
DFRWS 2016 Europe d Proceedings of the Third Annual DFRWS Europe

Evaluating atomicity, and integrity of correct memory
acquisition methods

Michael Gruhn*, Felix C. Freiling**

Department of Computer Science, Friedrich-Alexander-Universit€at Erlangen-Nürnberg (FAU), Martensstr. 3, 91058 Erlangen, Germany

Keywords:
Memory acquisition
Atomicity
Memory forensics
Integrity
Forensic tool testing

a b s t r a c t

With increased use of forensic memory analysis, the soundness of memory acquisition
becomes more important. We therefore present a black box analysis technique in which
memory contents are constantly changed via our payload application with a traceable
access pattern. This way, given the correctness of a memory acquisition procedure, we can
evaluate its atomicity and one aspect of integrity as defined by V€omel and Freiling (2012).
We evaluated our approach on several memory acquisition techniques represented by 12
memory acquisition tools using a Windows 7 64-bit operating system running on a i5-
2400 with 2 GiB RAM. We found user-mode memory acquisition software (ProcDump,
Windows Task Manager), which suspend the process during memory acquisition, to pro-
vide perfect atomicity and integrity for snapshots of process memory. Cold-boot attacks
(memimage, msramdump), virtualization (VirtualBox) and emulation (QEMU) all deliver
perfect atomicity and integrity of full physical system memory snapshots. Kernel level
software acquisition tools (FTK Imager, DumpIt, win64dd, WinPmem) exhibit memory
smear from concurrent system activity reducing their atomicity. There integrity is reduced
by running within the imaged memory space, hence overwriting part of the memory
contents to be acquired. The least amount of atomicity is exhibited by a DMA attack
(inception using IEEE 1394). Further, even if DMA is performed completely in hardware,
integrity violations with respect to the point in time of the acquisition let this method
appear inferior to all other methods. Our evaluation methodology is generalizable to
examine further memory acquisition procedures on other operating systems and
platforms.
© 2016 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access

article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Volatile memory (RAM) is an increasingly valuable
source of digital evidence during a forensic investigation.
Not only are cryptographic keys for full disk encryption
kept in RAM, but also many other pieces of information like
the list of running processes and the details of active
network connections are kept in RAM and are lost, if the

computer would be simply turned off during evidence
collection.

There are many ways to acquire volatile memory on
standard desktop and server systems today (V€omel and
Freiling, 2011). The possibilities range from software-based
methods with tools like mdd1 or WinPMEM,2 over DMA
attacks (Becher et al.) up to cold boot attacks (Halderman
et al., 2009). All these methods have their advantages and
disadvantages. On the one hand, while software-based
methods are very convenient to use, they can be subverted

* Corresponding author.
** Corresponding author.

E-mail addresses: michael.gruhn@cs.fau.de (M. Gruhn), felix.freiling@
cs.fau.de (F.C. Freiling).

1 http://sourceforge.net/projects/mdd/.
2 http://www.rekall-forensic.com/.

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

http://dx.doi.org/10.1016/j.diin.2016.01.003
1742-2876/© 2016 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Digital Investigation 16 (2016) S1eS10

http://creativecommons.org/licenses/by-nc-nd/4.0/


mailto:michael.gruhn@cs.fau.de
mailto:felix.freiling@cs.fau.de
mailto:felix.freiling@cs.fau.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2016.01.003&domain=pdf
http://sourceforge.net/projects/mdd/
http://www.rekall-forensic.com/
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2016.01.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2016.01.003
http://dx.doi.org/10.1016/j.diin.2016.01.003


by malware (Stüttgen and Cohen, 2013). On the other hand,
DMA and cold boot attacks are often defeated by unfavor-
able system configurations (BIOS passwords or inactive
DMA ports) or technology-immanent problems (Gruhn and
Müller, 2013). Overall, these hindrances might produce
memory images that are not forensically sound. To what
extent this happens, is still rather unclear.

To address this point, V€omel and Freiling (2012) inte-
grated the many different notions of forensic soundness in
the literature into three criteria for snapshots of volatile
memory: (1) correctness, (2) atomicity and (3) integrity. All
three criteria focus on concrete requirements that are
motivated from practice:

! A memory snapshot is correct if the image contains
exactly those values that were stored in memory at the
time the snapshot was taken. The degree of correctness
is the percentage of memory cells that have been ac-
quired correctly

! The criterion of atomicity stipulates that the memory
image should not be affected by signs of concurrent
activity. It is well known that unatomic snapshots
become “fuzzy” (Libster and Kornblum, 2008). The de-
gree of atomicity is the percentage of memory regions
that satisfy consistency in this respect.

! A snapshot satisfies a high degree of integrity if the
impact of a given acquisition approach on a computer's
RAM is low. For instance, by loading a software-based
imaging utility into memory, specific parts of memory
are affected and the degree of system contamination
increases (and consequently, integrity decreases).

All three criteria were formally defined and shown to be
independent of each other.

With these criteria it was now possible to measure and
not only estimate the forensic soundness of snapshot
acquisition techniques. This was then done by V€omel and
Stüttgen (2013) for three popular memory acquisition
utilities: win32dd (Suiche, 2009), WinPMEM (Cohen,
2012), and mdd (ManTech CSI Inc., 2009). Their study
exhibited some correctness flaws in these tools (which
were later fixed), but also showed that their level of
integrity and atomicity was all quite similar.

The reason why V€omel and Stüttgen (2013) only
evaluated three software-based acquisition methods lies
in their measurement approach: They used the open-
source Intel IA-32 emulator Bochs running a Windows
XP SP3 on which the acquisition utilities ran. The utilities
were instrumented such that every relevant event was
recorded using a hypercall into the emulator, thus
enabling the measurement. Naturally, this white-box
measurement approach was only possible for tools that
were available to the authors in source code, thus severely
restricting the scope of their measurement. It is clear that
approaches such as DMA and cold boot attacks can only
be measured using a black-box approach. Furthermore,
these measurements were performed in a situationwhere
the Windows system was basically idle, thus giving a
lower-bound measurement. The impact of system load on
the quality of memory acquisition is not yet precisely
known.

Related work

V€omel and Freiling (2012) defined correctness, atom-
icity and integrity as criteria for forensically-soundmemory
acquisition and provided a comparison matrix (V€omel and
Freiling, 2011, Fig. 5) with regard to the different acquisition
methods. However, they also indicate that “the exact
positioning of the methods within the fields of the matrix
may certainly be subject to discussion” (V€omel and Freiling,
2011, p. 7). The first to evaluate these memory acquisition
criteria were V€omel and Stüttgen (2013). As already stated
they relied on awhite box methodology restricting them to
open source tools. In 2015 Gruhn (2015) introduced a gray-
box methodology with which memory address translation
could be inferred. Gruhn notes themethodology can also be
used to evaluate the memory snapshot correctness criteria.
We build up on the results of Gruhn (2015) and extend the
methodology to enable the evaluation of atomicity and
integrity in addition to correctness.

Other work using the notion of atomicity are Body-
Snatcher (Schatz, 2007), HyperSleuth (Martignoni et al.,
2010) and Vis (Yu et al., 2012), all of which try to increase
atomicity of forensic memory acquisition by suspending
execution of the operating system, hence reducing
concurrency.

Contribution

In this paper, we present the first black-box methodol-
ogy for measuring the quality of memory acquisition
techniques. Extending the insights of V€omel and Stüttgen
(2013), we take correctness for granted and focus on
integrity and atomicity. Our approach allows to compare
not only different software utilities with each other but also
to compare them with totally different approaches like
DMA and cold-boot attacks.

The idea of our approach is to apply the memory
acquisition method to memory content that changes in a
predictable way: Briefly spoken, we use a program that
writes logical timestamps into memory in such a way that
investigating the memory snapshot yields the precise time
when a certain memory region was imaged. This allows to
infer an upper bound in integrity and atomicity meaning
that these criteria will be at most as bad for the respective
procedures.

More precisely, our contributions are as follows:

! We provide a framework to evaluate memory forensic
tools using a black-box approach.

! We evaluate 12 memory forensic acquisition tools and
methods.

We make our tools, programs and scripts used in our
evaluation available to the forensic community. This ma-
terial is available at https://www1.cs.fau.de/projects/
rammangler.

Outline

This paper is structured as follows: First in Section
Background: criteria for forensically sound memory

M. Gruhn, F.C. Freiling / Digital Investigation 16 (2016) S1eS10S2

https://www1.cs.fau.de/projects/rammangler
https://www1.cs.fau.de/projects/rammangler


snapshots we revisit the main definitions of V€omel and
Freiling (2012). After this we introduce our black box
measurement methodology in Section Black Box
Measurement Methodology. In Section Experiments we
give an overview over our experimental setup and in Sec-
tion Results we outline our results. Finally in Section
Conclusions and future work we conclude our work.

Background: criteria for forensically sound memory
snapshots

We briefly revisit the main definitions of V€omel and
Freiling (2012). In their model, memory consists of a set
ℛ of memory regions (pages, cells, or words) and a full
snapshot covers all memory regions of the system, i.e., it
stores a value for every memory region in ℛ. However,
their definitions also hold for partial snapshots, i.e., snap-
shots that cover subsets R3ℛ of all memory regions. Our
evaluation methodology makes use of partial snapshots,
therefore we simplify the definitions towards this case.
Herewe disregard correctness but rather focus on atomicity
and integrity.

Atomicity of a snapshot

Intuitively, an atomic snapshot should not show any
signs of concurrent system activity. V€omel and Freiling
(2012) formalize this by reverting to the theory of distrib-
uted systems where concurrent activities are depicted
using spaceetime diagrams. Fig. 1 shows an imaging pro-
cedure that runs in parallel to another activity on amachine
using four memory regions R ¼ fr1; r2; r3; r4g. Each hori-
zontal line marks the evolution of each memory region
over time, state changes are marked as events. The imaging
procedure is shown as four events (marked as squares) that
read out each memory region sequentially. Concurrently, a
separate activity updates memory regions (first r1, then r4,
then r2, shown as black dots).

Definition 1. (Atomicity [1]). A snapshot is atomic with
respect to a subset of memory regions R3ℛ if the corre-
sponding cut through the [ … ] space-time diagram is
consistent.

The imaging process always corresponds to a cut
through the space-time diagram since it necessarily has to
access every memory region in R. The cut distinguishes a
“past” (before the snapshot) from a “future” (after the
snapshot). Intuitively, a cut is consistent if there are no
activities from the future that influence the past (Mattern,
1989, p. 123). Given this intuition, it is clear that the
snapshot created in Fig. 1 is not atomic.

Integrity of a snapshot

Even atomic snapshots are not taken instantaneously
but require a certain time period to complete. The property
of integrity refers to this aspect. Intuitively, integrity ties a
snapshot to a specific point of time chosen by the investi-
gator. A high level of integrity implies that the snapshot
was taken “very close” to that point in time.

Definition 2. (Integrity [1]). Let R4ℛ be a set of memory
regions and t be a point in time. A snapshot s satisfies integrity
with respect to R and t if the values of the respective memory
regions that are retrieved and written out by an acquisition
algorithm have not been modified after t.

In a certain sense, integrity refers to the “stability” of a
memory region’s value over a certain time period. Fig. 2
illustrates the idea: The example consists again of four
memory regions, i.e., R ¼ fr1; r2; r3; r4g. We assume that at
time t, the imaging operation is initiated and leads to a
change in the memory regions r3 and r4, as indicated by the
black dots (e.g., by loading a software-based imaging so-
lution into memory). Again, the snapshot events (when the
respective memory region is read out by the acquisition
algorithm) are visualized as black squares. Regarding t, the
snapshot satisfies integrity for memory regions r1 and r2
but not for r3 and r4.

By t, we refer to the point of time when an investigator
decides to take an image of a computer’s memory. Although
being highly subjective, this point of time ideally defines
the very last cohesive system state before being affected (in
any way whatsoever) by the imaging operation; the value

Fig. 1. Space-time diagram of an imaging procedure creating a non-atomic
snapshot. Fig. 2. Integrity of a snapshot with respect to a specific point in time t.

M. Gruhn, F.C. Freiling / Digital Investigation 16 (2016) S1eS10 S3



of t should therefore mark a time very early in the inves-
tigation process.

V€omel and Freiling (2012, Lemma 1) show that under
certain assumptions the integrity of a snapshot implies its
correctness and its atomicity.

Black box measurement methodology

As already suggested by V€omel and Stüttgen (2013) we
developed a black box measurement methodology allow-
ing us to estimate atomicity and integrity. Our black box
methodology comprises a worst case analysis, in a high
load scenario.

Implementation

Our technical implementation of the black-box meth-
odology is as follows: First, we implement our payload
application named RAMMANGL.EXE (the name refers to
“RAM mangler”). This payload application allocates mem-
ory regions. Each memory region is marked with a counter
which is constantly increased by the payload application
like a timer.

Second, we implement an analysis framework that
reads the counter value back from each region and runs
statistics on them according to the estimation explained in
the next section.

Estimating atomicity and integrity

We now devise two simple measures by which it is
possible to estimate the atomicity and integrity of a
memory snapshot. We call these measures the atomicity
delta and integrity delta.

Intuitively, atomicity is bounded by possibilities towrite
memory regions “from the past”. Hence, the faster all
memory regions are acquired after the first region was
“moved into the past”, i.e., was acquired, the less regions
can potentially be written to “from the past”. Atomicity can
hence be approximated by the atomicity delta, i.e., the in-
terval from the acquisition of the first memory region to the
acquisition of the last memory region as this is the area
where inconsistencies within the image can be introduced.
If no memory region has been acquired yet, all memory
regions can still be freely changed because no memory
regions value has been “fixed” yet. The same is true once all
memory regions have been “fixed”, i.e., acquired. Any
changes to the memory regions thenwill not introduce any
more inconsistencies. Good atomicity therefore corre-
sponds to the speed of taking the memory snapshot.

In contrast, integrity implies that the memory snapshot
is closely tied to the values that were present in memory at
the point in time the investigator initiated the acquisition.
Obviously, software-based methods must therefore have a
non-zero integrity since the acquisition tool changes
memory regions when loading itself into the address space
of the system. Since we focus on process memory and
because forensic memory acquisition tools should strive for
a neglectable footprint anyway, we consider the amount of
memory regions actually occupied and thereby changed by
the acquisition tool to be negligible. This assumption allows

us to devise the integrity delta, i.e., the average over the
times required to acquire each memory region, given that
imaging was initiated at acquisition point in time t ¼ 0.

Formally, let C ¼ ðc0;/; cNÞ be the vector of counters
embedded in the N memory regions of our payload appli-
cation and t is the time the acquisition was started. We can
now define our two measures that indicate atomicity and
integrity as follows.

Definition 3. (atomicity delta). The atomicity delta is the
time span between the aquisition of the first memory region
and the last memory region, formally:

!
max

i
ci
"
%
!
min

j
cj
"
:

Definition 4. (integrity delta). The integrity delta is the
average time over all regions between starting the acquisition
and acquiring that memory region, formally:

PN
i¼0 ci
N

% t

Both measures are illustrated in Fig. 3. The lower these
values the better the atomicity and/or integrity respec-
tively. Similar to the criteria of V€omel and Freiling (2012),
an integrity delta of 0 implies an atomicity delta of 0.

Intuitive examples

As an intuitive example, imagine the memory of a sys-
tem to consist of four memory regions, each memory re-
gion containing one counter. Initially the counters are all
set to 0. Once the memory acquisition starts the counters
are atomically increased every timer tick. So the ideal
memory acquisition process should provide a memory
image of C ¼ ð0;0;0;0Þ, that is all counters of all four
memory regions still being in the exact state the acquisition
was started.

An example for an acquisition with high integrity but
low atomicity would be the counter values C ¼ ð0;0;40;0Þ.
This is indicated by an high atomicity delta of 40 and a
integrity delta of 10.

Fig. 3. Atomicity and integrity in a maximum load scenario.

M. Gruhn, F.C. Freiling / Digital Investigation 16 (2016) S1eS10S4



An example for an acquisition with high atomicity but
low integrity on the other hand would have counter values
C ¼ f42;42;42;42g. In fact an atomicity delta of 0 indicates
perfect atomicity.

Experiments

In this section we briefly outline our experiment. We
start with the setup, then elaborate on issues we encoun-
tered during the execution. We then describe our solution
to the issues and our opinion in how far this affects our
results and/or forensic memory acquisition in general.

Setup

We conducted our experiments on a 64-bit Windows 7
Enterprise operating system identifiable by its build num-
ber 7600.16385.amd64fre.win7_rtm.090713-1255. The
hardware used was a Fujitsu ESPRIMO P900 E90þ with an
Intel i5-2400 @ 3.10 GHz and one 2 GiB RAM module. Of
these 2 GiB physical RAM, 102 MiB were mapped above 4
GiB (see PCI hole discussion in Section PCI hole) and 10 MiB
were lost to the BIOS and PCI devices. Resulting in a total of
2038 MiB physical RAM usable by the operating system.
The pagefile of the system was disabled to ensure that all
relevant data was residing in RAM.

Due to issues of Volatility relying on kernel debugging
data structures, namely the kernel debugger data block
(_KDDEBUGGER_DATA64), which Volatility was unable to
read in all our 64-bit RAM dumps (a known issue3), we
relied on tools made freely available4 by Gruhn (2015) for
our analysis.

The memory was acquired directly onto a removable
storage device consisting of a 320 GB Western Digital
WD3200AAKX-00ERMA0 hard disk inside a inateck
FD2002 hard disk docking station connected via USB 2.0.
Even though the docking station supports USB 3.0 it was
connected via USB 2.0 only. The disk was formatedwith the
Windows native file system NTFS. The disk connected via
USB could sustain 90MB/s write speeds. This was tested via
dd. We copied (using dd) 4 GiB test files into the NTFS file
system of the disk multiple times. In no memory acquisi-
tion test was this write speed reached, making us confident
that disk I/O was not the determining factor of our evalu-
ation. The memory acquisition tools were also started from
this removable storage devices, which was mounted by
Windows as volume E:. One exception to this wasWindows
Task Manager's process dumping facility, which was
invoked from the system's Windows Task Manager. For the
cold-boot attacks with the memimage and msramdump
tools we also used an WD3200AAKX disk and the inateck
USB docking station. Inception was also invoked from a
lenovo X230t, the internal hard disk of which could sustain
250 MB/s write speeds again according to dd.

Sequence

We conducted our experiments as follows:

1. Startup computer.
2. Enter password to login user.
3. Wait approximately 1 min for the system to settle.
4. Open cmd.exe via the Windows startmenu.
5. Enter E: to change the working directory to our

removable storage.
6. Type RAMMANGL.EXE 512 2048 but not start the

payload yet.
7. Now the memory acquisition tool was started and

prepared to the point where the least amount of user
interaction was needed to start the acquisition. In most
cases this consisted of starting another cmd.exe as
Administrator, changing the current working directory
to E: and then invoking the tool. In other cases we
explain the procedure in subsection Analyzed methods
and tools.

8. Start the payload application RAMMANGL.EXE.
9. Start the memory acquisition tool immediately after-

wards. The multitude of different acquisition tools
evaluated disallowed us from automating this step. We
therefore tried as hard as we could to tie the start of the
memory acquisition as close as possible to the point of
time of starting the payload application.

10. Start timing measurement with a stop watch while not
touching the system.

11. Stop time after the acquisition has completed, then
close RAMMANGL.EXE (Ctrl þ C).

12. Save the console output of RAMMANGL.EXE and the
output of the acquisition tool to disk.

13. Note down the time on stop watch to experiment log.
14. Restart the system.

Occasionally the hard disk was defragmented to ensure
maximumwrite capabilities. This was done at a maximum
fragmentation rate of 3%, as reported by Windows. The
defragmentation was also done by the Windows system.

Issues

In this subsection we will briefly list some issues that
impacted our evaluation.

PCI hole
The computer system used for our evaluation remapped

all memory between 2 GiB and 3.5 GiB e the so called PCI
hole e to above 4 GiB. This remapping happens on the
physical address level and not just the virtual address level.
The remapping is usually performed by the BIOS.

This remapping was no problem for user-mode, kernel-
level and physical acquisition via cold-boot attacks. It,
however, posed a sometimes unresolvable problem for
acquisition over DMA via IEEE 1394. IEEE 1394 only pro-
vides DMA for the lower 4 GiB of memory. In some occa-
sions important memory structures concerning our
payload process, namely the process control block, were
moved to memory above 4 GiB making it impossible to

3 See https://takahiroharuyama.github.io/blog/2014/01/07/64bit-big-
size-ram-acquisition-problem/ and http://volatility-labs.blogspot.de/
2014/01/the-secret-to-64-bit-windows-8-and-2012.html.

4 https://www1.cs.fau.de/virma.https://www1.cs.fau.de/virma.

M. Gruhn, F.C. Freiling / Digital Investigation 16 (2016) S1eS10 S5

https://takahiroharuyama.github.io/blog/2014/01/07/64bit-big-size-ram-acquisition-problem/
https://takahiroharuyama.github.io/blog/2014/01/07/64bit-big-size-ram-acquisition-problem/
http://volatility-labs.blogspot.de/2014/01/the-secret-to-64-bit-windows-8-and-2012.html
http://volatility-labs.blogspot.de/2014/01/the-secret-to-64-bit-windows-8-and-2012.html
https://www1.cs.fau.de/virma


reconstruct the virtual address space of the payload
process.

All of the tested kernel level acquisition tools acquire
the whole address space, “including” the PCI hole remap-
ped addresses from 2 GiB to 4 GiB, filling this non-existing
RAM with zero bytes. While this is not an issue preventing
our experiments, it impacts some of the measured values.
Because we only consider the memory contents of our
payload application and these are scattered throughout the
low 2 GiB, the tools need half of their total runtime to ac-
quire this memory anyway. For further analysis we extract
all timing information from the counters in the memory
region of our payload application.

Inconsistent page tables
In about every fifth memory dump acquired via kernel-

level acquisition we were confronted with inconsistent
page tables. While almost the whole virtual address space
of our payload application RAMMANGL.EXE could be
reconstructed, a few pages were sporadically mismapped
to virtual memory of other processes, unused physical
memory or kernel memory. The reason for this is yet un-
known to us, however, because all tested kernel-level
acquisition tools exhibited the same behavior, regardless
of the acquisition method (either using MmMapIoSpace(),
the yDeviceyPhysicalMemory device or PTE remapping)
we do not consider it to be a tool error. However, on the
other hand we also do not consider it to be an error of our
framework, because we confirmed the correct assembly of
our virtual address space of our payload application with
Volatility and the tools provided by Gruhn (2015) 5. To
resolve this open issue we simply repeated measurements
with inconsistent page tables until we acquired a correct
images for our analysis.

Analyzed methods and tools

In this section we introduce the tools and methods we
evaluated with our methodology.

Cold-boot attack
Cold-boot attacks were first popularized by demon-

strating them practically by Halderman et al. (2009). In a
cold-boot attack an attacker is leveraging the RAM's
remanence effect. RAM does not lose its contents instantly
but the charges of the storage capacitors rather dissiapate
over time. Making it possible to read out the stored values
of the RAM even after rebooting the system. To perform the
attack an attacker reboots the hardware into a small
operating system capable to acquire the RAM contents and
write them to persistent storage (Halderman et al., 2009).
Halderman et al. also made the tools, we refer to as the
memimager, used for their original publication available
online.6

Because the computer can be reset at any time, the point
in time integrity is perfect. The same is true for atomicity,
because once rebooted all system activity stops perfectly

conserving the RAM contents. This makes themethod 100%
atomic. However, while the point in time of the acquisition
can be chosen perfectly, the minimal operating system
injected into the system inevitably overwrites memory.
Because the size of the memimager is only 9.9 KiB, this
RAM contents loss can in general be neglected when
compared to the total 2 GiB memory size of our test system.
Making the integrity also almost 100%. Another available
tool to conduct cold-boot attacks is msramdump by
McGrew Security.7 It has a memory footprint of around
22.6 KiB, i.e., it will overwrite 22.6 KiB of RAM contents.

One problem with cold-boot attacks are, however, bit
errors that can be introduced during hard resets of the
system or when trying to transplant the RAM from one
system to another (Gruhn and Müller, 2013), in which case
the correctness of the acquired image is considerably
impacted. Another more recent problem of cold-boot at-
tacks is scrambling as indicated by an Intel patent (Falconer
et al.) to reduce the parasitic effects of semiconductor
memory. This scrambling renders cold-boot attacks
involving more than a simple reset to reboot the machine
futile (Gruhn and Müller, 2013; Bauer et al., 2016).

Even though the theory behind cold-booting and/or
resetting a machine at a specific point already intuitively
lets one assume perfect atomicity, we verified this with our
experiments. Due to the introduced bit errors during a hard
reset or transplantation attack, which would have a nega-
tive impact on our evaluation methodology, we refrain
from such complex attacks and only performed a simple
reset attack (Gruhn and Müller, 2013).

Emulation
QEMU8 is an open source computer emulator initially

developed by Fabrice Bellard. It allows operating system to
be run within an emulated environment.

We called QEMU from the command line with the
-monitor stdio option. This allows convenient access to the
QEMU monitor on the standard terminal of the host oper-
ating system. This way the memory of the emulator can be
saved by invoking the command outlined in Listing 1.
During memory acquisition the emulation is paused mak-
ing the acquisition fully atomic. Even though this is a
known and clear cut feature of the emulator we verified the
perfect correctness, atomicity and integrity of this memory
acquisition method in our evaluation.

Listing 1. Command to dump the lowest 2 GiB of memory from QEMU into
the file qemu.mem.

Virtualization
VirtualBox9 is an open source virtualization solution by

Oracle. It employs Intels VT-x virtualization technology
allowing a guest operating system to be run within a host
operating system without the performance drawbacks
incurred by pure emulation solutions. However, similar to

5 https://www1.cs.fau.de/virma.
6 https://citp.princeton.edu/research/memory/code/.

7 http://mcgrewsecurity.com/oldsite/projects/msramdmp.1.html.
8 2.4.0 from http://www.qemu.org/.
9 4.3.26 from https://www.virtualbox.org/.

M. Gruhn, F.C. Freiling / Digital Investigation 16 (2016) S1eS10S6

https://www1.cs.fau.de/virma
https://citp.princeton.edu/research/memory/code/
http://mcgrewsecurity.com/oldsite/projects/msramdmp.1.html
http://www.qemu.org/
https://www.virtualbox.org/


emulation the memory can be acquired with perfect
atomicity, correctness and integrity. The command to save
the entire address space of a virtual machine into an image
file can be seen in Listing 2.

Listing 2. Command to dump the physical memory from the virtual ma-
chine ${vmname} as an ELF64 dump into file ram.elf64.

Kernel-level acquisition
A very popular area of memory acquisition tools are

software tools. Especially popular are so called kernel-level
acquisition tools. Because in modern operating systems
applications have no access to physical memory but only
their own virtual address space, privileged system access
from within the kernel is necessary. This is often done in
form of a driver running in kernel-mode in conjunction
with a user-level interface. Even though the kernel-level
driver has access to the full physical memory it is hard to
write memory onto disk or transmit it via the network from
within the kernel. Hence, most acquisition solutions have a
user-mode part used to controlling the memory acquisition
driver. The user-mode part is also in charge of writing the
acquired memory to an image on disk or transmitting it
over the network. This can then be done with the regular
APIs of the operating system.

Because kernel-level acquisition tools are essentially a
part of the same system they try to acquire a forensically
sound memory image from, it is a very interesting aspect
how their interaction with the system impacts atomicity,
integrity and correctness.

FTK Imager Lite10 by AccessData is a graphical frame-
work for live forensics. It supports kernel-level memory
acquisition. FTK Imager was one of the closed source tools
mentioned by V€omel and Stüttgen as candidate for a black-
box analysis (V€omel and Stüttgen, 2013).

DumpIt11 by Matthieu Suiche and MoonSols is another
kernel-level acquisition tool. Its main feature is its simple
usage. The program has no options nor configuration. The
user starts it directly from a connected removable storage
device. The start location is also the location to which the
memory image is written. Due to this ease of use and the
general availability DumpIt is rather popular.

The tool win64dd12 is another kernel-level acquisition
tool by Matthieu Suiche and MoonSols. We used the freely
available Community Edition of the otherwise commercial
product. Unlike DumpIt the tool win64dd offers several
configuration options, such as acquisition method
(MmMapIoSpace(), yDeviceyPhysicalMemory, and PTE
remapping as default) or acquisition speed (normal, fast,
sonic, and hyper sonic as default).

Winpmem13 by Michael Cohen is an open source
kernel-level memory acquisition tool. Like win64dd it

offers an option to select between different acquisition
modes (physical or iospace).

DMA
Memory can be acquired via a DMA attack. This attack

uses a system bus such as PCI (Carrier and Grand, 2004),
PCIe or IEEE 1394 (Becher et al.) to perform direct memory
access (DMA) on a target machine. As stated earlier IEEE
1394 is restricted to the lower 4 GiB of physical memory
and requires a software driver on the target system to be
present. PCI is not hot-plugable, making it a solution that
needs to be pre-installed, i.e., the target system must be
made forensically ready before memory can be acquired.
Because DMA has to transfer individual memory pages
while the system is running, which potentially changes the
memory contents, the atomicity measure, as proposed by
V€omel and Freiling (2012), of this method is considered to
be only moderate (V€omel and Freiling, 2011, Fig. 5).

The toolset inception14 is a framework for DMA attacks
developed by Carsten Maartmann-Moe and is available
freely under the GPL license. It allows DMA attacks via IEEE
1394, also known as FireWire or i.LINK, and PCIe.

Listing 3. inception indicating initialization of the IEEE 1394 bus and
waiting in order to enable the SBP-2.

Initializing the IEEE 1394 bus and enabling the Serial
Bus Protocol 2 (SBP-2) can, according to our experiments,
sometimes take up to 10 s, especially when the driver is not
already loaded in the victim's machine. This is indicated by,
first the output of the inception tool as can be seen in
Listing 3, and second by various pop ups within the Win-
dows operating system indicating new hardware, the
initialization of new drivers and eventually the message
that the new hardware is ready.

User-mode

Memory can be also acquired from the virtual memory.
In such case the memory acquisition is restricted to user-
level processes.

The Windows Task Manager can be used to dump
memory of processes. In such case, the Windows Task
Manager writes the process dump to
C:yUsersyuseryAppDatayLocal
yTempyRAMMANGL.DMP. To keep the results inline with
the other results the system hard disk was also a 320 GiB
Western Digital WD3200AAKX hard disk. The process is
suspended while the Windows Task Manager dumps the
memory, resulting in high atomicity. However, because the
process must be selected within the process tab of Win-
dows Task Manager in order to initiate the dump, we
exhibited a tiny lag between starting the payload applica-
tion and starting the memory acquisition, slightly
decreasing integrity.

10 3.1.1 from http://accessdata.com/product-download/digital-forensics/
ftk-imager-lite-version-3.1.1.
11 v1.3.2.20110401 from http://www.moonsols.com/2011/07/18/
moonsols-dumpit-goes-mainstream/.
12 1.3.1.20100417 (Community Edition).
13 1.6.2 from https://github.com/google/rekall/releases/download/v1.3.
1/winpmem_1.6.2.exe.

14 v.0.4.0 from https://github.com/carmaa/inception.

M. Gruhn, F.C. Freiling / Digital Investigation 16 (2016) S1eS10 S7

http://accessdata.com/product-download/digital-forensics/ftk-imager-lite-version-3.1.1
http://accessdata.com/product-download/digital-forensics/ftk-imager-lite-version-3.1.1
http://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/
http://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/
https://github.com/google/rekall/releases/download/v1.3.1/winpmem_1.6.2.exe
https://github.com/google/rekall/releases/download/v1.3.1/winpmem_1.6.2.exe
https://github.com/carmaa/inception


ProcDump15 from the Sysinternals tools is another tool
that can acquire memory of a process.

Listing 4. Commandline used to invoke ProcDump.

As can be seen from Listing 4 the process of which the
memory should be acquired can be defined as the processes
image name. Hence unlike previous user-mode dumping
tools the lag between starting the RAMMANGL.EXE,
acquiring its process ID and eventually invoking the dump
tool is removed, helping greatly with the point in time
integrity of dumps.

ProcDump further has various options used to trigger a
dump, e.g., CPU load, memory usage or others going above
a certain threshold, or the process exhibiting an exception.
This gives an investigator a very high degree of fine tuning
the acquisition's point in time, hence increasing integrity.
ProcDump offers a method called clone to dump the pro-
cess memory using a concept similar to copy-on-write at
the operating systems level. With this it was possible to
obtain a surprisingly perfect memory image, something we
only expected to obtain from virtualization or emulation.
Listing 5 lists the parameters used to invoke ProcDump
with process cloning and reflections keeping the downtime
of the process being imaged to a minimum.

Listing 5. Invoking ProcDump to leveraging process cloning for acquisition
with minimal process suspension.

Another user-level dumping tool is pmdump16 by Arne
Vidstrom. Unlike the other tools it does not suspend the
process. We mostly just used it to spread the spectrum of
our evaluation by introducing yet another kind of memory
acquisition technique. Because the process is not sus-
pended, pmdump exhibits memory smear resulting in
reduced atomicity. Obviously, in most scenarios ProcDump
leveraging cloning should be the preferred tool for
acquiring a single process address space.

Results

We now present our results. We first outline our mea-
surement accuracy. Then we give selected examples of our
results. Eventually we give an overview comparison among
the acquisition methods.

Measurement accuracy

We repeated all measurements until the relative stan-
dard deviation of the mean value of all counter values was
below 10%. This ensures that 95% of all possible repeated
measurements end up within 20% of the mean value of our
measurements. Given that our objective is not to evaluate
different kernel-level acquisition software with each other,
as they are very close to each other as already outlined by
V€omel and Stüttgen (2013), but rather to evaluate the

overall state of memory acquisition these figures are good
enough as each comparison group is far enough apart to
not fall within 20% of one another.

Individual results

First we give a brief insight into individual results.

pmdump
Because the resulting image seen in Fig. 4 provides an

expected visual, we start by introducing the results of
pmdump. This also helps to explain the way in which we
visualize the measurements: As can be seen from Fig. 4 it
does take some time, i.e., counter increments (x-axis), until
the tool starts to acquire some memory. This is first due to
the fact that the tool needs the process ID of our payload
application in order to dump its memory. Hence our
payload application was running for some seconds during
which its process ID was determined. Second, the pmdump
tool seemed to be rather resource intensive slowing the
overall system down, hence also slowing its own dumping
process down. It can also be seen from Fig. 4 that the tool
acquires the virtual address space, as the y-axis depicts the
counters spread along the virtual addresses of the process.

Table 1 gives the worst case figures, i.e., the maximum
figures obtained in all runs, for our atomicity and integrity
delta.

Inception
Fig. 5 is quite a different picture compared to pmdump's

Fig. 4. Fig. 5 shows inception in comparison to other
acquisition methods. The x-axis shows time while the y-
axis shows the memory regions. Each dot indicates the
point in time when a specific memory region was acquired.
From this it can clearly be seen that inception is the least
atomic acquisition e and also the overall slowest. Because
inception acquires the physical memory its acquisition plot
looks rather scattered and not as orderly as the plot of
pmdump. This is because Windows does not map sequen-
tial virtual addresses to sequential physical addresses. It
rather keeps physical memory in a heap and allocates in-
dividual pages. Due to the memory management unit

Fig. 4. Acquisition plot of pmdump.

15 v7.1 from https://technet.microsoft.com/en-us/sysinternals.
16 1.2 from http://ntsecurity.nu/toolbox/pmdump/.

M. Gruhn, F.C. Freiling / Digital Investigation 16 (2016) S1eS10S8

https://technet.microsoft.com/en-us/sysinternals
http://ntsecurity.nu/toolbox/pmdump/


(MMU) of the CPU this translation usually happens trans-
parently without loss of performance. Again Table 1 gives
the worst case figures regarding atomicity and integrity
delta for inception.

DumpIt
As can be seen from Fig. 5 DumpIt is less smeared than

inception via IEEE 1394. However, it is still behind super
atomic methods such as cold-boot attacks and virtualiza-
tion, represented by VirtualBox, which are both undis-
tinguishable vertical lines to the far left close to the 0 point
on the x-axis. We selected DumpIt here as a representative
of kernel-level acquisition methods as they all are very
closely related and there is no point in illustrating virtually
identical acquisition methods next to each other.

Comparison

In summary it can be argued that there is quite a dif-
ference regarding atomicity and integrity considering

different acquisition methods. However, as can clearly be
seen from the acquisition density plot in Fig. 6 that the
different methods seem to cluster. For example, the kernel-
level acquisition methods are all pretty identical with re-
gard to atomicity and integrity, aswell as acquisition speeds.
On other group would be DMA acquisition, here repre-
sented by the inception toolkit. Then user-mode dumping,
which should be split into methods suspending process
execution andmethods that do not. Last but not least are the
ultra high atomicity methods, which can not even be
distinguished anymore in Fig. 6 because the all cluster along
the y-axis. These are virtualization and emulation methods
and the physical cold-boot RAM attacks.

Table 1 gives a listing of all evaluated methods worst
case atomicity and integrity deltas as defined in the
beginning of this paper. The table is ordered according to
the above outlined groups as well as ranked by the sum of
atomicity and integrity delta within each group.

Fig. 7 is the representation of Table 1 as an atomicity/
integrity matrix.

Please note that the figures within Table 1 can only be
compared with measurements performed with the same
parameters and same hardware because the counter in-
crements are highly hardware dependent. To compare
other tools we make our framework available to the public.

Conclusions and future work

We presented a practical approach to estimating
atomicity and integrity of forensic memory acquisition
tools. This is the first time that this was done with a black
box approach. In this way we could also test closed source
software acquisition tools. We think that these evaluations
are important because before conducting these experi-
ments we had no intuition for how completely different
acquisition techniques, e.g., kernel-level acquisition and
DMA attacks via IEEE 1394, would compare.

Currently our results are highly tied into the hardware
and RAM size. It would be worthwhile to have an inde-
pendent figure representing atomicity and integrity so
different tools could be compared more easily.

Table 1
Comparison of worst case atomicity and integrity deltas.

(Worst case)
Atomicity Delta

(Worst case)
Integrity Delta

msramdump 1 43.84
memimager 1 63.28

VirtualBox 1 26.64
QEMU 1 35.24

ProcDump (-r) 0 39.75
ProcDump 1 36.50
Windows Task Manager 1 728.54

pmdump 37 136.62

WinPMEM 13,230 5682.24
FTK Imager 13,151 5917.24
win64dd 15,039 8077.54
win64dd (/m 1) 15,039 8172.28
DumpIt 15,711 8500.09

inception 43,898 22,056.77

Fig. 5. Memory acquisition technique comparison (acquisition plot). Fig. 6. Memory acquisition technique comparison (acquisition density plot).

M. Gruhn, F.C. Freiling / Digital Investigation 16 (2016) S1eS10 S9



Because the impact of non-atomic memory acquisition
on memory analysis is not well studied, no tools consider
the issues during analysis. The impact of non-atomic,
concurrent and smeared memory snapshots on forensic
memory analysis are yet unknown. However, misattribu-
tion seems to be one possible issue, e.g., when a process
ends while memory of the system is captured and during
this time another process starts, it is possible that the
memory contents belonging to these two processes get
mixed up. In the worst case, incriminating evidence might
be attributed to a different process and hence possibly
different user. In a less worse case, exculpatory evidence
may be missed, due to insufficient atomicity or integrity.
Hence the impact of low atomicity and low integrity must
be researched more thoroughly.

Appendix A. Supplementary data

Supplementary data related to this article can be found
at http://dx.doi.org/10.1016/j.diin.2016.01.003.

References

Bauer J, Gruhn M, Freiling F. Lest we forget: cold-boot attacks on
scrambled DDR3 memory. In: DFRWS EU, Lausanne, Switzerland;
2016.

Becher M, Dornseif M, Klein CN, Firewire: all your memory are belong to
us. Proceedings of CanSecWest.

Carrier BD, Grand J. A hardware-based memory acquisition procedure for
digital investigations. Digit Investig 2004;1(1):50e60.

Cohen M. Winpmem. 2012. URL, http://scudette.blogspot.de/2012/11/the-
pmem-memory-acquisition-suite.html.

Falconer M, Mozak C, Norman A, Suppressing power supply noise using
data scrambling in double data rate memory systems, US Patent
8,503,678 (Aug. 6 2013). URL https://www.google.com/patents/
US8503678.

Gruhn M. Windows NT pagefile.sys virtual memory analysis. In: Ninth
International Conference on IT Security Incident Management & IT
Forensics, IMF 2015, Magdeburg, Germany, May 18-20, 2015; 2015.
p. 3e18. http://dx.doi.org/10.1109/IMF.2015.10. URL, http://dx.doi.org/
10.1109/IMF.2015.10.

Gruhn M, Müller T. On the practicability of cold boot attacks. In: Avail-
ability, Reliability and Security (ARES), 2013 Eighth International
Conference on, IEEE; 2013. p. 390e7.

Halderman JA, Schoen SD, Heninger N, Clarkson W, Paul W, Calandrino JA,
et al. Lest we remember: cold-boot attacks on encryption keys.
Commun ACM 2009;52(5):91e8.

Libster E, Kornblum JD. A proposal for an integrated memory acquisition
mechanism. SIGOPS Oper Syst Rev 2008;42(3):14e20. http://
dx.doi.org/10.1145/1368506.1368510. URL, http://doi.acm.org/10.
1145/1368506.1368510.

ManTech CSI, Inc.. Memory dd. 2009. URL, http://sourceforge.net/
projects/mdd/files/.

Martignoni L, Fattori A, Paleari R, Cavallaro L. Live and trustworthy
forensic analysis of commodity production systems. In: Recent ad-
vances in intrusion detection. Springer; 2010. p. 297e316.

Mattern F. Virtual time and global states of distributed systems. In:
Workshop on parallel and distributed algorithms; 1989.

Schatz B. Bodysnatcher: towards reliable volatile memory acquisition by
software. Digit Investig 2007;4(Suppl.):126e34. URL, http://dx.doi.
org/10.1016/j.diin.2007.06.009. http://www.sciencedirect.com/
science/article/pii/S1742287607000497.

Stüttgen J, Cohen M. Anti-forensic resilient memory acquisition. Digit
Investig 2013;10:S105e15.

Suiche M. Win32dd. 2009. URL, http://www.msuiche.net/tools/win32dd-
v1.2.1.20090106.zip.

V€omel S, Freiling FC. A survey of main memory acquisition and analysis
techniques for the windows operating system. Digit Investig 2011;
8(1):3e22.

V€omel S, Freiling FC. Correctness, atomicity, and integrity: defining
criteria for forensically-sound memory acquisition. Digit Investig
2012;9(2):125e37.

V€omel S, Stüttgen J. An evaluation platform for forensic memory acqui-
sition software. Digit Investig 2013;10:S30e40.

Yu M, Qi Z, Lin Q, Zhong X, Li B, Guan H. Vis: virtualization enhanced live
forensics acquisition for native system. Digit Investig 2012;9(1):
22e33.

Fig. 7. Each acquisition position inside an atomicity/integrity-Matrix.

M. Gruhn, F.C. Freiling / Digital Investigation 16 (2016) S1eS10S10

http://dx.doi.org/10.1016/j.diin.2016.01.003
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref1
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref1
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref1
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref3
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref3
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref3
http://scudette.blogspot.de/2012/11/the-pmem-memory-acquisition-suite.html
http://scudette.blogspot.de/2012/11/the-pmem-memory-acquisition-suite.html
https://www.google.com/patents/US8503678
https://www.google.com/patents/US8503678
http://dx.doi.org/10.1109/IMF.2015.10
http://dx.doi.org/10.1109/IMF.2015.10
http://dx.doi.org/10.1109/IMF.2015.10
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref7
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref7
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref7
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref7
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref8
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref8
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref8
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref8
http://dx.doi.org/10.1145/1368506.1368510
http://dx.doi.org/10.1145/1368506.1368510
http://doi.acm.org/10.1145/1368506.1368510
http://doi.acm.org/10.1145/1368506.1368510
http://sourceforge.net/projects/mdd/files/
http://sourceforge.net/projects/mdd/files/
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref11
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref11
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref11
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref11
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref12
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref12
http://dx.doi.org/10.1016/j.diin.2007.06.009
http://dx.doi.org/10.1016/j.diin.2007.06.009
http://www.sciencedirect.com/science/article/pii/S1742287607000497
http://www.sciencedirect.com/science/article/pii/S1742287607000497
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref14
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref14
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref14
http://www.msuiche.net/tools/win32dd-v1.2.1.20090106.zip
http://www.msuiche.net/tools/win32dd-v1.2.1.20090106.zip
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref16
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref16
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref16
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref16
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref16
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref17
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref17
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref17
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref17
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref17
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref18
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref18
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref18
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref18
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref19
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref19
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref19
http://refhub.elsevier.com/S1742-2876(16)00004-9/sref19

	Evaluating atomicity, and integrity of correct memory acquisition methods
	Introduction
	Related work
	Contribution
	Outline

	Background: criteria for forensically sound memory snapshots
	Atomicity of a snapshot
	Integrity of a snapshot

	Black box measurement methodology
	Implementation
	Estimating atomicity and integrity
	Intuitive examples

	Experiments
	Setup
	Sequence
	Issues
	PCI hole
	Inconsistent page tables

	Analyzed methods and tools
	Cold-boot attack
	Emulation
	Virtualization
	Kernel-level acquisition
	DMA

	User-mode

	Results
	Measurement accuracy
	Individual results
	pmdump
	Inception
	DumpIt

	Comparison

	Conclusions and future work
	Appendix A. Supplementary data
	References


