Pool Tag Quick Scanning for
Windows Memory Analysis

Joe T. Sylve, Vico Marziale, and
Golden G. Richard Il

DFRWS EU 2016

TECHNOLOGIES NEW ORLEANS

@ BlackBag THE UNIVERSITY of

. THE UNIVERSITY Of
@ E}Haug!gﬁgg NEW ORLEANS

Who are any of us really?

e Senior Research Developer @BlackBag Tech
— find cool artifacts, figure out how to parse them
— develop new techniques
— get them into our tools

e PhD from UNO in CS (2009)
— research focus on efficient digital forensics

* Also done: DF practice, PenTesting, Malware Analysis

 FOSS dev: Scalpel, Registry Decoder, Spotlight
Inspector, DAMM (built on top of Volatility)

* Organizer BSidesNOLA April 16 in New Orleans
— come on over and I'll buy the beers

BlackBag NEW ORLEANG
The Problem

e Memory forensics coming into wider use

* Applications for DF
— crypto, cached data, volatile system state

e AndIR
— malware, intrusion detection

* Just like disk, memory sizes are increasing rapidly
— newer Windows systems max out at “4TB

* Some memory analysis relies on scanning

— like file carving but for in-memory structures

| (and likely you) want everything to be faster

— without loss of ... anything

— especially in IR Land

. THE UNIVERSITY Of
@ E}Haug!gﬁgg NEW ORLEANS

The (Basic) Solution

* Generally, the most important things we scan
for are kernel structures

— e.g., EPROCESS process descriptors
* These things exist in kernel memory
* Kernel memory divided into a set of pools

 Many of the things we care about are only
allocated from specific pools

— a much smaller scanning space

Ry BlackBag NEw ORteans
Memory Pools

* Dynamically sized (heaps)

* Kernel allocations in system address range
— kernel address space
— mapped into every process

* Paged pool: can be paged out to disk

* Non-paged pool: cannot be paged out to disk
— so guaranteed to be in a memory image
— kernel structures (processes, network stuff)
— drivers
— observed as small as 64MiB (allocated)

 Begin witha POOL_HEADER structure

. THE UNIVERSITY of
@ Ec! Haugkﬁeg NEW ORLEANS

nt!_POOL_HEADER
struct _POOL_HEADER, 9 elements, 0x10 bytes

+0x000 PreviousSize : Bitfield Pos 0, 8 Bits
+0x000 PoolIndex : Bitfield Pos 8, 8 Bits
+0x000 BlockSize : Bitfield Pos 16, 8 Bits
+0x000 PoolType : Bitfield Pos 24, 8 Bits
+0x000 Ulongl : Uint4B

+0x004 PoolTag : Uint4B

+0x008 ProcessBilled : Ptr64 to struct _EPROCESS
+0x008 AllocatorBackTraceIndex : Uint2B

+0x00a PoolTagHash : Uint2B

BlockSize: size of allocation*
PoolType: paged pool, non-paged pool
PoolTag: 4 byte marker for this allocation type

TECHNOLOGIES NEW ORLEANS

@ BlackBag® THE UNIVERSITY of

ntdll!_POOL_TYPE

Enum _POOL_TYPE, 15 total enums
NonPagedPool = OnO
PagedPool = Onl
NonPagedPoolMustSucceed = On2
DontUseThisType = On3
NonPagedPoolCacheAligned = On4
PagedPoolCacheAligned = On5
NonPagedPoolCacheAlignedMustS = On6
MaxPoolType = On7
NonPagedPoolSession = On32
PagedPoolSession = On33
NonPagedPoolMustSucceedSession = On34
DontUseThisTypeSession = On35
NonPagedPoolCacheAlignedSession = On36
PagedPoolCacheAlignedSession = On37
NonPagedPoolCacheAlignedMustSSession = On38

. THE UNIVERSITY of
@ Ec! HaNgl!g ﬁ%g NEW ORLEANS

Purpose Pool Tag
Driver Object Driv
File Object File
Kernel Module MmLd
Logon Session SeLs
Process Proc

Registry Hive CM10
TCP Endpoint TcpE
TCP Listener TcpL
Thread Thre

UDP Endpoint UdpA

@ BlackBag® THE UNIVERSITY of

TECHNOLOGIES NEW ORLEANS

Big (Large) Page Pool

Allocations over a certain size (~page size*) are
made from the Big Page Pool

Info about allocations at nt!PoolBigPageTable

struct _POOL_TRACKER_BIG_PAGES, 4 elements, 0x18 bytes

+0x000 Va : Ptr64 to Void
+0x008 Key : Uint4B
+0x00c PoolType : Uint4B
+0x010 NumberOfBytes : Uint8B

Va: virtual address of the allocation
Key: pool tag

PoolType: type

NumberOfBytes: size of allocation

Ry BlackBag NEw ORteans
Pool Tag Scanning

* Pool tags are handy for scanning through entire
memory image

— analogous to a file header
— at least for smaller allocation sizes
* Also like file headers, need further verification to
reduce false positives
— use known constraints for structure type
— other nearby structures like _OBJECT_HEADER

* What about Big Page Allocations?

— pool tag stored at nt!PoolBigPageTable, not with the
allocation itself

— just enumerate the table

TECHNOLOGIES NEW ORLEANS

Pool Tag Quick Scanning

@ BlackBag® THE UNIVERSITY of

* Crux: We know allocations for key kernel structures come
from specific pools

— non-paged pool
— big page pool

* For non-paged pool, kernel keeps a VA allocation bitmap
— what VAs are mapped to physical pages

* PTQS Process

— get virtual address range of non-paged pool and use VA
allocation bitmap to find those mapped physical pages

— use big page table to find allocations backed by physical pages
— use VAs/page tables to build range of physical pages to scan
— scan only these pages
* Does it work?
— Glad you asked.

o THE UNIVERSITY of
BlackBag N ORI

Base Test Setup

We are currently developing a new memory
analysis framework (topic of coming paper)

Developed two plugins to search for EPROCESS
allocations

— psscan to exhaustively search physical memory
— psquickscan to use the PTQS technique
Ran a series of tests for accuracy, speed, etc.

— Hardware: mid-2014 2.8 GHz MacBook Pro with 16
GiB RAM

— Note: all times are average of 10 runs with highest
and lowest removed

° THE UNIVERSITY of
@ Ec! Haugkﬁeg NEW ORLEANS
Scenario 1: Accuracy
* Win/7/SP1x64 16 GiB memory image
 Compare our psscan and psquickscan
* Compare to Volatility and Rekall
Plugin Type Avg. Time Running | Terminated Prior Boot Duplica’ce4
psquickscan Virtual 0.129s 128 21 0 0
psscan Physical 15.584s 128 22 15 43
psscan (Rekall) Physical 35.967s 128 22 15 43
psscan (Volatility) Physical 25.448s 128 21 15 43

Notes

* All scan types found the same number of running processes
 Two anomalies in the number of terminated processes found
e psquickscan reported reading only 80 MiB of the image

° THE UNIVERSITY of
BlackBa
@ ToansLoanas NEW ORLEANS
* Memory images across multiple OSs, and RAM sizes
 Compare our psscan and psquickscan
OS Version Plugin Data Scanned RAM Size | Avg. Time Running | Terminated Duplicate
Vista SPO psquickscan 38 MiB 1GiB 0.083s 46 2 15
Vista SPO psscan 1GiB 1GiB 0.356s 46 2 15
Vista SP1 psquickscan 60 MiB 1GiB 0.073s 48 0 0
Vista SP1 psscan 1GiB 1GiB 0.400s 48 0 0
Vista SP2 psquickscan 76 MiB 1GiB 0.236s 50 1 0
Vista SP2 psscan 1GiB 1GiB 0.547s 50 1 11
7 SPO psquickscan 64 MiB 2GiB 0.075s 43 4 0
7 SPO psscan 2GiB 2GiB 0.712s 43 6 4
7 SP1 psquickscan 64 MiB 2GiB 0.075s 50 5 0
7 SP1 psscan 2GiB 2GiB 0.691s 50 5 0
8 psquickscan 44 MiB 4GiB 0.054s 36 3 0
8 psscan 4GiB 4 GiB 1.433s 36 3 0
8.1 psquickscan 244 MiB 8 GiB 0.170s 45 0 0
8.1 psscan 8 GiB 8 GiB 2.977s 45 0 0
Notes
e About an order of magnitude speedup typo in

paper!

TECHNOLOGIES NEW ORLEANS

@ BlackBag® THE UNIVERSITY of

Scenario 3: Network Data Transfer
* Use F-Response to mount RAM over network (gigabit)
 Compare our psscan and psquickscan

RAM Size Plugin Scanned Time Transferred
2 GiB psquickscan 102 MiB 9.489s 116.115 MiB
2 GiB psscan 2 GiB 28.132s 2.014 GiB
4 GiB psquickscan 122 MiB 9.640s 177.367 MiB
4 GiB psscan 4 GiB 56.971s 4.027 GiB
8 GiB psquickscan | 246 MiB 15.360s 299.648 MiB
8 GiB psscan 8 GiB 3m26.449s 8.132 GiB
Notes

* Data transferred just greater than data scanned
* Slower networks will just make the wait more frustrating

N

BlackBag NEW ORLEANS
Scenario 4: Large Memory Image
* Test with significantly larger memory image
 Compare our psscan and psquickscan
 Compare to Volatility and Rekall
Plugin Data Scanned | Avg. Time
psquickscan 5.76 GiB 5.797s
psscan 192 GiB 3m8.421s
psscan (Rekall) 192 GiB 6m?7.207s
psscan (Volatility) 192 GiB 4m42.412s

Notes

e About 2 orders of magnitude speedup versus other methods

e psscan linear in RAM size, not psquickscan

o THE UNIVERSITY of
BlackBag N ORI

A Note on Limitations

Our limitations are inherent to scanning in
virtual address space

Starting in Windows 10 Microsoft obfuscates
~OBJECT HEADERSs using the VA of the
allocation

Must scan in kernel’s virtual address space

tl;dr - Existing tools may have the same
limitations as us starting with Windows 10

THE UNIVERSITY of

@ E}Haug!gﬁgg NEW ORLEANS
Conclusions

* New technique: limit pool tag scanning to pools
where allocations for these objects are made

e Significantly more efficient
— time: order of magnitude+ speedup
— network bandwidth

 Minimal loss of accuracy

— no processes from previous boot
— terminated processes in deallocated pages not found

— we’d have these limitations in Windows 10+ anyway

. THE UNIVERSITY Of
@ E}Haug!gﬁ@g NEW ORLEANS

Future Work

* More testing of pool sizes with different
workloads

* Quantify the incidence of objects in
deallocated pages

* Find a way to scan a subset of deallocated
pages that might hold fun stuff

. THE UNIVERSITY Of
@‘ E}Haug!gﬁgg NEW ORLEANS

Questions?

Vico Marziale
vico@blackbagtech.com
@vicomarziale

Joe Sylve*
joe@blackbagtech.com

@jtsylve

*after today, ask him

