
Picking up the trash
Exploiting generational GC for memory analysis

Adam Pridgen 1 Simson L. Garfinkel 2 Dan S. Wallach 1

1Rice University, Houston, TX, USA

2George Mason University, Fairfax, VA, USA

Digital Forensics Research Workshop, 2017

Pridgen, Garfinkel, and Wallach Picking up the trash 1

Introduction

Introduction RICE

Java runtime uses automatic memory management
Data lifetimes are not controllable
Data cannot be explicitly destroyed
Multiple copies are typically created

Pridgen, Garfinkel, and Wallach Picking up the trash 2

Introduction

Motivation RICE

Cross-platform malware uses managed runtimes
Threat actors also exploit vulnerable applications
Managed runtimes retain many artifacts

Pridgen, Garfinkel, and Wallach Picking up the trash 3

Introduction

Research Questions RICE

Can object meta-data be exploited for investigations?
What kind of information is obtainable?
Can viable timelines be created?
Can the approach be generalized to other runtimes?

Pridgen, Garfinkel, and Wallach Picking up the trash 4

Introduction

Outline RICE

1 Introduction

2 Managed Memory Overview

3 Approach

4 Evaluation

5 Conclusions

Pridgen, Garfinkel, and Wallach Picking up the trash 5

Managed Memory Overview

Generational GC Heap Overview RICE

Tracing GC: Looking for live objects from a set of roots
Heap engineered for expected object life-time
GC promotes objects from one heap to the next one

Eden Space (short lived) → Survivor Space
Survivor Space → Tenure Space (long lived)

Figure: Typical generational heap layout.

Pridgen, Garfinkel, and Wallach Picking up the trash 6

Managed Memory Overview

Unmanaged Data Lifetime Overview RICE

Figure: Example data lifetime in unmanaged memory.

Pridgen, Garfinkel, and Wallach Picking up the trash 7

Managed Memory Overview

Managed Data Lifetime Overview RICE

Figure: Example data lifetime in managed memory.

Pridgen, Garfinkel, and Wallach Picking up the trash 8

Managed Memory Overview

Why is data being retained? RICE

Figure: String[2] on the heap.

Pridgen, Garfinkel, and Wallach Picking up the trash 9

Managed Memory Overview

Why is data being retained? (2) RICE

Figure: String[0] is reassigned but the old value remains.

Pridgen, Garfinkel, and Wallach Picking up the trash 10

Approach

Recovering OOP Framework RICE

Pridgen, Garfinkel, and Wallach Picking up the trash 11

Approach

Recovering OOP Framework (2) RICE

Focuses recovery from
x86 architecture
Uses a minimal set of
structure overlays
Compatible with Linux
and Windows OS

Pridgen, Garfinkel, and Wallach Picking up the trash 12

Approach

Extract Loaded Types RICE

Identify structures revealing loaded types
SystemDictionary: loaded classes
SymbolTable: loaded symbols
StringTable: constants or long-lived strings

Mine structures for the loaded data structures

Pridgen, Garfinkel, and Wallach Picking up the trash 13

Approach

Extract Loaded Types (2) RICE

Look for invariant values
Walk the hash tables
Use constraints to control recovery

Pridgen, Garfinkel, and Wallach Picking up the trash 14

Approach

Locate Managed Memory with Logs RICE

Table: The regular expression “space.*used” used in conjunction
with ffastrings to determine the eden, survivor, and tenure
generation spaces. Note [...] signifies omitted message content.

GC Log Message
Generational Space Start and End of the Space

eden space [...] used [0xa4800000, [...] 0xa4c50000)
from space [...] used [0xa4c50000, [...] 0xa4cd0000)
to space [...] used [0xa4cd0000, [...] 0xa4d50000)
the space [...] used [0xa9d50000, [...] 0xaa800000)

Pridgen, Garfinkel, and Wallach Picking up the trash 15

Approach

Locating Managed Memory with Pointers RICE

Table: Java object distribution in managed process memory (e.g.
eden, survivor, and tenure spaces).

Type Unique Pointer Occurrences
Address Range Pointers Pointers Per Page (Y-axis: 0-64)

0xa47ff000-0xa4c0f000 13261 266

0xa4c50000-0xa4c92000 129 28

0xa4cd0000-0xa4d50000 1121 79

0xa9d50000-0xaa000000 28810 661

Pridgen, Garfinkel, and Wallach Picking up the trash 16

Approach

Enumerate and Extract Objects RICE

Scan managed heap for known types
Parse the object based on the report type
Lift values for the object’s fields

Pridgen, Garfinkel, and Wallach Picking up the trash 17

Approach

Objects of Immediate Interest RICE

Pridgen, Garfinkel, and Wallach Picking up the trash 18

Evaluation

Evaluation Overview RICE

Created software similar to a malware implant
Used a script of common threat actor activities
Took memory snapshots after each activity
Analyzed the snapshots using RecOOP

Pridgen, Garfinkel, and Wallach Picking up the trash 19

Evaluation

Faux Implant Overview RICE

Figure: Overview of the malware functionality for experiment.

Pridgen, Garfinkel, and Wallach Picking up the trash 20

Evaluation

Reconstructing Socket Connections RICE

Object Address Remote Connection In/Out Data (Up to 30 Bytes)
0x91c779b8 10.18.120.18 48002 ⇒ Do something evil-48002!
0x91c7ead0 10.18.120.18 48003 ⇒ Do something evil-48003!
0x91c85b70 10.18.120.18 48002 ⇐ s3cr3t_d4t3_48002-00000000s3cr
0x91c938d8 172.16.124.15 58860 ⇒ czNjcjN0X2Q0dDNfNDgwMDItMDAw
0x91c980d0 10.18.120.18 48003 ⇐ s3cr3t_d4t3_48003-00000000s3cr
0x91ca5cb8 172.16.124.15 58860 ⇒ czNjcjN0X2Q0dDNfNDgwMDMtMDAw
0x91cbfef0 10.18.120.18 48004 ⇒ Do something evil-48004!
0x91cc7008 10.18.120.18 48005 ⇒ Do something evil-48005!
0x91ccdee8 10.18.120.18 48004 ⇐ s3cr3t_d4t3_48004-00000000s3cr
0x91cdbad0 172.16.124.15 58860 ⇒ czNjcjN0X2Q0dDNfNDgwMDQtMDAw
0x91ce02c8 10.18.120.18 48005 ⇐ s3cr3t_d4t3_48005-00000000s3cr
0x91cedeb0 172.16.124.15 58860 ⇒ czNjcjN0X2Q0dDNfNDgwMDUtMDAw

Pridgen, Garfinkel, and Wallach Picking up the trash 21

Evaluation

Reconstructing Events RICE

Table: This table shows a sampling of the processes started by the
Java program and the stdout buffer at t=21.

Address PID Buffered Data
0x91dff7e0 1242 #\n# This file MUST be edited w
0x91e1c7e8 1245 Linux java-workx32-00 3.19.0-1
0x91e3b0e0 1248 java adm cdrom sudo dip plugde
0x91e4a6e8 1250 root:x:0:0:root:/root:/bin/bas
0x91eb1390 1252 root:!:16678:0:99999:7:::\ndaem
0x91f66708 1275 \nStarting Nmap 6.47 (http://n
0x91ff7ed0 1301 history | grep pg\n history | gr
0x92014f30 1307 ifconfig\nsudo add-apt-reposito
0x920626d8 1322 adding: home/java/.ssh/ (sto

Pridgen, Garfinkel, and Wallach Picking up the trash 22

Evaluation

Eliminating Red Herrings RICE

Table: This table shows a selected set of method call data extracted
from the JVM. Unused functions have a null counter value.

Address Calls Method Name
0x63fdb6f8 256 Loader getLoaderInstance(...)
0x63fdb908 73 byte[] b64Decode(...)
0x63fdce98 256 integer sendSocketData(...)
0x63fdd718 256 void stdout(...)
0x63fdd850 256 void logEvent(...)
0x63fddbd8 73 integer getPid(...)
0x63fddd50 73 integer startProcess(...)
0x63fddf68 256 java.lang.String readProcessStdout(...)
0x63fdd9e8 1 void main(...)
0x63fdb670 1 void start(...)

Pridgen, Garfinkel, and Wallach Picking up the trash 23

Evaluation

Evaluating Event Reconstruction: Process Objects
RICE

Pridgen, Garfinkel, and Wallach Picking up the trash 24

Conclusions

Conclusions RICE

Memory analysis can recover these artifacts
Meta-data and data locality help with reconstruction
GC memory allocation eases timeline creation
This approach applies to other Generational GCs

Pridgen, Garfinkel, and Wallach Picking up the trash 25

Conclusions

Questions RICE

Pridgen, Garfinkel, and Wallach Picking up the trash 26

	Introduction
	Managed Memory Overview
	Approach
	Evaluation
	Conclusions

