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We present a novel approach for automatic repair of corrupted files that applies to any common file
format and does not require knowledge of its structure. Our lightweight approach modifies the execution
of a file viewer instead of the file data and makes use of instrumentation and execution hijacking, two
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source code or any knowledge about its inner workings. We present our implementation of this approach

and evaluate it on corrupted PNG, JPEG, and PDF files.
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Introduction

Corrupted files may occur in many situations, e.g. due to errors
in data processing or failures of storage media. Many of these cor-
rupted files still contain most of their information but cannot be
opened by a file viewer due to small corruptions in important parts
of the file.

It is obvious that reconstructing a corrupted file to its original
form is not possible in general. However, this is often also not
necessary for the reconstructed file to be usable. Instead, it may be
sufficient if the reconstructed file is sufficiently similar to the
original. Hence an attempted file repair can be considered suc-
cessful if the resulting file meets the following conditions:

1. A validation program opens the file without crashing or error.

2. The file contains most of the information contained in the
original.

3. The file contains very little information that is not present in the
original.

Existing approaches to file repair often scan the data of a cor-
rupted file for known patterns. For example, an approach for the
repair of corrupted files compressed with the DEFLATE algorithm
(e.g. ZIP archives) (Brown, 2011, 2013) scans for patterns such as
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packet headers and is able to then partially reconstruct a file using
information about the content (e.g. English text). However, such
approaches are not only limited to repairing specific file formats but
also require manual effort in defining how the corrupted patterns
are fixed.

In this paper, we present Force Open, a novel approach for
automatic file repair that offers numerous advantages over existing
approaches to file repair. First, Force Open is a black box approach,
i.e. it is file format independent and only requires access to a pro-
gram binary and some valid files of the format of the file that we
wish to repair. Second, Force Open does not modify the file but
instead modifies the execution of the file viewer, forcing it to open a
corrupted file. This is achieved by using binary instrumentation to
record executions of the program for multiple valid files to learn
how the program behaves if the input file is valid. The recorded
information consists of all the branches (i.e. jump instructions and
their destinations) where the program behaviour is the same for all
valid input files. This learned behaviour is then enforced when
opening a corrupted file, where the program execution is hijacked
and forced to follow an execution path based on the recorded
behaviour for valid input files.

We implemented our Force Open approach and evaluated it for
PNG, JPG and PDF files. In our experiments, our approach per-
formed comparably to existing tools—PixRecovery for PNG and JPG
files and pdftk for PDF files—in terms of the number of successfully
repaired files. More importantly, for all file formats, the majority of
the files repaired by our approach were not repaired by these
reference tools. Our Force Open approach therefore complements
these tools. The total number of repaired files on average increases
by 84.82% for PNG files, 35.92% for JPG files, and 31.30% for PDF files.
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Contributions
This paper makes the following contributions:

e We propose a novel black box approach for repairing corrupted
files without requiring any knowledge about the file format. Our
approach is based on modifying the execution of a file viewer
instead of fixing a file directly.

e We present a set of algorithms to realise this approach, con-
sisting of a training algorithm that learns the behaviour of a file
viewer for valid input files and an algorithm that enforces this
behaviour for invalid input files.

e We implement and evaluate the approach for PNG, JPG, and PDF
files. Our results indicate that the Force Open approach can be
used to improve the repair quota of existing file repair programs
significantly.

Related work

The most closely related research to that presented here is
Docovery (Kuchta et al., 2014), a tool that uses symbolic execution,
another technique from software testing, to reconstruct documents
without prior knowledge about the underlying file format. The
approach presented in Docovery is, however, not a complete black
box approach, as it requires access to the source code of the used
file viewer for the symbolic execution. In addition, our approach is
much more lightweight as it does not require expensive symbolic
execution.

Other research regarding file repair is specific to a single file
format and requires in depth knowledge thereof, such as Brown
(2011, 2013), and Sencar and Memon (2009).

Less closely related research includes the technique for input
rectification presented by Long et al. (2012), which sanitises inputs
to application such that they resemble typical inputs to prevent the

does not satisfy the specification's constraints:

Definition 1. Let a file format specification be given. A file is corrupt
with respect to the file formal specification if it violates at least one of
the specification's constraints.

With this notion of corruption, it is trivial to repair any cor-
rupted file by simply assigning it to a file that meets a given file
format specification. We therefore require that a repaired file
contains useful information and that it does not introduce false
information. Thus a successful file repair must optimize two pa-
rameters: It must contain as much information of the original file as
possible and introduce as little information that is not contained in
the original as possible.

Since a corrupted file violates some constraints, common ap-
proaches to file repair try to modify the file so that it meets all
constraints. In order to do this, one first needs to know all con-
straints and second one needs to solve the constraints in a way that
preserves as much of the file as possible. Finding and solving all
constraints is difficult and requires knowledge about the file format
specification.

A key insight that powers our Force Open approach is that the
satisfaction of these constraints often manifests in the execution of
the file viewer. For example, a file viewer will always take a certain
branch if a checksum constraint is satisfied or when a file starts
with the correct file signature.

Let us take for example a valid PNG file. One of the constraints
given by the PNG specification (World Wide Web Consortium,
2003) is:

“The first eight bytes of a PNG datastream always contain the
following (decimal) values: 137 80 78 71 13 10 26 10"

This constraint is manifested, for instance, in the function
png_read_sig inpngrutil.c of libpng in the snippet shown in
Listing 1.

if (png sig cmp(info ptr—>signature,

if (num_checked < 4 &&

num_checked, num to_ check) != 0)

png_sig cmp(info_ptr—>signature , num_checked, num_to_check — 4))
png error(png ptr, "Not a PNG file");

else
png error (png ptr, "PNG file corrupted by ASCII conversion");

Listing 1: Code snippet that checks for PNG signature.

exploitation of security vulnerabilities. Similar to the approach that
we present here, their approach uses a training phase to collect
information about typical input files. However, while our approach
modifies the program execution, their approach modifies the input
data and is used for input sanitization instead of file repair.

Preliminaries

A file may be defined to be corrupted whenever it contains any
form of error. However, this definition is too broad for many
practical purposes. Take for example a large picture, where the
colour of one pixel is changed from blue to green. For almost all
purposes of the picture, this change is unnoticeable and thus the
corruption is of limited relevance. In many such cases, it is
impossible to decide whether a file is corrupted or not.

We will use a narrower definition of file corruption here. File
format specifications explicitly or implicitly define a finite set of
constraints for files. In the context of this paper, a file is corrupt if it

The function png_sig_cmp that is called here, compares the
whole signature or parts of the signature of the file to the correct
value. In the execution of this code snippet, a file that does not fulfil
the file signature constraint, e.g. a file that starts with 137 80 78
200131026 10 instead of 137 80 78 71 13 10 26 10 will produce
an error here. Valid files satisfy the constraint and thus the
execution will always behave the same, i.e. the program will always
take the true branch (Fig. 1).

Our approach builds on this and instead of changing the file
itself modifies the execution of the file viewer to behave as if its
input file is valid.

The intuition why this approach may work for file repair is that
the files of the same file format share many similar traits, not only
the file signature. For example, other common constraints for files
are checksums for some file data. These constraints are manifested
by integrity checks that many file viewers use to decide whether
the files are valid or corrupted. A file viewer may refuse to open a
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file starts with

137 8078 71
131026 10 ?
true false
continue
execution Error!

for png

Fig. 1. Checking a PNG file signature in a program execution.

file due to such a check, even though the file might still be recog-
nisable if this check is simply skipped.

These integrity checks are often necessary to prevent unwanted
behaviour such as segmentation faults or possible security vul-
nerabilities. Typically, an integrity check will compute a checksum
of the file data and compare this to a checksum that is stored within
the file. If the checksums match, the program continues its
execution, otherwise it will abort and show some error message
(see Fig. 2). However, failing an integrity check does not mean that
bad behaviour would necessarily occur, if the execution had been
continued. This implies that there exists a subset of corrupted files
that do not induce bad behaviour if the checks are ignored even
though they will fail an integrity check, i.e. these are files that can
be opened by forcing the file viewer to follow the path that con-
tinues its execution and thus behaving as if its input is a valid file.

Similarly, traits that are present in all valid files of a file format
are assumed to exist in the corrupted file and checks for their ex-
istence are bypassed, e.g. we would expect a PNG file that starts
with the invalid file signature 137 80 78 200 13 10 26 10 to be
nevertheless opened if the program is forced to behave as if the first
condition in Listing 1 evaluates to false.

In order to accomplish this task, our tool is trained by opening
valid input files with a file viewer and collecting information about
these executions. In a second step, the program then forces the
execution of the file viewer based on the collected information to
open the corrupted file. Our tool uses binary instrumentation and
execution hijacking and thus does not require access to the source
code of the instrumented program.

File repair

In this section we formalize the file repair problem.

file_checksum =
checksum(data)?

true false

continue

. Error!
execution

Fig. 2. Checksum check in a program execution.

Terminology

We start with several preliminary definitions. Let I be a set of
inputs and O a set of outputs. We do not further specify I and O. In
practice, I and O are infinite sets that contain all finite binary se-
quences. For example, I may contain binary sequences that repre-
sent PNG and JPEG files, while O contains binary sequences send
out to output components, such as the RGB values for each pixel of
the user's screen. The inputs I are typically stored as files, and we
use the terms input, file, and input file interchangeably.

A specification S : 1—0 is a partial function mapping input to
outputs. We call an input file i valid for a specification S if S(i) is
defined, and otherwise we call i invalid. We write Is for the set of
valid inputs for S. For example, the PNG specification (World Wide
Web Consortium, 2003) defines the set of valid PNG files. The
output of a program that implements a specification S is undefined
for any invalid input file. In practice, the program returns an error
message for invalid input files. If the program does not detect that a
file is invalid it may also throw a runtime error and crash.

The set I of valid files for a specification S is typically defined by
a set of constraints. For example, the constraint given in Section
Preliminaries, which states that the first eight bytes of a PNG file
mustbe 137 80 78 71 13 10 26 10, defines a constraint that all PNG
files must satisfy. We extensionally define a constraint C as a set of
files, and the set Is of valid files is then the intersection of all con-
straints. An input file i satisfies a constraint C if ieC. Formally, the
example PNG constraint contains all files that indeed start with the
bytes 137 80 78 71 13 10 26 10. Note that such constraints are
usually infinite sets, and they are intensionally defined as a
computable function y:1—{0,1} that returns 1 if ieC and
otherwise (i) = 0.

File repair

File corruptions change the contents of a file and can turn a valid
file into an invalid one. We denote the corrupted version of a file i
by i. As illustrated in Section Preliminaries, even minor modifica-
tions to a file can make it invalid. Such modifications typically
render the corrupted file unusable, simply because most imple-
mentations of the specification refuse to open invalid files. The file
repair problem is to mitigate this issue by computing an output o
that is similar to S(i) using only the corrupted version of the file (i.e.
?) and (an implementation of) the specification S. To formalize the
notion of similarity, we assume a similarity measure
0 : 0 x 0—0, 1] that quantifies the similarity between two outputs.
For example, a similarity measure between two images displayed
on a screen may return the fraction of pixels that differ. Given two
image outputs o and o/, g(0, 07) is then 1 if all pixels defined by o0 and
or have identical RGB values. We write o=or if d(0,0r) > 0, where
f<[0,1] is a fixed similarity threshold. Formally, we define the file
repair problem as follows.

Definition 2. Given an invalid file Tand a specification S, find an
output o such that o=5(i).

Several remarks are due. First, if the invalid file  is too different
from the original valid file i, then the file repair problem may be
impossible to solve. It is indeed not possible to repair a file i if all
bytes of i are replaced by, e.g., zeros. Second, the file repair problem
is trivial if we set the similarity threshold # to 0. This is because if
f = 0 then one can use an arbitrary valid file i to compute an output
o from the range of S.

Most existing work on file repair aims to modify the invalid filed
and turn it into a valid file ¢’ that is similar to i. Typically, this boils
down to modifying as few bytes of i as possible so as to transform i
into a valid file. Several approaches attempt to first discover which
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constraints are violated by 7 and then use constraint solving to
change 7 into a valid file i. For example, if the first eight bytes of a
corrupted PNG file do not match those prescribed by the PNG
specification, then one can replace the first eight bytes by the ex-
pected sequence of bytes to derive a file i’; if i’ is valid then S(i’) is a
solution to the file repair problem. Constraint solving can be,
however, prohibitively expensive if the specification defines com-
plex constraints. File repair approaches based on constraint solving
thus typically focus on a portion of i's bytes, namely those that are
most likely responsible for violating constraints.

The Force Open approach

Our program works in two phases. We will call the first phase
training phase and the second phase force open phase. The training
phase is used to record information about the execution of the file
viewer when opening valid files, and is described in detail in Sec-
tion Training phase. In the force open phase, the file viewer is then
forced to behave as if the input file is valid with the hope that a
corrupt input file will be opened successfully. This phase is
described in detail in Section Force open phase. A graphical over-
view of the complete workflow is given in Fig. 3.

Training phase

The training phase is used to gather information about the
branches taken by the file viewer during the execution with valid
input files. For each branch that is taken during the execution, we
record

o the location of the branch in the program and
o the location of the instruction that is executed after branching

We call the algorithm used to collect this information branch-
trace (Algorithm 1). This algorithm executes the file viewer with an
input file and for every branch on the executed path we record a
tuple (source, dest) storing the location of the branch (source) and
the location of the program counter after the branch statement has

been executed (dest). These pairs are added to a list, which is
returned by the algorithm after the file viewer has finished its
execution.

Algorithm 1 Branchtrace

function BRANCHTRACE(program, file)
branches < empty list
for all branch in the execution of PROGRAM(file)
do
source < location of branch
dest < destination taken by branch
append (source, dest) to branches
end for
return branches
end function

The list returned by the branchtrace algorithm is by itself only of
limited usefulness. It is simply a record of the execution path taken
by a single execution of the file viewer with a specific input file. As
the execution paths differ for different valid input files, we need to
collect only the branches that have the same behaviour for all valid
files. However, we cannot collect information about the executions
with all valid input files. Therefore, we need a training algorithm that
collects information from executions with many different valid input
files and combines the collected information in a meaningful way.

The SameBranchBehaviour algorithm (Algorithm 2) is a simple
training algorithm. It takes a list of correct files and a program as
input and creates an empty set branches. It then loops through all
files in the file list and for each file executes the branchtrace algo-
rithm (Algorithm 1). The branches returned by branchtrace are
added to branches.

After the loop is completed, the algorithm checks for every tuple
of the form (source,dest) in branches whether an entry
(source, dest2) with dest + dest2 exists in branches. If that is the case,
both tuples are removed from branches. The algorithm then returns
the set branches which contains exactly the branches that always
have the same outcome for all valid files. Thus, the output of the

Program Files Program File

invokes l

Training

Branchtrace Algorithm Force Open
returns
branches
List of Program
Branches shows File

Training Phase :

Fig. 3. Force Open workflow.
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algorithm contains exactly those branches for which the behaviour
is the same for all input files.

If all recorded traces consist of exactly the same set of branches
(ignoring the outcome), this algorithm will produce the intersec-
tion of the recorded tuples. However, we cannot assume that all
traces will contain the same branches, which is why we do not
simply compute the intersection. In fact, two traces may consist of
almost completely disjoint sets of branches, i.e. they could only
share a single branch (with different outcomes, since the execution
paths differ from that point onwards) causing the intersection of
tuples to be the empty set.

black box approach that does not require any knowledge about the
internal workings of the file viewer. Both the branchtrace and the
force open algorithm are implemented as pintools in C++. As the
pintools work directly on the binaries and not on the source code, a
branch as used in the algorithms is any conditional jump instruction.

The jump instructions and their destinations are identified by
their memory addresses in a single execution of the file viewer.
However, as many libraries are loaded dynamically and their
location in the address space changes from one execution to the
other, the memory address of the jump instruction is not sufficient
to identify the jump for multiple executions of the program.

Algorithm 2 SameBranchBehaviour

function SAMEBRANCHBEHAVIOUR( filelist, program)
branches « {}
for all file € filelist do

temp_ branches < BRANCHTRACE(program, file)

branches < branches U temp_branches
end for
for all (source, dest) € branches do

for all (source,dest2) € branches where dest # dest2 do

branches « branches \ (source, dest)
branches + branches \ (source, dest2)
end for
end for
return branches
end function

Force open phase

The force open algorithm (Algorithm 3) uses execution hijacking
in order to force the behaviour of the file viewer. It takes a program,
a file and a list of branches as input. The list of branches could in
general be any list of branches, but it is intended to be a list
compiled by a training algorithm such as Algorithm 2 from Section
Training phase.

The algorithm loops through all branches in the input program
and for every branch checks whether the branch is contained in the
list of branches. If that is the case, the branch in the program is
replaced by an unconditional jump to the destination stored in the
branch list for this specific branch. After the loop is finished, the
modified program is executed with the input file as argument.

Algorithm 3 Force Open

function FORCEOPEN(program, file, branches)
for all branch in program do
source < location of branch
if source is a key in branches then
dest < branches[source]
replace branch in program with goto dest
end if
end for
PROGRAM( file)
end function

Implementation

The Pin framework (Luk et al., 2005) can be used to write custom
dynamic instrumentation tools, called pintools, that work directly on
x86 and x86—64 binaries. By using Pin to implement the branchtrace
and the force open algorithms, our approach becomes a complete

Instead, we use the name of the module in which the jump in-
struction is located together with the offset of the jump instruction
to the base address of the module.

The branchtrace pintool takes a program and corresponding
program arguments (e.g. the name of a file that should be opened)
as input. The branchtrace pintool instruments the specified pro-
gram by inserting a function call after each conditional jump that
records the location of the jump and the location of the instruction
that will be executed next and writes them to a file.

The force open pintool takes a file containing jump locations and
corresponding target locations as input, in addition to a program
including arguments. It then instruments the program by inserting
an unconditional jump to the respective target before each jump
contained in its input file and executes it.

The SameBranchBehaviour algorithm (Algorithm 2) was imple-
mented in Python. The script takes multiple files as input and either
a setup flag or a list containing branch information. If the setup flag
is set, the program creates an empty dictionary to store the branch
information and loops through the input files, invoking the instru-
mented file viewer instrumented to record branch information and
adding the recorded entries to the dictionary as described in Algo-
rithm 2. At the end, the dictionary entries are written to a file.

When the setup flag is not set and a branch list is given as input,
the Python script acts as a wrapper for the force open pintool,
allowing for multiple files to be opened. It loops through the
specified files and for each hijacks the execution of the program
according to the branch list.

Evaluation
We evaluated our approach for the PNG, JPG and PDF file for-

mats.! The file viewer used for PNG and JPG is the feh image viewer.

! The tools and the data sets are available at https://github.com/fldpi/forceopen.
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For PDF files we used the pdftotext command-line utility. We
compare our results for PNGs and JPGs with the results of
PixRecovery, a commercial file repair tool for image files, and for
PDFs with the results of pdftk, a command-line utility for manip-
ulating and repairing PDFs.

Test conditions and environment

The machine used for testing uses a 3.4 GHz Intel Core i7-4770
CPU, has 32 GB of DDR3-RAM, and is running a 64-bit Linux dis-
tribution. The Python scripts used for the implementations were
modified to measure total time, CPU-time, and maximum and
average memory usage. In order to create comparable conditions
and to increase usability, an option was added to the scripts to
automatically close opened pictures. The wrapper that calls the
force open pintool for each specified file uses a controller that kills
the process of the file viewer if no corresponding window is
detected within a reasonable amount of time.

Generating corrupted files for testing

The algorithm that we use to generate corrupted files for our
experiments is straightforward. In order to produce files that satisfy
our definition of corrupted file, we need to generate files that
violate the constraints implied by the file format specification. We
approximate this by ensuring that the program that would nor-
mally be used to open the file, can no longer open it. We assume
that the file viewer is able to open all files that fulfil the constraints.
While there may be files that violate constraints and cannot be
produced using this method, the corrupted files that are generated
will fit our definition. The generated set of corrupted files is thus at
least as difficult to repair as a random sample of corrupted files. Our
algorithm to generate corrupted files (Algorithm 4) takes as input a
program, a file, and a number n specifying the number of corrupted
bytes. The algorithm then creates a copy of the file, chooses a byte-
aligned position between 0 and (size(file) — n) at random, and
overwrites the n bytes starting at that position with random data. It
then tries to open the modified copy with the specified program. If
the program fails to open the copy, the algorithm returns the copy,
otherwise the algorithm is repeated.

Algorithm 4 Corrupt

function CORRUPT(program, file,n)
repeat
copy + file
position <. q.r. {0,size(file) —n}
copy [position : position +n —1]  «+
data
until PROGRAM(copy) fails
return copy
end function

random

PNG

The training set for the PNG file format consists of 200 valid PNG
files of different sizes. The test set (disjoint from the training set)
consists of PNG files that were corrupted with the algorithm
described in Section Generating corrupted files for testing with
corruption sizes of 2k bytes for ke{0,1,2,3,4}. We compare the

reconstructed images to the original (not corrupted) images using
the pHash library (Zauner, 2010), which determines whether two
images are visually similar by taking into account different possible
transformations on the pictures. Note that in addition, a manual
inspection of reconstructed images showed that most of them are
visually the same as the original with no or only small artefacts.

In our tests, the training phase needed 35 min to complete,
while using 182.39% of the CPU (where 100% is one core) with a
maximum memory usage of 167 MB. The number of successfully
displayed files (i.e. the files that are opened without producing an
error) is shown in Table 1, as is the number of files that are recog-
nised by the pHash library as similar to the original. As expected,
the success rate decreases as the number of modified bytes in-
creases. The time to open (or failing to open) one image is on
average around 15 s of CPU time on the test machine for 1-byte
corruptions and 67 s of CPU time for 16-byte corruptions (due to
fewer images that can be opened) with an average memory usage
of approximately 250 MB. For some files, the process seems to
introduce a memory leak, peaking at a memory usage of almost
19 GB. As these peaks occur for very few files that cannot
be opened, this could be easily prevented by monitoring the
memory usage and aborting the child process if some threshold is
exceeded.

For the repaired PNG files with single byte corruptions, the types
of corruptions are listed in Table 2. The PNG format is a lossless
image compression format. It consists of an 8-byte file header
(containing the file signature) and a series of chunks. Every chunk
consists of a 4-byte length field, containing the length of the chunk
data, a 4-byte type field, the chunk data and a 4-byte CRC checksum.
Each chunk s either critical (IHDR, PLTE, IDAT, IEND) or ancillary (i.e.
not strictly necessary to decode a file correctly). The IHDR chunk is
always the first chunk in the file and specifies attributes such as
image dimensions and colour type. It always has the same length.
The PLTE chunk specifies the colour palette, this chunk may be
optional depending on the specified colour type. There may be
multiple IDAT chunks containing the DEFLATE (Deutsch, 1996)
compressed image data (World Wide Web Consortium, 2003).

When we take a closer look at the files that are corrupted in one
byte and compare the results of our test with the analysis of all
corrupted files (Table 2), we see that certain types of corruptions
are handled better than others. Most of the repaired corruptions are
of a type that we would expect to be repaired successfully. The
image header is always the same for each file, as is the location and
length of the IHDR chunk. The repaired corruptions (except 1) in
the THDR data are corruptions in the parts specifying either the
“filter method” or the “compression method”, for both of which
there is only one method specified in the PNG standard (i.e. they
contain the same values for all files). Other corruptions in the [HDR
data, that are different for most files, are, however, almost never
repaired. Corruptions within CRC checksums are also handled well
with our approach, which, as mentioned in Section The Force Open
approach, fits our expectations. While not all of the corruptions that
we would expect to be handled well with our approach (e.g. some
CRC checksums) are actually repaired, most of them are (see
Table 2).

We used the commercial tool PixRecovery to repair the same
test files that were used to test our tool. The results of this test are
shown in Table 1. As one can see, the repair rates of our tool and
PixRecovery are comparable. However, there is no subset relation
between the sets of repaired files.

In fact, the number of files that are only repaired by our tool is
larger than the overlap between the sets of reconstructed files
(Fig. 4a & Table 1). Thus, our approach can be used to improve the
existing heuristics significantly.
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Table 1

A summary of our results showing the number of files repaired with Force Open (FO) and a Reference Tool (RT), which is PixRecovery for PNG and JPG, and pdftk for PDF.

Corrupt Number Repaired files
f fil
bytes otfries Force Open (FO) Ref. Tool (RT) FO and RT Only FO Only RT
PNG 1 597 306 (51.26%) 207 (34.67%) 144 (24.12%) 162 (27.14%) 63 (10.55%)
2 624 305 (48.88%) 174 (27.88%) 119 (19.07%) 186 (29.81%) 55 (8.81%)
4 612 215 (35.13%) 155 (25.33%) 88 (14.38%) 127 (20.75%) 67 (10.95%)
8 632 129 (20.41%) 98 (15.51%) 46 (7.28%) 83 (13.13%) 52 (8.23%)
16 630 54 (8.57%) 58 (9.21%) 25 (3.97%) 29 (4.60%) 33 (5.24%)
1-16 3095 1009 (32.60%) 692 (22.36%) 422 (13.63%) 587 (18.97%) 270 (8.72%)
JPG 1 248 37 (14.92%) 58 (23.39%) 9 (3.63%) 28 (11.29%) 49 (19.76%)
2 256 30 (11.72%) 45 (17.58%) 14 (5.47%) 16 (6.25%) 31 (12.11%)
4 249 20 (8.03%) 34 (13.65%) 6 (2.41%) 14 (5.62%) 28 (11.24%)
8 253 14 (5.53%) 25 (9.88%) 3 (1.19%) 11 (4.35%) 22 (8.70%)
16 255 6 (2.35%) 44 (17.25%) 1 (0.39%) 5 (1.96%) 43 (16.86%)
1-16 1261 107 (8.49%) 206 (16.34%) 33 (2.62%) 74 (5.87%) 173 (13.72%)
PDF 1 312 30 (9.62%) 33 (10.58%) 3 (0.96%) 27 (8.65%) 30 (9.62%)
2 320 22 (6.88%) 41 (12.81%) 3 (0.94%) 19 (5.94%) 38 (11.88%)
4 349 16 (4.58%) 49 (14.04%) 0 (0.00%) 16 (4.58%) 49 (14.04%)
8 358 9 (2.51%) 48 (13.41%) 2 (0.56%) 7 (1.96%) 46 (12.85%)
16 384 8 (2.08%) 59 (15.36%) 5 (1.30%) 3 (0.78%) 54 (14.06%)
1-16 1723 85 (4.93%) 230 (13.35%) 13 (0.75) 72 (4.18%) 217 (12.59%)
Table 2 . . . . K
Types of corruptions (PNG). corrupted files for testing with corruption 51zes_of 2% bytes for
- - ke{0,1,2,3,4} (the same as for PNG). We again compare the
Chunk Field # of files # of repaired . - . . .
fles reconstructed images to the original images using the pHash library
- (Zauner, 2010).
File header 74 39 The training phase needed 6.2 min to complete, while using
IHDR Chunk type 32 9 % of th h o ith :
IHDR Chunk length 30 26 133.90% of the CPU (where 100% is one core) _w1t 1 @ maximum
IHDR Chunk data 25 18 memory usage of 26 MB. The results are summarised in Table 1. The
(compression/filter) success rate again decreases as the number of modified bytes in-
IHDR Chunk data (other) 106 1 creases. The time to open (or failing to open) one image is on
IHDR CRC 44 3 average around 19 s of CPU time with a maximum memory usage of
IDAT Chunk type 55 20 &€ ry usag
IDAT Chunk length 1 0 approximately 50 MB.
PLTE Chunk type 3 0 We again compare our results to the results of PixRecovery and
PLTE Chunk length 3 0 while the repair rates are higher for PixRecovery (Table 1), espe-
Ilj gg E;g"k data ;0 33 cially for larger corruptions, the overlap is again small, i.e. our
Ancillary chunks Chunk type 7 50 flpproaﬁh still improves the overall repair rate significantly if used
Ancillary chunks Chunk length 77 49 in addition to a traditional approach (Fig. 4b & Table 1).

JPG

The training set for the JPG file format consists of 79 valid JPG
files of different sizes. The test set consists of JPG files that were
corrupted with the algorithm described in Section Generating

PixRecovery Force Open PixRecovery  Force Open
(a) PNG (b) JPG
pdftk Force Open

(c) PDF

Fig. 4. Overlaps of repaired files.

PDF

For PDF files, we used to pdftotext command line utility as file
viewer. The training set for PDF consists of 158 text based PDF files.
The test set consists of text based PDF files that were corrupted
with the algorithm described in Section Generating corrupted files
for testing, again with corruption sizes of 2 for ke{0,1,2,3,4}.
The output of the execution using our tool is then compared to the
output of pdftotext when given the original as input using the
Levenshtein distance as a metric.

The training phase needed 4 h and 44 min to complete, while
using 216% of the CPU (where 100% is one core) with a maximum
memory usage of 115 MB. The results are summarised in Table 1.
For all files that were successfully opened, the Levenshtein dis-
tance of the produced output to the output of pdftotext with the
original file as input is zero, i.e. the files are either completely
repaired or not at all. The success rate again decreases as the
number of modified bytes increases. The time to open (or failing to
open) one file is on average around 7 s of CPU time with a memory
usage of less than 90 MB (and peaks of up to 2.3 GB in rare cases).

For PDF, we compare our results to the results of pdftk (Table 1),
which is much more successful for larger corruptions and compa-
rable for single byte corruptions. However, the overlap of repaired
documents is again small (Fig. 4c & Table 1), i.e. our approach re-
pairs additional files and could thus be used as additional heuristic
to improve the overall results.
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Discussion
Limitations

The design of our approach inherently introduces some limita-
tions. For Example, Force Open is not capable of repairing corrup-
tions that are highly data dependant (e.g. image dimensions) and
are not in the form of some if-then-else statement. Large corrup-
tions, e.g. corruptions of the size of a file system block, also pose a
problem, since they will usually introduce data dependency.

In addition, our method may introduce unwanted behaviour in
the hijacked program. Our approach is designed to circumvent
integrity checks and as such also introduces a possibility for mali-
cious exploitation. This should be taken into account when
applying our method by sandboxing its execution.

Different training algorithms

In addition to the training algorithm (Algorithm 2) described in
Section Training phase, we also experimented with two other
simple training algorithms. However, they did not work as well,
which is why we only briefly describe them here. Both other
training algorithms require not only valid files but additionally a
corrupted version of each valid file.

The first alternative algorithm compares the executions of the
file viewer for a valid file with the execution for its invalid version
and records only the first differing branch, i.e. the branch where the
execution paths first start to diverge. This training algorithm was
not successful. By forcing the recorded branches with this algo-
rithm, Force Open was unable to open a single file.

The second alternative algorithm also compares executions of
the file viewer for a valid file with the execution for its invalid
version. However, it records all branches where the execution paths
differ, i.e. the set of collected branches is a subset of the branches
collected with the SameBranchBehaviour algorithm (Algorithm 2).
While this training algorithm was faster, the success rate for this
training algorithm was significantly lower than for the Same-
BranchBehaviour algorithm.

Another advantage of the main training algorithm presents itself
if one considers that when training with one of the alternative al-
gorithms, we produce corrupted files for training with the same
algorithm that we used to generate our test files. Thus, the types of
corruptions in the test files are artificially generated with the same
distribution as in the training files. This means that the results
apply only to corrupted files for which the distribution of the types
of corruptions can be simulated. The SameBranchBehaviour algo-
rithm does not have this disadvantage since it does not use cor-
rupted files for training.

Instrumenting only parts of the file viewer

It is possible to only instrument some modules of the file viewer.
For example, we can exclude some library that is assumed to have
no influence on the decision of whether a file is valid or not. This
suggests two possible advantages:

e We remove the possibility of erroneously inserted jumps that
may cause the program to fail.

o The instrumentation functions are called fewer times, resulting
in a faster runtime.

However, selecting the optimal configuration of instrumented
modules is a difficult problem. For example, the image viewer feh
uses approximately 70 modules when opening a PNG file. Testing

all possible combinations is therefore infeasible. Manually selecting
modules that seem to play a part in deciding the validity of a file is
possible, but this requires some deeper knowledge about the file
viewer or the file format, i.e. this would no longer constitute a
complete black box approach.

Nevertheless, we experimented with manual module selection
to investigate whether the success rate increases and whether the
speed is improved. In our experiments, the tested module config-
urations performed comparably to instrumenting all modules with
regards to the number of successfully repaired files while being
slightly faster due to less instrumentation.

This means that in principle, one can achieve similar success
rates while being slightly quicker by instrumenting only parts of
the file viewer. However, since this requires manual intervention,
the process is no longer completely automated and requires addi-
tional knowledge for each file format. It also adds a time overhead
since some experimentation is needed to find a good configuration
of modules. Thus, the benefits of instrumenting all modules
outweigh the benefits of instrumenting fewer modules.

Conclusion

In this paper, we presented Force Open, a black box file repair
solution based on binary instrumentation and execution hijacking
that is adaptable to different file formats without requiring
knowledge about said file format or the inner workings of the
instrumented file viewer. It is a lightweight approach without the
necessity of resource expensive techniques such as symbolic
execution. We implemented and tested our approach with three
different file formats and compared it to state of the art file repair
solutions. In our experiments, we were able to show that our
approach can be used to significantly improve the repair quota of
existing programs.
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