreas Schuster / DFRWS 2008 22

Conclusion.
Impact on memory acquisition tools.

� Installed prior to an incident (aka “Enterprise Forensic Solution”)
� pre-allocate resources during initialization
� activate resources when needed

� Installed post incident
� use as little resources as possible
� single thread
� allow only 1 network connection
� overlay instead of spawning a new process

2008-08-12Andreas Schuster / DFRWS 2008 23

Conclusion.
Measure the impact of IR/memory acquisition tools.

� Ian Sutherland, Jon Evans, Theodore Tryfonas, Andrew Blyth (2008):
“Acquiring Volatile Operating System Data – Tools and Techniques”
� memory footprint

� page file bytes
� virtual bytes
� working set

� time elapsed
� impact on registry
� use of DLLs

� proposal: also measure impact on pools, track calls to ExAllocatePoolWithTag

2008-08-12Andreas Schuster / DFRWS 2008 24

Conclusion.
Impact on memory analysis tools.

� first 8 bytes of payload overwritten, if allocation is marked as free (PoolType == 0)
� usually affects OBJECT_HEADER

� opportunity to improve signatures for pool allocations:
� both pointers are pointing into kernel memory (upper half of address space)
� alignment on 8-byte boundary
� affects PoolFinder
� identified more than 200 false-positives among 42.000 records

Questions?

2008-08-12Andreas Schuster / DFRWS 2008 26

Thank you for your attention!

