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Introduction

Introduction RICE

Java runtime uses automatic memory management
Data lifetimes are not controllable
Data cannot be explicitly destroyed
Multiple copies are typically created
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Introduction

Motivation RICE

Cross-platform malware uses managed runtimes
Threat actors also exploit vulnerable applications
Managed runtimes retain many artifacts
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Introduction

Research Questions RICE

Can object meta-data be exploited for investigations?
What kind of information is obtainable?
Can viable timelines be created?
Can the approach be generalized to other runtimes?
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Outline RICE
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Managed Memory Overview

Generational GC Heap Overview RICE

Tracing GC: Looking for live objects from a set of roots
Heap engineered for expected object life-time
GC promotes objects from one heap to the next one

Eden Space (short lived) → Survivor Space
Survivor Space → Tenure Space (long lived)

Figure: Typical generational heap layout.
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Managed Memory Overview

Unmanaged Data Lifetime Overview RICE

Figure: Example data lifetime in unmanaged memory.
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Managed Memory Overview

Managed Data Lifetime Overview RICE

Figure: Example data lifetime in managed memory.
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Managed Memory Overview

Why is data being retained? RICE

Figure: String[2] on the heap.
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Managed Memory Overview

Why is data being retained? (2) RICE

Figure: String[0] is reassigned but the old value remains.
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Approach

Recovering OOP Framework RICE
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Approach

Recovering OOP Framework (2) RICE

Focuses recovery from
x86 architecture
Uses a minimal set of
structure overlays
Compatible with Linux
and Windows OS
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Approach

Extract Loaded Types RICE

Identify structures revealing loaded types
SystemDictionary: loaded classes
SymbolTable: loaded symbols
StringTable: constants or long-lived strings

Mine structures for the loaded data structures
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Approach

Extract Loaded Types (2) RICE

Look for invariant values
Walk the hash tables
Use constraints to control recovery
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Approach

Locate Managed Memory with Logs RICE

Table: The regular expression “space.*used” used in conjunction
with ffastrings to determine the eden, survivor, and tenure
generation spaces. Note [...] signifies omitted message content.

GC Log Message
Generational Space Start and End of the Space

eden space [...] used [0xa4800000, [...] 0xa4c50000)
from space [...] used [0xa4c50000, [...] 0xa4cd0000)
to space [...] used [0xa4cd0000, [...] 0xa4d50000)
the space [...] used [0xa9d50000, [...] 0xaa800000)
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Approach

Locating Managed Memory with Pointers RICE

Table: Java object distribution in managed process memory (e.g.
eden, survivor, and tenure spaces).

Type Unique Pointer Occurrences
Address Range Pointers Pointers Per Page (Y-axis: 0-64)

0xa47ff000-0xa4c0f000 13261 266

0xa4c50000-0xa4c92000 129 28

0xa4cd0000-0xa4d50000 1121 79

0xa9d50000-0xaa000000 28810 661
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Approach

Enumerate and Extract Objects RICE

Scan managed heap for known types
Parse the object based on the report type
Lift values for the object’s fields
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Approach

Objects of Immediate Interest RICE
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Evaluation

Evaluation Overview RICE

Created software similar to a malware implant
Used a script of common threat actor activities
Took memory snapshots after each activity
Analyzed the snapshots using RecOOP
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Evaluation

Faux Implant Overview RICE

Figure: Overview of the malware functionality for experiment.
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Evaluation

Reconstructing Socket Connections RICE

Object Address Remote Connection In/Out Data (Up to 30 Bytes)
0x91c779b8 10.18.120.18 48002 ⇒ Do something evil-48002!
0x91c7ead0 10.18.120.18 48003 ⇒ Do something evil-48003!
0x91c85b70 10.18.120.18 48002 ⇐ s3cr3t_d4t3_48002-00000000s3cr
0x91c938d8 172.16.124.15 58860 ⇒ czNjcjN0X2Q0dDNfNDgwMDItMDAw
0x91c980d0 10.18.120.18 48003 ⇐ s3cr3t_d4t3_48003-00000000s3cr
0x91ca5cb8 172.16.124.15 58860 ⇒ czNjcjN0X2Q0dDNfNDgwMDMtMDAw
0x91cbfef0 10.18.120.18 48004 ⇒ Do something evil-48004!
0x91cc7008 10.18.120.18 48005 ⇒ Do something evil-48005!
0x91ccdee8 10.18.120.18 48004 ⇐ s3cr3t_d4t3_48004-00000000s3cr
0x91cdbad0 172.16.124.15 58860 ⇒ czNjcjN0X2Q0dDNfNDgwMDQtMDAw
0x91ce02c8 10.18.120.18 48005 ⇐ s3cr3t_d4t3_48005-00000000s3cr
0x91cedeb0 172.16.124.15 58860 ⇒ czNjcjN0X2Q0dDNfNDgwMDUtMDAw
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Evaluation

Reconstructing Events RICE

Table: This table shows a sampling of the processes started by the
Java program and the stdout buffer at t=21.

Address PID Buffered Data
0x91dff7e0 1242 #\n# This file MUST be edited w
0x91e1c7e8 1245 Linux java-workx32-00 3.19.0-1
0x91e3b0e0 1248 java adm cdrom sudo dip plugde
0x91e4a6e8 1250 root:x:0:0:root:/root:/bin/bas
0x91eb1390 1252 root:!:16678:0:99999:7:::\ndaem
0x91f66708 1275 \nStarting Nmap 6.47 ( http://n
0x91ff7ed0 1301 history | grep pg\n history | gr
0x92014f30 1307 ifconfig\nsudo add-apt-reposito
0x920626d8 1322 adding: home/java/.ssh/ (sto
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Evaluation

Eliminating Red Herrings RICE

Table: This table shows a selected set of method call data extracted
from the JVM. Unused functions have a null counter value.

Address Calls Method Name
0x63fdb6f8 256 Loader getLoaderInstance(...)
0x63fdb908 73 byte[] b64Decode(...)
0x63fdce98 256 integer sendSocketData(...)
0x63fdd718 256 void stdout(...)
0x63fdd850 256 void logEvent(...)
0x63fddbd8 73 integer getPid(...)
0x63fddd50 73 integer startProcess(...)
0x63fddf68 256 java.lang.String readProcessStdout(...)
0x63fdd9e8 1 void main(...)
0x63fdb670 1 void start(...)
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Evaluation

Evaluating Event Reconstruction: Process Objects
RICE
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Conclusions

Conclusions RICE

Memory analysis can recover these artifacts
Meta-data and data locality help with reconstruction
GC memory allocation eases timeline creation
This approach applies to other Generational GCs
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Conclusions

Questions RICE
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