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Talk outline

A Context and problem
A Objective
A Evidence gathering framework (overview)
A Modeling and analysis
| Regression techniques to detect evidences
A Evidence correlation and decision making
A Performance evaluation



Context

A Detection of anomalies imperative for securing networks
A Anomaly and attack detection -> widely researched topic

I Applied knowledge from different overlapping spheres:
expert system [1], information theory [2], data mining [3],
signal processing [4], statistical analysis [5], and pattern
recognition [6]

A But often, different solutions developed for different attacks,
and classes of anomalies

I Complicated; and costly for users

I Anomalies are often detected and analyzed independently

A e.g., a port scan might not be triggered as anomaly if not

statistically relevant; but may be followed by a buffer overflow
attack



Objective

A Evidences: Fundamental patterns related to
suspicious activities (anomalies and attacks)

A Detecting patterns allows detection of anomalies
common to multiple attacks

Develop a framework for anomaly detection
I that detect evidences
I analyzes and correlates evidences

I to detect an anomalies, without the need to learn
from normal traffic




Evidence-gathering framework (overview)
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Stage 1: Modeling and analyzing

Flows and Sessions

A Flow: A set of packets, localized in time, with the same
five tuple of source and destination IP addresses, source
and destination ports, and protocol

A Session: A set of flows such that, the inter-arrival time
between any two subsequent flows is less than a given
value

A Session definition allows coarser aggregation, say, using
three tuple (dest. IP addr, dest. port, proto).



Stage 1: Modeling and analyzing

Features for traffic representation

A Inter-arrival times of flows in a session (IAT): define
activity measure based on |AT

A = (Median of IAT of flows x No. of flows) /
total duration of session

A Sizes of flows: flow-size in packets (FSP) and flow-size in
bytes (FSB)

A Degree of an end-host: no. of distinct IP addresses that
an end-host communicates to, within an interval




Stage 1: Modeling and analysis

Regression




Suspicious patterns of interest
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Regression modeling

A Mainly based on linear regression
A Assume, a first order linear model
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slope Error modeled using
Intercept Normal distribution

| Discrete time points / indices
Observed values



Regression modeling (cont.)

A Classical method for line fitting: Least squares

Y = B0+ /X
S. t.
ri = Y; =Y,

| coefficients obtained as solutions by minimizing,

SSE = i 7"?
i=1

A Four techniques for detection of patterns



1. Outlier detection

A LS regression sensitive to outliers
| breakdown point is 1/n for n data points
A Theil-Sen estimator [7], a robust regression
| breakdown point, b, of 29.3%
| slope estimated as median of all slopes
A Given j = 1 ¢b, hypothesis test for detecting outliers:

(Mo :rTS < Q(j(1 + k)), inlier
Hi 7 > Q>(1+ k)), outlier
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2. Goodness of fit

A If SSE is zero, there exists a functional
relationship between the variables
1Y =f(X)
| suspicious, as we expect statistical relationship

I functional relationship likely due to automated
communications

A Testing involves checking for zero (or close to
zero) slope



3.Inference on slope

A Detect steep linear slope; hypotheses:
{ threshold

Ho : |61] < 6;7 not an anomaly
Hy : |f1| > 0; anomaly
A Coefficients need to be estimated
A Rejection criterion for the null hypothesis is

estimate
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4. Quadratic regression

A Is simple linear model good enough?
I Would exponential curve fit better?

A Final test ¢ compare LS fitted model with a higher
order polynomial fit (quadratic)

Y; = ap + a1 X; + 0(2Xi2 + €
A Test statistic ¢ coefficient of determination, R2

estimated ¥/ <5 mean of response
R2 — Zz(Yz _ Y) variable
> (Yi —Y)?

A Hypothesis test
Ho RQQR — RQLS < 0,., normal
Hi RQQR — RQLS > QT, anomaly

R2 for Quadratic /

R? for Least-squares



Stage 2: Detecting scans and illegitimate

TCP state sequences



Stage 2: Detecting scans and illegitimate

TCP state-sequences

A Scans common to determine services running
I For example, to exploit zero-day vulnerability
A TCP state sequences
| A set of states taken by a TCP flow in its FSM*
I A legit state sequence conforms to FSM

AFor example, ShA{Da}*FafA is of a TCP data
connection (S stands for SYN, F for FIN, etc.)

A lllegitimate TCP state sequence
AA state-path that do not conform to TCP FSM

* FSM: Finite State Machine



Stage 3: Evidence correlation and

Decision making



Stage 3: Evidence correlation and Decision making

A Correlate evidences detected
| Based on time or space

A Meta Decision Maker: Decide based on multiple
evidences on a set of traffic flows or sessions

I An anomalous pattern
AA specific feature, and a specific technique

I Normalize threshold and output score for each
technique to [0-1]

| Define low, medium, and high score ranges
I Detection based on number of evidences and scores



Evidence gathering framework (recap)

With features such as:
A Inter-arrival times of flows

A Sizes of flows
A Degree of an end-host
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Performance evaluation



A Consists of both benign and malicious traffic

I 969 benign and 1397 malware traffic sessions

A Benign traffic: ISCX IDS Dataset [8], LBNL Datasets

[9], and Internet traffic of two secured Linux
machines

A Malicious traffic generated by malware
| Obtained from Stratosphere IPS Project [10]

I consisting of traffic from 11 different botnets
(Andromeda, Barys, Emotet, Geodo, Htbot,
Miuref, Necurse, Sality, Vawtrak, Yakes and Zeus)



Settings

A Conservative values for threshold: and control
using test output scores

A Output score highif >= 0.7
A Meta decision maker:

a session classified as anomalous, if at least three
anomalous patterns related to this session are
detected; moreover, at least two of such patterns
should have highscores.
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Results (cont.)

Examples of sessions detected:
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Results (cont.)

Overall detection rate of malware generated traffic sessions: 82.6%
False positive rate: 7.9%.

Related Total number | Detected | Detection
botnet of sessions sessions rate
Andromeda 148 132 89.2%
Barys 16 16 100.0%
Emotet 95 95 100.0%
Geodo 63 44 69.8%
Htbot 287 171 59.6%
Miuref 82 44 53.7%
Necurse 19 19 100.0%
Sality 440 435 98.9%
Vawtrak 40 40 100.0%
Yakes 39 25 64.1%
Zeus 168 133 79.2%




Results (cont.)

Effectiveness of features

Detected Degree | lllegitimate
sessions TCP flows

# 1154 1090 1129 609
% 94.5% 84.0% 97.8% 84.7% 52.8%

Effectiveness of techniques

sessions of Fit Quad ratic
1154 1008 1154
% 87.3% 100.0% 8.1%



Results (cont.)

A Changing the decision criteria to detect (more)

I any session with two or more evidences, with at
least one of them having high scores

| Detection accuracy of 93.9%, but false positive
rate of 26.8%

A Computational time

I Configuration: Intel Xeon W3690 CPU @ 3.47GHz
and 12 GB RAM

I close to 3,000 flows processed per second



Conclusions

A Developed a framework for gathering evidences to detect
malicious network activities

A No learning of characteristics of normal traffic

A Regression modeling and analysis to detect fundamental
patternsrelated to malicious activities

A Experiments using diverse dataset demonstrated the
effectiveness of using evidences for detection of malware
sessions

A Next steps:
I Enhance the solution to work on live real-time traffic
I Experiment with other relevant features
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