
DFRWS 2017 USA d Proceedings of the Seventeenth Annual DFRWS USA

SCARF: A container-based approach to cloud-scale digital forensic
processing

Christopher Stelly*, Vassil Roussev
GNOCIA, Department of Computer Science, University of New Orleans, New Orleans, LA 70148, USA

Keywords:
Real-time forensics
Large-scale forensics
Containers
Cloud computing
SCARF

a b s t r a c t

The rapid growth of raw data volume requiring forensic processing has become one of the top concerns
of forensic analysts. At present, there are no readily available solutions that provide: a) open and flexible
integration of existing forensic tools into a processing pipeline; and b) scale-out architecture that is
compatible with common cloud technologies.

Containers, lightweight OS-level virtualized environments, are quickly becoming the preferred
architectural unit for building large-scale data processing systems. We present a container-based soft-
ware framework, SCARF, which applies this approach to forensic computations. Our prototype demon-
strates its practicality by providing low-cost integration of both custom code and a variety of third-party
tools via simple data interfaces. The resulting system fits well with the data parallel nature of most
forensic tasks, which tend to have few dependencies that limit parallel execution.

Our experimental evaluation shows that for several types of processing tasksesuch as hashing,
indexing and bulk processingeperformance scales almost linearly with the addition of hardware re-
sources. We show that the software engineering effort to integrate new tools is quite modest, and all the
critical task scheduling and resource allocation are automatically managed by the container orchestra-
tion runtimeeDocker Swarm, or similar.
© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The problem of maintaining constant case turn-around times in
the face of continued growth in data volume, first discussed more
than ten years ago (Roussev and Richard, 2004; Richard and
Roussev, 2006), has been steadily climbing up the list of top-level
concerns for digital forensic investigators, as case overload has
lead to the growth in backlogs.

In 2016, a US Department of Justice audit of the New Jersey
Regional Computer Forensic Laboratory (RCFL) (Department of
Justic, 2016) found that there were 194 service requests that were
not closed within 60 days, including 39 that were more than a year
old. Every month between January and June of 2015, the fraction of
cases open for at least a year varied between 17 and 22%. An earlier
DOJ Audit Report (U.S. Department of Justice, 2015) shows that,
across FBI's 16 RCFL units, there were 1566 open requests as of
August 2014. Of these, almost 60% were over 90 days outstanding:
381 (24.3%) were between 91 and 180 days old, 290 (18.5%)ebe-
tween 6 and 12 months, and 262 (16.7%) were over a year old.

Conceptually, the problem is the result of three core trends that
shows no signs of abating: a) the size and complexity of forensic
targets will continue to grow at an exponential rate for the fore-
seeable future; b) human resources charged with the problem will
not grow appreciably, relative to the expected data growth; c) there
are real-world deadlines to any digital forensic analysis, so turn-
around time must remain stable, despite the expected data growth
and growing data load per forensic expert.

To some degree, the performance inadequacy of current forensic
systems has been masked by stagnant growth in throughput per-
formance of large capacity HDD. For example, a modern 10 TB drive
(Seagate Technology, 2016) provides only about 250 MB/s of sus-
tained transfer rate, requiring over 11 h (under optimal conditions)
to fully read its data content.

However, advances in SSD storage e fast-falling costs, and rapid
capacity and bandwidth growthe are quickly reshaping the storage
technology environment. The introduction of NVM Express
Workgroup (2016) devices pushes the device-to-host throughput
rates above 1 GB/s; a number of consumer laptops are already
equipped with integrated flash storage, providing transfer rates of
1.6 GB/s and up. Notably, such devices are equipped with* Corresponding author.

E-mail addresses: cd@stelly.org (C. Stelly), vassil@roussev.net (V. Roussev).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

http://dx.doi.org/10.1016/j.diin.2017.06.008
1742-2876/© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 22 (2017) S39eS47

Thunderbolt 2/3 external interfaces providing up to 40 Gb/s of
outgoing bandwidth. In effect, this removes device I/O as a
throughput bottleneck for flash memory acquisition.

Networking advances have made 10/40 Gb Ethernet a com-
modity technology, and even low-latency 100 Gb InfiniBand
network switches (typical of high-performance computing envi-
ronments) have become practical for forensic lab deployment with
per-port cost of $400.

In sum, the technology landscape has changed qualitatively:
acquiring the data and transferring for processing over the network
(to a cluster of compute nodes) is no longer the performance
bottleneck; CPU processing is. Thus, it is critical to develop scale out
solutions that can utilize the dramatic increases in commodity I/O
rates and match them with a corresponding increase in processing
rates.

We are interested in building an open and scalable platform
that provides a set core services out of the box and allows for
seamless integration of third party at minimal development cost.
From a legal and scientific perspective, the original argument for
having open forensic tools was made, at length, by Carrier (2002);
in short, open tools support a much greater level of transparency
and reproducibility, resulting in increased trust of the process.
Importantly, the frequent use of open tools leads to lower error
rates, as the implementation errors are regularly exposed and
repaired.

Individual open (source) forensic solutions provide substantial
analytic capabilities. However, they tend to be specialized and are
developed independently (based on driving scenarios) with very
limited, if any, support for integration. This means that there is an
implied additional cost to integrate and operate these tools as part
of a comprehensive forensic solution. The few existing integrated
environments, of which TSK (Carrier) is the most popular, are not
designed from the ground up for scale out performance. Experi-
ence shows that it is difficult to retrofit such fundamental prop-
erty into a system; one example of this is the short-lived effort to
extend Sleuthkit with Hadoop's big data processing capabilities
(Stewart, 2012).

The ability to easily integrate a growing set of new capabilities
implemented in a variety of language platforms. TSK follows the
traditional model of tight, compile-time API-based integration.
While such a model has some advantages, such as minimal
communication overhead, it is only sustainable by popular-
enough projects where a large group of contributors builds and
maintains language bindings for the most commonly used lan-
guages; unfortunately, TSK is not in this category. Other projects,
like (Volatility Foundation (2007e2015) and The Rekall Team,
have confined themselves to a single language (Python); however,
they only deal with a single (if important) sub-domain e memory
analysis. Also, users must learn to work around the substantial
performance deficiencies of the Python language, which can be
two-three orders of magnitude slower than a C-based solution
(Richard and Case, 2014).

Our basic thesis is that an open and comprehensive digital
forensic environment should be language-agnostic and should rely
only on simple data interfaces and a shared evidence database as a
means to integrate the functionality of different modules into a
complete solution. Further, we put forward the idea that containers,
a lightweight virtualization solution that is quickly gaining popu-
larity as an alternative to full-stack virtualization, is a particularly
good fit for the needs of a scalable and extensible digital forensic
environment.

We describe our experiences in building a working prototype of
such a system, and present an experimental evaluation that
strongly supports our thesis both with respect the ability to inte-
grate a disparate set of forensic tools into a unified processing

pipeline, and the ability to scale out such a system to the available
hardware.

Related work

As already discussed, a dozen years after the recognition that
data volume growth is on course to overwhelm the typical hard-
ware and software platforms used by digital forensic analysts, the
problem has risen to a top-level practical concern over the last 3e4
years.

Put together, these observations point to the need to develop
forensic processing systems that can scale out in order tomatch the
growing demand with a comparable increase in hardware re-
sources. Following the discussion in (Roussev, 2011), we refer to
this property as data scalability and there are hardly any systems
that provide a complete solutions. The Hansken project at the
Netherlands Forensic Institute (Institute, 2016; van Beek et al., 2015)
comes closest to fulfilling this vision on the basis of commodity big
data technology. Although it looks promising, it is not open source
and it is not possible to independently evaluate its performance.
(Previous work (Roussev et al., 2009) has shown that early versions
of Hadoop provided little benefit due to the high latency induced by
disk access between the two phase of map/reduce processing.)

Garfinkel's bulk_extractor tool (Garfinkel, 2013) performs
stream-oriented processing and data extraction from forensic im-
ages. It is one of the few robust solutions that explicitly targets the
handling of large data sets. Optimizations, such as compiled regular
expressions and built-in multi-threaded processing, allow it to
reach throughput of 60 MB/s (in default configuration) using 48
cores (Roussev et al., 2013). The two main shortcomings here are
the lack of support for file-based processing and the lack of support
for cluster processing, which would be particularly appropriate.

The ultimate measure of a solution's data scalability is main-
taining constant processing times in the face of ever growing pro-
cessing demands. In other words, forensic processing exhibits (soft)
real-time properties (Roussev et al., 2013), which can be expressed
in terms of throughput rates.

Extensibilityethe ability to incrementally accommodate new
functional modules into the forensic flow at near-zero costeis also
an important component of the needed solution, as it enables the
analysis of new types of evidence to match the increasing diversity
of forensic targets. At present, extensibility is limited to tight, API-
based software integration of additional modules (plug-ins).

For tools that are designed as specialized modules, such as
ExifTool (Harvey) from the outset, it is important to support com-
posabilityethe ability to easily incorporating themodule as part of a
larger infrastructure. At present, composability support is usually
limited to a bespoke output format specification.

Containers

Although containers have only recently gained popularity as a
core IT management mechanism, the original idea of providing
constrained environments for (groups of) processes to execute in
can be traced back to the chroot Unix command. It restricts the file
namespace visible to a process and was introduced into the 4.2BSD
distribution by Bill Joy (Kamp and Watson, 2000) (apparently for
the purposes of building and testing new versions of the code). It
was later developed into the more comprehensive jail mechanism
in FreeBSD 4.0 (Kamp and Watson, 2000), which provides more
elaborate containment mechanisms. “Jails are typically set up using
one of two philosophies: either to constrain a specific application
(possibly running with privilege), or to create a virtual system image
running a variety of daemons and services.” (Kamp and Watson,
2000) These remain the two basic usage scenarios to this day.

C. Stelly, V. Roussev / Digital Investigation 22 (2017) S39eS47S40

The VServer project (des Ligneris, 2005) marked the first step in
the adoption on Linux, which allowed the “running several general
purpose Linux server on a single box with a high degree of Inde-
pendence and security.”1 It was an influential development, which
was adopted widely by ISPs to provide Virtual Private Servers.
OpenVZ, based on the Virtuozzo project, was another parallel effort,
which was open sourced in 2005 (OpenVZ Virtuozzo Containers
Wiki, 2016). In either case, the main technical impediment to a
wider adoption was the need to patch and rebuild the kernel.

Menage (2007) introduced the term “generic process con-
tainers”, the full vision of which took several years to imple-
ment. The initial steps of the implementation became known as
cgroups (control groups) as part of Linux 2.6.24 (Corbet, 2007).
The last major component needed were user namespaces, which
allow per-process namespaces; they provide basic means to
limit the visibility (and access) to resources, such as mount
points, PID numbers, and network stack state. User namespaces
became part of Linux 3.8 (2013) and, combined with userland
tooling developed by the LXC (2008e17) project, provided the
first out-of-the-box container deployment and management
facilities.

Container management and orchestration

The standardization of kernel mechanisms needed for container
operation opened up the opportunity for multiple userspace tools
to be developed in addition to LXC. Among these, Docker (docker.
com) (Merkel, 2014) is the most popular one; however, several
other projects e Google's Kubernetes (kubernetes.io) (Burns et al.,
2016), rkt (coreos.com/rkt), and LXD (linuxcontainers.org/lxd/) e

also have strong industry backing. This has lead to a quick matu-
ration of the technology and an active effort, the Open Container
Initiative (opencontainers.org), to standardize both the image
format and the runtime interface. These standards guarantee
interoperability and set up a best-of-breed competition among the
tools.

For the purposes of our experimental work, we have chosen
Docker as the prototype implementation platform. However, the
solution could easily be ported to a different container manage-
ment environment with minimal effort. Indeed, our experience
shows that a more sophisticated load balancing platform would
have saved us non-trivial amounts of effort.

The core Docker platform provides the means to manage the full
lifecycle of a containerecreation, updates, persistent storage and
versioning, instantiation, resource provisioning, and shutdown. As
already mentioned, a container consists of a group of (one or more)
processes, along with access to a set of resourceseCPU cores, RAM
allocation, file systems, and networkingeneeded to perform the
computational task. All containers share a common OS kernel but,
by default, are isolated from each other; it is also possible to setup
sharing of resources where needed, e.g., software installations. To
running processes, there is no apparent difference between
executing in a container versus running in a full-stack virtual ma-
chine (with a dedicated kernel). Themain benefit is that a container
takes much fewer resources (than a VM) and the cost to instantiate/
shutdown it down is much lowerecomparable to that of a regular
process.

In sum, the modern container is an evolved version of the
original process concept with a higher degree of autonomy, porta-
bility, and manageability. Container instances are encapsulated
units of schedulable work, complete with all the necessary
resourcesecode, data, and runtime configuration.

Cluster management and orchestration

Recall that our ultimate goal is to effectively employ a compute
cluster to perform the forensic processing at maximum I/O rates.
This means that we need an infrastructure that can manage and
schedule the available resources. For this project, we use the Docker
Swarm facility, which was initiated as a standalone project, but has
recently been incorporated as a core function into Docker Engine;
we refer to it as swarm.

A swarm is a cluster of Docker engines, or nodes, on which ser-
vices are deployed. The Docker Engine CLI and API include com-
mands to manage swarm nodes, such as to add and remove nodes,
and deploy and orchestrate (schedule) services across the cluster.

The deployment of services is performed by manager nodes,
which dispatch units of work, tasks, to worker nodes. Manager
nodes manage and orchestrate the cluster such that the desired
state of the swarm is maintained; for that purpose, they elect a
leader to conduct the orchestration. Worker nodes receive and
execute tasks dispatched by the managers, and report back on the
status of the assigned jobs. This feedback allows the efficient
scheduling of the tasks to available resources.

A service is the definition of the tasks assigned for execution to
workers, and the primary means by which users interact with the
swarm. The service definition consists of a container image, which
provides the execution environment, and the specific commands to
be executed. Replicated services allow for a given number of tasks to
be distributed across the cluster; global services run on every node
of the swarm.

Docker's swarm manager uses ingress load balancing to expose
the services provided by the swarm via a given network port. The
swarm has an internal DNS component that automatically assigns
each service in the swarm a DNS entry. The manager distributes
requests among the services within the cluster based upon the DNS
name of the service. Once dispatched, a task cannot migrateeit
must run to completion, or fail.

In sum, Docker cluster orchestration provides the necessary
basic functions to scale out a computation across a sizeable cluster;
however, its performance optimization techniques are relatively
simple (at this stage) and do require some effort on part of the
developer to achieve good performance.

SCARF

In this section, we describe the design and implementation of
our prototype solution called SCARF (SCAlable Realtime Forensics).
It is an experimental system that allows us to evaluate the costs,
benefits, and limitations of a container-based approach to building
an integrated forensic platform.

We define containerization as the encapsulation of individual
executable modules as fully autonomous images that require only a
base OS installation to execute. Images are instantiated as indi-
vidual tasks, which are the basic units of scheduled CPUwork. Tasks
run as individual processes, or groups of processes, that perform a
particular function and execute in a constrained environment.

We expect containerization to bring two main benefits: a) scale
out performance for data parallel operations, such as any per-file
computations like hashing and data extraction; b) low-cost
extensibility with new functional modules.

Data ingest

For our experiments, we used NTFS images, which we pre-
process before initiating the actual data runs. Reading and
parsing the NTFS header information takes a near-negligible
amount of time (Table 1). After ingesting the header information,1 http://www.solucorp.qc.ca/changes.hc?projet¼vserver&version¼all.

C. Stelly, V. Roussev / Digital Investigation 22 (2017) S39eS47 S41

it is stored in memory for the duration of the process lifetime.
Once image metadata has been obtained, it is possible to opti-

mize file acquisition. The optimization can vary on source type, but
commonly requires a linear, or striped, reading of the media. To
accomplish a linear read, an inverse mapping is built between
logical blocks and file identifiers. Assuming that neighboring blocks
are laid out in physical proximity (still a reasonable assumption for
HDDs), the read stage can then begin in order of physical presence
on disk, allowing for a linear read for contiguous files.

For fragmented files, the process is somewhat more compli-
cated. A linear read across a fragmented file would necessarily
read blocks belonging to other files. To avoid distributing extra
data and data client-side file reassembly, we reconstruct the files
in RAM as they are read, and only stream them out to processors
when the file is entirely in memory. Although it is entirely
possible that some files may exceed available RAM, this was not
really a concern for our machines with 256 GB of RAM. None-
theless, by default, we handle large files by streaming their con-
tent to the node straight from disk.

Architecture

Fig. 1 provides an overview of the functional components and
main data flows of SCARF. The data broker extracts the raw data

from the forensic target and prepares it for streaming to the
cluster nodes. The broker serves as an abstraction layer that de-
couples the processing of the data from its source format, such as
a filesystem, RAM snapshot, or network capture. At present, we
support two type types data access: bulk streamer and file
streamer.

The bulk streamer provides sequential block-level access to an
entire volume without attempting logical artifact reconstruc-
tion; it is suitable for tools like bulk_extractor that function at
the same level of abstraction and look for relatively small pieces
of data.

The file streamer reconstructs files from block storage and
transmits them as units of input data. This is based on reading the
filesystem data structures (during initialization) and reconstituting
the files on the fly; we utilize a version of the LOTA approach
described in (Roussev et al., 2013) to optimize access times.

Task manager
The next major component is the task manager, which keeps

persistent logs of task definitions and task completions. The defi-
nitions are generated by the data broker and depend on the set of
available functions and the stream of data extracted from the
target. As the simplest example, for every file identified on the
target (by parsing the filesystemmetadata) the broker will generate
a SHA1 task, which will placed in the task definition log; we refer to
it as the task queue.

The task manager uses Apache Kafka (kafka.apache.org) to
maintain its persistent logs and notify registered data client
nodes of available tasks. Conversely, completed tasks are
committed to the completed log. Although not a central point of
this paper, we should emphasize that maintaining reliable logs of
completed processing is critical to ensuring the integrity of the

Table 1
NTFS metadata retrieval times.

Number of files NTFS parsing time

56,274 1.5 s
619,555 29.8 s

Fig. 1. Architectural sketch of SCARF (simplified).

C. Stelly, V. Roussev / Digital Investigation 22 (2017) S39eS47S42

computation. At scale, errors in complex distributed systems
happen with some regularity; experience shows that it is infea-
sible to eliminate all possible source of failures. For example, in
our case, out of the millions of spawned container instances,
some will fail to execute.

The practical way to handle sporadic failures is to restart the
computation; if the failure continues to occur, then it is sys-
tematic and needs to be debugged. We should note that failure
can take the form of a task taking too long to execute, in which
case it is better to terminate and restart it. Google's experience
with map-reduce processing (Dean and Ghemawat, 2008) shows
that a small fraction of the tasks tend to delay the overall
completion of the processing. The solution to this is to run
multiple instances of the same task, and only take the result from
the first one to finish.

The main point is that keeping reliable detailed logs of the
processing is absolutely necessary for both integrity and perfor-
mance reasons.

Data clients
A data client is a container instance that receives a portion of the

forensic target and organizes execution of tasks on the given
portion. Ultimately, the entire forensic target is distributed across a
set of data clients with the aim of optimizing the load across the
nodes.

Upon creation, data clients generate a unique identifier and
register to both the data broker and the task manager. As the data
broker streams data from a forensic target to data clients, it
simultaneously polls the task manager for outstanding tasks.

Tasks are added to the task manager with the unique identifier
of the data client and can optionally be accompanied by file
identifiers (in the case of a file streamer). Upon receipt, the data
client becomes responsible for the execution of a given task.
Further, a future option can be added so that subsequently
received files will also have that task executed upon it. This
feature allows tasks to return results even as data is streamed from
the original source.

Task execution is not handled by the data client - it is farmed out
to a dynamic pool of specialized containers, called workers. The
rationale here is that separation of duties between storing data in
memory and execution of forensic tasks upon the data are funda-
mentally different tasks. Further, separating worker containers
from data clients allows for easy development and deployment of
new types of workers.

Workers
Aworker is a container instance that performs a specific task on

given piece of input data. Importantly, workers have no concept of
files e they simply provide a remote procedure call (RPC) interface,
through which they consumes incoming data and produce a result
in the form of a JSON string. Although the interface would benefit
from the imposition of some additional structure on the I/O stream
formats, this generic approach is quite flexible and allows easy
creation of new types of workers.

The containerization of workers offers the ability to easily
scale any task. This can be extended to easily prioritize tasks. That
is, we can develop methods to automatically scale containers
based on server availability or task importance. Within Docker,
prioritization is easily implemented with the docker service scale
command. (We would expect more complex algorithms to
eventually coordinate scaling as part of the underlying orches-
tration service.)

As an illustration, the following will increase the number of
containers running an ExifTool worker:

docker service scale exiftools¼48

By consistently applying the above RPC approach, it is possible
to scale out any container, regardless of the specific computation
performed.

Data clients are not aware of the number of, or network paths to,
workers. Instead, network resolution (and rudimentary load
balancing) is mediated by an internal DNS service. Thus, a lookup
for an ‘exiftools’ container will return a virtual IP to the least
recently used container.

For our initial testing, we have implemented a variety of workers
representing workloads with different computational demands:

� SHA1: performs crypto hashing of data;
� grep: live regular expression search;
� Tika: text extraction with Apache Tika;
� open_nsfw: image classification using a trained Caffe deep neural
network provided by Yahoo!2;

� bulk_extractor: feature extraction using regular expressions and
verification (Garfinkel, 2013);

� ExifTool: metadata extraction from a file.

Results repository: ElasticSearch
As tasks complete, results are returned to the data client. After a

batch of results is returned, or a predefined space threshold is
reached, the results are bundled and sent to a cluster of Elas-
ticSearch (ES) nodes.

The ES cluster nodes are deployed on the same hardware as the
workers and provide a searchable database of the results from the
tasks. It is integrated via its RESTful interface for storage, querying,
and retrieval of data, and can dynamically scale to meet the
incoming stream of results.

The ES modules are split between gateway, data, and master
nodes. Apache Tika is also deployed alongside to enable the
indexing of non-plaintext MIME types, such as PDF documents.

Container management

The coordination of deployment of containers across a set of
worker nodes is performed by a background service running on all
the hardware nodes. The service is responsible for adding more
containers as existing containers become overwhelmed with work.
It is also tracks container failures, and optionally, can automatically
start replacement ones. Finally, it provides a mechanism for service
discovery as additional services are brought online. For our proto-
type, we use Docker Swarm to provide as the core of all container
management-related functions.

Extending SCARF

One of the design goals of SCARF is to allow for the easy addition
of additional Worker types. That is, extensibility is a primary
concern.

Containers, here treated as individual and distinct computa-
tional units, provide a perfect platform for extensibility. Namely,
they can be scaled (launched and retired) according to available
resources or priority. Importantly, no modification is required to an
existing tool in order to accomplish scalability. Further, any forensic
tool can deployed within a container, and thus to SCARF e as dis-
cussed previously, these workers simply take in data, perform an
operation, and return a JSON string.

For most single-purpose tools, the process of incorporation into
SCARF's processing fabric consists of three basic steps.

2 https://github.com/yahoo/open_nsfw.

C. Stelly, V. Roussev / Digital Investigation 22 (2017) S39eS47 S43

Build an RPC wrapper
First, we apply a small amount of wrapper code around the

tool. The goal is to expose a network path for the acquisition of
forensic target data as well as to provide a response mechanism.
The wrapper provides the means to execute the existing tool on
the provided input data and to return the results back to SCARF.
This can be accomplished in a variety of ways; we have chosen to
employ golang's excellent built-in RPC library. Using RPC allows
for the results of a forensic operation to be returned while
simultaneously providing a mechanism to acquire the forensic
target.

Once an RPC function is invoked from SCARF, the given input is
translated into a form that the tool can operate on, and the
necessary command-line parameters are generated to launch the
tool. In the developed examples, this involved changing two lines of
code as all RPC, logging, and error checking code can be templated
and abstracted away.

For example, the wrapper for ExifTool consists of the following
code:

Listing 1. ExifTool RPC wrapper code

The overwhelming majority of the code in Listing 1 is quite
generic and is useful as a template for the wrapping of similar tools.
The two key variables are toolPath and opts, both of which will be
dependent on the forensic tool in question.

Containerize the tool
Second, the tool and wrapper must be implemented into a

container image, a process often referred to as containerization. This
requires the development of a container description file; in the case
of Docker, it is called Dockerfile and provides simple script for
building the image. The starting point is a known system image,
such as a clean operating system installation. The series of steps
includes operations such as installation of prerequisite software
and setting the environment variables. The wrapper binary is also
installed and set to auto-execute upon container creation. Listing 2
(wrapped to fit the column) shows a Dockerfile to build a bulk_ex-
tractor image.

Themajority of commands to build the tool should be familiar to
open source developers. The installation of pre-compiled binaries
would be clearly easier; however, in cases where building from
source is desired, pre-existing build sequences can be added to a
Dockerfile with minimal effort.

Listing 2. Dockerfile for bulk_extractor

Invoke the tool
Once the tool is containerized and exported as a network ser-

vice, it is ready to be incorporated into the processing fabric. This is
accomplished by adding a few lines of code within the consumer.
The code to invoke ExifTool is shown on Listing 3:

Listing 3. ExifTool invocation

Performance evaluation

This effectiveness of the proposed framework relies on the
ability to scale operations. In order to demonstrate scalability, we
have selected several tools to benchmark common forensic oper-
ations under a variety of conditions. Although a side effect these
examples results in a processing rate that can (in some cases) keep
up with SATA speeds, the important factor is the relationship be-
tween throughput and the number of deployed containers. We
show that an increased number of containers results in an increase
of throughput, thus additional hardware could be deployed,
resulting in more containers, which results in higher throughput.

Processing rates

The base configuration of our evaluation setup consists of a
cluster of four rack-mounted server machines connected to a
commodity 10 GbE switch. Each box has 256 GB RAM, 24 2.6 GHz

C. Stelly, V. Roussev / Digital Investigation 22 (2017) S39eS47S44

dual-threaded cores for a total of 96 physical cores and 192 logical
ones. All nodes have a SATA-attached 1 TB SSD (Samsung 850 Pro),
although this is largely irrelevant as all data for processing is
handled in RAM. The observed throughput for bulk transfer over
TCP connection was about 1 GB/s.

At five years, the CPUs are three generations old and near the
end of their lifecycle. The upside is that the results can be consid-
ered more representative as the hardware would be easily afford-
able for any lab.

The reference test data is a full 200 GB NTFS image, which was
created by using a random selection of files from the GovDocs
corpus (Garfinkel et al., 2009).

For benchmarking purposes and ease of analysis, we limit each
container to a single CPU core. Further, we consider the processing
functions one at a time in order to understand their intrinsic per-
formance characteristics. The times shown are inclusive of all
overhead, including network communications among the active
containers.

Crypto hashing
Cryptographic hashing is a common forensic function. For this

processing scenario, we have selected the SHA-1 hashing algo-
rithm. We have developed a container which provides a remote
procedure call over TCP using the methods outlined in the previous
section. The container returns the hash of given data.

As the results in Table 2 show, as few as 12 containers almost
saturate the available network bandwidth of 1 GB/s.

Metadata extraction
The ExifTool (Harvey) is commonly deployed tool used to extract

metadata from file content; it supports a large number of file for-
mats and attributes. Listing 1 shows the RPC wrapper code that e
along with the ExifTool v10.10 executable are placed in a container
image.

Considering the end points of the experimental space (Table 3)
e 4 and 192 containers, respectively e we observe near-linear
speedup from 5 to 192 MB/s. This is in line with expectations as
the metadata extraction does not depend on I/O and the workload
is inherently data parallel. Considering the whole range of param-
eters, we can see that the average throughput per container follows
a bell curve distribution with a sweat spot at 32 containers.

Image classification
Yahoo! recently released an open source image classifier,

OpenNSFW (github.com/yahoo/open_nsfw). This is a deep neural
network, built on top of Caffe (caffe.berkeleyvision.org), which
comes pre-trained to detect pornographic images. For every image
that is processed, the systemyields a value representing confidence
in an image's resemblance to pornography.

This is an interesting case as it allows us to assess the cost of
providing smarter tools for automated processing that provide re-
sults closer in abstraction level to that of the analyst. As Table 4
shows, these are expensive operations and despite the linear
scaling with respect to the number of files classified, the absolute
numbers are much lower than with other tools.

At the same time, compared to the current alternative of a hu-
man manually examining (thumbnails of) the images, even this
unoptimized solution can classify 138,600 per hour, or 3.33 million

over 24 h. By employing more modern CPUs, as well as GPUs, the
system can be scaled up to whatever degree is needed to handle lab
workloads.

Unlike previous examples, OpenNSFW is already provided as a
docker container. We only needed to write a small wrapper func-
tion to encapsulate the embedded program as an RPC call. As more
developers adopt container solutions, such as Docker, integration
with SCARF will become even easier.

Indexing common filetypes
Extraction of plaintext data from encoded documents is a

common step in forensic analysis. One of the more popular solu-
tions is the Apache Tika (tika.apache.org) open-source project. It is
specifically designed for this purpose and is often used in
conjunction with an indexing engine like Solr, or ElasticSearch.

From Table 5, it is immediately clear that this workload is much
more demanding and only scales sub-linearly. Particularly notable
is the drop in processing rate per container between 96 and 192.
Recall that there are only 96 physical cores and, for this workload, it
appears that the addition of hardware supported threads does not
materially improve performance. This suggests that the workload is
very effective at utilizing all the CPU's functional units; hence, the
addition of threads only marginally improves upon the amount of
work being performed.

Bulk Extractor
Bulk extractor (Garfinkel, 2013) is a forensic tool used to analyze

raw data streams. Using pre-compiled scanners based on GNU flex,
it is an effective tool for extracting specific pieces of information,
such as emails, URLs, IP addresses, credit card numbers, etc., from a
data stream.

The process of wrapping and containerizing the tool was
described earlier. What is interesting in this case is that bulk_ex-
tractor supports multi-threaded execution by default. Therefore, we
approached these scenarios in a slightly different manner by
exploring the optimal number of CPUs that a bulk_extractor
container should have.

Interestingly, the best performancewas achieved by limiting the
tool to a single thread and a single CPU, using the saved resources to
spawn additional containers. In other words, 48 one-core bul-
k_extractor instances work faster than one 48-core instance. For
this test case, we provided each container instance with 500 MB of
file data from the GovDocs corpus (Garfinkel et al., 2009).

Table 2
SHA1 file hashing throughput (MB/s) vs. number of containers.

Containers 4 12 24 48 96 192

MB/s 345 857 985 985 948 992

Table 3
ExifTool metadata extraction throughput vs. number of containers.

Containers 4 8 32 64 96 192

MB/s 5.2 17 99 151 170 192
MB/s per cont. 1.3 2.1 3.1 2.4 1.8 1.0

Table 4
OpenNSFW classification throughput vs. number of containers.

Containers 4 8 12 32 64 96 192

MB/s 0.4 1.4 2.5 3.8 7.2 10.9 21.3
Files/s 0.8 2.2 3.9 7.1 13.4 20.3 38.5

Table 5
Tika text extraction vs. number of containers.

Containers 4 12 24 48 96 192

MB/s 0.5 1.1 2.4 3.5 5.8 6.7
MB/s per cont. 0.13 0.09 0.10 0.07 0.06 0.03

C. Stelly, V. Roussev / Digital Investigation 22 (2017) S39eS47 S45

Table 6 shows that the throughput per container remains fairly
stable, and exhibits linear scalability. This is not a surprise as the
workload is CPU-bound and data parallel in nature.

Indexing filesystem metadata
As stated previously, SCARF utilizes ElasticSearch (ES) for target

metadata storage as well as storage of the results produced by
tasks. For this benchmark, we extracted and parsed the NTFS
metadata information of a 200 GB image containing approximately
620,000 files. Each NTFS parsed record yields a JSON object of about
500 bytes.

Since ES is designed to be run as a distributed service, it is
important to consider different architectures as small changes
could have large performance consequences. In this benchmark, we
test two architectures: a) single ES data node; and b) production-
style distribution containing seven nodes of various roles.

Table 7 shows that, indeed, moving from a standalone deploy-
ment to a small cluster yields super-linear improvement as syn-
ergies among the modules and fewer performance bottlenecks
improve the effectiveness of the system. We did not test larger
configuration (we would need more records) but we expect larger
configurations to scale out well although the per-container per-
formance may drop slowly as with most of the other services
tested.

Summary

Inspection of a simple graphical plot, show in Fig. 2, shows that
additional containers improve overall throughput.We see that both
ExifTool and Bulk Extractor scale very well; and, while the deep
neural-network powered OpenNSFW shows a smaller rate of
throughput per container, throughput does increase. On the other
hand, Apache Tika throughput grows much slower - suggesting a
less scalable computation. The primary takeaway is that, with the
SCARF architecture, we can add as many containers as the under-
lying hardware allows, the primary constraint being the number of
CPUs. In other words, we can easily apply increasing amounts of
hardware to combat the ever-increasing amount of volume present
in a forensic investigation.

Updated benchmarks and user interface

In addition to the full suite of benchmark on our legacy cluster,
we also performed a few preliminary benchmarks on a brand new
(not fully in production) cluster. We wanted to gain preliminary
insight into which tasks could be run a line speed just by updating
the hardware, and which ones are likely to need more careful
optimization.

We chose an intermediate case by deploying 64 containers on a
four-node cluster with 256RAM per node. The biggest speedup was
observed for ExifTool, from 151 to 433 MB/s, or 2.87 times; Tika

showed an 80% improvement in throughput, while OpenNSFW
improved by 64%.

At this early stage, the user interface is fairly simple and consists
of interface with the ability to filter and drill down to the individual
record. This is clearly not enough for a production tool; we believe
that there is substantial room for improvement in the user interface
of forensic environments, and that is a subject that deserves its own
research effort and evaluation.

We have omitted a discussion on the built-in facilities of Docker
and ES to monitor the performance and deal with errors and fail-
ures. These are important, but are only an existing generic
administrative interface; what SCARF, and other platforms need,
are both more automated means to heal the system (based on
understanding the semantics of the data flows) and a better
interface that speaks to the forensic task being executed in domain-
specific terms.

Conclusion

In this exploratory work we have evaluated the idea using
automated container deployment and orchestration platforms to
achieve high performance digital forensics. Promising results show
that a distributed container-based approach is a viable infra-
structural foundation to address the increasing volume of data
involved in digital forensic investigations. Specifically, we showed
that even a modest four-node cluster can achieve very meaningful
throughput improvements out of the box. For example, 150 MB/s in
bulk_extractor processing, or 192 MB/s in ExifTool processing. More
importantly, most of the tasks tested are naturally data parallel and
show a linear, or near-linear, scale out behavior. This strongly im-
plies that a larger cluster of 20e40 nodes could perform most
current forensic processing at SSD I/O acquisition speeds
(500e1000 MB/s).

Equally importantly, we showed that containers are an excellent
building block for adding new processing functions to the envi-
ronment at a minimal cost. In particular, we used an off-the-shelf
container of a trained image classifier for adult content and incor-
porate it into the workflow with an hour's worth of work. Even
without any optimizations, the experimental cluster was able to
classify images at the rate of 3.3 million per 24 h (5.4 million on
newer hardware).

Table 6
Bulk extractor throughput vs. number of containers.

Containers 4 12 24 48 64 128

MB/s 3.5 17.9 22.7 54.8 59.4 151.5
MB/s per cont. 0.9 1.5 0.9 1.1 0.9 1.2

Table 7
ElasticSearch throughput in standalone and cluster configurations.

Containers 1 7

Records/s 1299 14,236

Fig. 2. Scalability of Forensic Tools using Containers.

C. Stelly, V. Roussev / Digital Investigation 22 (2017) S39eS47S46

The overall conclusion is that containers provide an effective
and efficient platform to address both data scalability and func-
tional extensibility for integrated digital forensic environments. We
are convinced that future extensions of this work, or similar efforts,
can completely change the approach to digital forensic in-
vestigations, and will provide the platform for the introduction of a
new generation of intelligent processing methods.

Future work

Apart from maturing the prototype used in this work, including
adding support for filesystems other than NTFS, there is a host
other immediate extensions we'd like to pursue. One of the most
exciting ones is experimenting with deployment on public cloud
providers like AWS, Azure, or Google Cloud. Containers are seen as
the replacement of many of the IaaS uses of full-stack VMs; all of
these providers (and others) have already announced various levels
of support for containers.

We would like to implement additional input and job modules.
The input module could range from FireWire or Direct Memory Ac-
cess (DMA) to input data over a wide area network. Additional
functional module of interest includes various approximate
matching, image analysis, and machine learning algorithms.

Containers can greatly improve the reproducibility of tool
testing; indeed, even the current version of SCARF provides all the
ingredients with persistent logging of tasks and results.

References

Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J., 2016. Borg, omega, and
kubernetes. ACMQueue 14, 70e93. http://queue.acm.org/detail.cfm?id¼2898444.

Carrier, B. The Sleuthkit (tsk) and Autopsy: Open Source Digital Forensics Tools.
http://sleuthkit.org.

Carrier, B., 2002. Open Source Digital Forensics Tools: the Legal Argument. http://
citeseerx.ist.psu.edu/viewdoc/download?doi¼10.1.1.581.
6818&rep¼rep1&type¼pdf.

Corbet, J., 2007. Notes From a Container. https://lwn.net/Articles/256389/.
Dean, J., Ghemawat, S., Jan. 2008. MapReduce: simplified data processing on large

clusters. Commun. ACM 51 (1), 107e113. http://dx.doi.org/10.1145/
1327452.1327492.

des Ligneris,B., 2005.Virtualizationof linuxbasedcomputers: the linux-vserverproject.
In: 19th International Symposium on High Performance Computing Systems and
Applications. HPCS, pp. 340e346. http://dx.doi.org/10.1109/HPCS.2005.59.

Garfinkel, S.L., 2013. Digital media triage with bulk data analysis and bulk_extractor.
J. Comput. Secur. 32, 56e72. http://dx.doi.org/10.1016/j.cose.2012.09.011.

Garfinkel, S., Farrell, P., Roussev, V., Dinolt, G., 2009. Bringing science to digital fo-
rensics with standardized forensic corpora. In: Proceedings of the Ninth Annual
Digital Forensic Research Conference. DFRWS, pp. S2eS11. http://dx.doi.org/
10.1016/j.diin.2009.06.016.

Harvey, P. ExifTool by Phil Harvey. http://www.sno.phy.queensu.ca/~phil/exiftool/.
Institute, N. F. Hansken, 2016. https://www.forensicinstitute.nl/products_and_

services/forensic_products/hansken.aspx.
Kamp, P.-H., Watson, R.N.M., 2000. Jails: confining the omnipotent root. In: Pro-

ceceedings of the Second International System Administration and Networking
Conference. SANE. http://citeseerx.ist.psu.edu/viewdoc/download?doi¼10.1.1.
118.3596&rep¼rep1&type¼pdf.

Linux 3.8, 2013. https://kernelnewbies.org/Linux_3.8.
LXC, 2008-17. Linux Containers. https://github.com/lxc/lxc.
Menage, P.B., 2007. Adding generic process containers to the Linux kernel. In:

Proceedings of the Ottawa Linux Symposium, pp. 45e58. https://www.kernel.
org/doc/ols/2007/ols2007v2-pages-45-58.pdf.

Merkel, D., 2014. Docker: lightweight linux containers for consistent development
and deployment. Linux J. 2014, 239.

NVM Express Workgroup, 2016. NVM Express, Revision 1.2.1. http://www.
nvmexpress.org/wp-content/uploads/NVM_Express_1_2_1_Gold_
20160603.pdf.

OpenVZ Virtuozzo Containers Wiki, 2016. OpenVZ History. https://openvz.org/
History.

Richard, G., Case, A., 2014. In lieu of swap: analyzing compressed ram in mac os x
and linux. In: Proceedings of the 14th Annual Digital Forensic Research Con-
ference. DFRWS. http://dx.doi.org/10.1016/j.diin.2014.05.011.

Richard, G., Roussev, V., Feb 2006. Next-generation digital forensics. Commun. ACM
49 (2), 76e80. http://dx.doi.org/10.1145/1113034.1113074.

Roussev, V., May 2011. Building open and scalable digital forensic tools. In: 2011
IEEE Sixth International Workshop on Systematic Approaches to Digital
Forensic Engineering (SADFE), pp. 1e6. http://dx.doi.org/10.1109/SADFE.2011.3.

Roussev, V., Richard, G., 2004. Breaking the performance wall: the case for
distributed digital forensics. In: Proceedings of the 2004 Digital Forensic
Research Workshop. DFRWS. http://citeseerx.ist.psu.edu/viewdoc/download?
doi¼10.1.1.115.8692&rep¼rep1&type¼pdf.

Roussev, V., Wang, L., Richard, G., Marziale, L., 2009. A Cloud Computing Platform
for Large-scale Forensic Computing. Springer, Berlin Heidelberg. http://
dx.doi.org/10.1007/978-3-642-04155-6_15.

Roussev, V., Quates, C., Martell, R., 2013. Real-time digital forensics and triage. Digit.
Investig. 10 (2), 158e167. http://dx.doi.org/10.1016/j.diin.2013.02.001.

Seagate Technology, 2016. Enterprise Capacity 3.5 HDD (Helium). http://www.
seagate.com/www-content/datasheets/pdfs/ent-cap-3-5-hdd-10tb-
channelDS1863-5C-1608US-en_US.pdf.

Stewart, J., 2012. Scalable forensics with TSK and Hadoop. In: Open Source Digital
Forensics Conference. OSDFCon. https://www.osdfcon.org/presentations/2012/
OSDF-2012-The-Sleuth-Kit-and-Apache-Hadoop-Jon-Stewart.pdf.

The Rekall Team. Rekall Memory Forensic Framework. http://www.rekall-forensic.
com/.

U.S. Department of Justice, Office of the inspector general, 2015. Audit of the Federal
Bureau of Investigation's Philadelphia Regional Computer Forensic Laboratory.
https://oig.justice.gov/reports/2015/a1514.pdf.

U.S. Department of Justice, Office of the Inspector General, 2016. Audit of the
Federal Bureau of Investigation's New Jersey Regional Computer Forensic Lab-
oratory. https://oig.justice.gov/reports/2016/a1611.pdf.

van Beek, H., van Eijk, E., van Baar, R., Ugen, M., Bodde, J., Siemelink, A., 2015. Digital
forensics as a service: game on. J. Digital Investig. 15, 20e38. http://dx.doi.org/
10.1016/j.diin.2015.07.004.

Volatility Foundation, 2007e2015. Volatility Framework. https://github.com/
volatilityfoundation/volatility/.

C. Stelly, V. Roussev / Digital Investigation 22 (2017) S39eS47 S47

	SCARF: A container-based approach to cloud-scale digital forensic processing
	Introduction
	Related work
	Containers
	Container management and orchestration
	Cluster management and orchestration

	SCARF
	Data ingest
	Architecture
	Task manager
	Data clients
	Workers
	Results repository: ElasticSearch

	Container management
	Extending SCARF
	Build an RPC wrapper
	Containerize the tool
	Invoke the tool

	Performance evaluation
	Processing rates
	Crypto hashing
	Metadata extraction
	Image classification
	Indexing common filetypes
	Bulk Extractor
	Indexing filesystem metadata

	Summary
	Updated benchmarks and user interface

	Conclusion
	Future work

	References

