
DIGITAL FORENSIC RESEARCH CONFERENCE

The VAD Tree: A Process-Eye View of Physical Memory

By

Brendan Dolan-Gavitt

Presented At

The Digital Forensic Research Conference

DFRWS 2007 USA Pittsburgh, PA (Aug 13th - 15th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized

the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners

together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working

groups, annual conferences and challenges to help drive the direction of research and development.

http:/dfrws.org

The VAD Tree: A
Process-Eye View of

Physical Memory

Brendan Dolan-Gavitt

Too Much Data

• Physical memory is voluminous, and getting
more so

• Structure not well-understood for most
operating systems (e.g. Windows)

• Want to give context to artifacts and
evidence found in memory dumps

Current Approaches

• Attribution: look at the PDEs and PTEs for
each process to determine what owned a
particular bit of memory (e.g., Volatility’s
“strings” module)

• Find interesting structures such as
processes, threads, kernel modules, TCP
connections, etc. in memory

The VAD Tree

• Virtual Address Descriptor tree is a self-
balancing binary tree that lists memory
ranges allocated using VirtualAlloc().

• Three variations on the structure: short,
normal, and long (_MMVAD_SHORT,
_MMVAD, _MMVAD_LONG in XP SP2 debug
symbols).

VadS @80e2cd88
00190000-001a0000

VadS @80e20a88
00030000-00070000

Vadl @ffa98178
01000000-01013000

...

ControlArea @80d502e0
Flags: Accessed,

 HadUserReference,
Image, File

FileObject @80e170e0
Name:

[...]\notepad.exe

Walking the VAD Tree

1. Find an _EPROCESS structure (using, e.g.,
Andreas Schuster’s PTFinder).

2. Read the VadRoot member of that structure.

3. Use the pool tag (see Schuster IMF 2006) to
determine the type of VAD node, then visit
the left and right children.

4. GOTO 3.

Useful Properties

• VAD nodes correspond to the amount of
memory requested by VirtualAlloc, rather
than 4096 byte chunks as in page directory.

• Normal and long VADs contain pointers to
Control Areas, which in turn point to File
Objects if the memory range corresponds
to a mapped file such as a DLL.

• Kernel memory structure–harder to modify.

VAD Tools

• vadwalk: walk the tree and give a short
listing as ASCII art, table view, or GraphViz

• vadinfo: print detailed information on each
node

• vaddump: write the memory ranges
described by each node out to disk

Tool Limitations

• Naïve memory model (no support for
“invalid” PDE/PTEs, such as prototype or
transition pages).

• 32-bit, non-PAE mode is assumed.

• Only Windows 2000 and XP (SP0, SP1, SP2)
supported–no Vista support.

• Code quality is “proof-of-concept”–expect
crashes on strange inputs.

Anti-Forensics

• VAD Tree susceptible to DKOM attacks.

• Once the memory has been committed and
the page directory entries created, VAD
does not appear to be used.

• Code with access to kernel memory could
remove a node from the tree without
affecting the user-space process’s ability to
access it.

Future Work

• Vista VADs

• Finding and reconstructing VAD trees from
exited processes (VadRoot member is
zeroed out when process exits).

• Other interesting structures pointed to–for
example, what are _MMBANKED_SECTION
and _MMEXTEND_INFO ?

Links

• Volatility – GPL-licensed memory analysis
framework by AAron Walters and Nick
Petroni, Jr.

• VAD Tools – Public domain proof-of-concept
tools.

http://www.volatilesystems.com/VolatileWeb/volatility.gsp
http://www.volatilesystems.com/VolatileWeb/volatility.gsp
http://vadtools.sourceforge.net/
http://vadtools.sourceforge.net/

Questions?

