
DIGITAL FORENSIC RESEARCH CONFERENCE

Automatic Classification of Object Code

Using Machine Learning

By

John Clemens

From the proceedings of

The Digital Forensic Research Conference

DFRWS 2015 USA

Philadelphia, PA (Aug 9th - 13th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics

research. Ever since it organized the first open workshop devoted to digital forensics

in 2001, DFRWS continues to bring academics and practitioners together in an

informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,

annual conferences and challenges to help drive the direction of research and

development.

http:/dfrws.org

DFRWS 2015 US

Automatic classification of object code using machine
learning

John Clemens a, b, *

a University of Maryland, Baltimore County (UMBC), Baltimore, MD, USA
b Johns Hopkins University Applied Physics Laboratory (JHU/APL), Laurel, MD, USA

Keywords:
Machine learning
Classification
Computer architecture
Malware analysis
Object code

a b s t r a c t

Recent research has repeatedly shown that machine learning techniques can be applied to
either whole files or file fragments to classify them for analysis. We build upon these
techniques to show that for samples of un-labeled compiled computer object code, one can
apply the same type of analysis to classify important aspects of the code, such as its target
architecture and endianess. We show that using simple byte-value histograms we retain
enough information about the opcodes within a sample to classify the target architecture
with high accuracy, and then discuss heuristic-based features that exploit information
within the operands to determine endianess. We introduce a dataset with over 16000 code
samples from 20 architectures and experimentally show that by using our features, clas-
sifiers can achieve very high accuracy with relatively small sample sizes.
© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access

articleunder theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Motivation

Digital forensics remains largely a manual process
requiring detailed and time consuming analysis by experts
within the field. In particular, the analysis of computer
executables, either for forensic analysis, reverse engineer-
ing, or malware detection, remains a time consuming task
as the level or expertise needed to understand compiled
object code is quite high. Additionally, the explosion of
different types of devices (cell phones, complex routers,
smart sensors, the internet of things (IoT)) means that ex-
perts are no longer dealing with just one computing ar-
chitecture, but instead are seeing a myriad of executable
code (firmware, mobile apps, etc.) traversing their net-
works and showing up in forensic and malware samples.
Even generic desktop workstations contain object code for
architectures other than the main CPU. These can include

GPU-enabled programs, firmware for network cards and
other devices which contain embedded CPUs (Blanco and
Eissler, 2012, Delugr!e, 2010), management co-processors
(Miller, 2011), and USB drivers for devices that contain
their own processors for services like data compression or
encryption. The object code for these devices is often stored
in files with non-standard headers or embedded inside
driver object files. Analysts are seeking tools to jump-start
the analysis process by automatically labeling unknown
samples.

Plenty of recent research has shown that raw byte fre-
quency analysis can be used to classify files and file frag-
ments. These analyses fall short in two areas when applied
to object code. First, by taking the entire sample into
consideration, they include file meta-data into their anal-
ysis. In many cases this is beneficial, but there are a few
cases where this might be a concern. For example, the
sample itself may be incomplete (a partial forensic disk
recovery or a partial packet capture), not trustworthy
(deliberate obfuscation by malware), or simply have no
meta-data (firmware, reverse engineering, raw instruction
traces from virtual machines). Ideally analysts want a

* University of Maryland, Baltimore County (UMBC), Baltimore, MD,
USA.

E-mail addresses: clemej1@umbc.edu, john.clemens@jhuapl.edu.

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

http://dx.doi.org/10.1016/j.diin.2015.05.007
1742-2876/© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Digital Investigation 14 (2015) S156eS162

classifier that relies solely on the object code itself, ignoring
any meta-data that may (or may not) be present. Secondly,
the analysis frommost previous work stops one level above
what we believe is possible. These systems will identify a
sample as containing object code, but won't give any more
information than a general file label. When possible, we
should label the sample with information about the type of
object code the sample contains.

We propose methods that apply machine learning
techniques to automatically classify an object code sample
with its target architecture and endianess. Such a system
automates the first phase of object code analysis, allowing
the analyst to jump directly to decoding the instructions
and determining intent.

The rest of this paper is structured as follows: The next
sub-section discusses related research. In the Hypothesis
section we attempt to formalize the problem of archi-
tecture and endianess classification. Next we discusses
the intuition behind our proposed solutions, and then go
over our experimental design and results. We conclude
with a discussion of the results and potential follow-on
work.

Related research

Many systems exist to determine the type of binary code
a file may contain. The simplest systems rely solely on the
file name or file extension. However, most systems rely on
the contents of a “file header” at a known location within
the file (normally at the beginning) which includes meta-
data about what type of file it is, such as a document, pic-
ture, or executable. The UNIX file command uses a database
of “magic” values at known offsets within the file to classify
the file type. In the case of executables or other object code,
these file type (ELF, PE, etc.) headers contain fields with
information such as the target architecture, word size, and
endianess. Each of these systems uses some form of meta-
data (file header, signature, or filename) that may not be
available to an analyst.

McDaniel and Heydari (2003) were among the first to
propose using characteristics derived from the contents of
an entire file to do classification. They used byte-value
histograms as one of their representations and performed
statistical analysis to classify files. This inspired many more
researchers to use other methods including n-gram anal-
ysis and SVMs to tackle the same problem. Examples
include Fitzgerald et al. (2012), Li et al. (2010, 2005), and
Xie et al. (2013). Beebe et al. (2013) produced the Sceadan
tool which builds upon much of this earlier work. This line
of research has concentrated on differentiating diverse file
types from each other.

Relating specifically to architecture classification,
Chernov and Troshina (2012) attempt to automate the
analysis of customvirtual machines used bymalware. Their
system uses opcode frequency counts as part of their
analysis system to help defeat code obfuscation within the
custom virtual machine. Similarly, Rad et al. (2012) show
that opcode frequency code counts can be used to find
mutated forms of the same malware. They rely on knowl-
edge of the underlying physical system's opcodes as an
indicator of program similarity.

Sickendick (2013) describes a system for firmware
disassembly including file carving and architecture detec-
tion using machine learning. For architecture detection, he
adapts the method Kolter and Maloof (2006), used for
malware detection. The information gain for each byte
value 4-gram in the training set is calculated, and the top
500 4-grams are used as a feature vector for a DecisionTree
and an SVM classifier. This work is limited to four archi-
tectures common to SCADA devices and makes no attempt
to classify different endianess with the same architecture.

Binwalk (Heffner, 2010) is a popular firmware analysis
tool that includes two techniques to identify object code.
When run with the ‘-A’ option, Binwalk looks for archi-
tecture specific signatures indicative of object code.
Currently, Binwalk's architecture signature detection in-
cludes 33 signatures from 9 different architectures. How-
ever, Binwalk simply reports every place it finds a signature
and leaves it up to the user to make a classification decision
based upon that information. Binwalk also includes a ‘-Y’
option which will attempt to disassemble code fragments
using the Capstone (Anh (2014)) disassembly framework
configured for multiple architectures. Binwalk currently
supports 9 configurations of 4 unique architectures for
disassembly. Notably, both methods can potentially indi-
cate endianess as well as architecture.

Binwalk's methods are effective in a wide variety of use
cases, but are not without their limitations. Signature based
methods can lead to false positives if the byte signatures
are not unique when compared to other architectures. Ev-
idence of such collisions exists in the Binwalk code itself,
where a comment mentions that some 16-bit MIPS code
signatures are often detected in ARM Thumb code. Disas-
sembly of a fragment can also cause issues. There is at least
one case (i386 versus x86_64) where both architectures
could disassemble the same fragment of code without
error. Both techniques rely on previous knowledge of the
architecture, and in the case of active disassembly, com-
plete knowledge and support in a disassembler framework.
The technique presented in this paper takes a more holistic
approach, and is able to classify architectures, both virtual
and physical, for which there are samples, even if infor-
mation about the architecture is incomplete.

Problem

We aim to automatically classify two characteristics of
computer object code:

! Architecture: The unique encoding of the computer's
instructions.

! Endianess: The way the code expects multi-byte data to
be ordered when in memory.

Computer object code consists of a stream of machine
instructions encoded as a string of bytes. The instruction
stream is loaded into memory and stored in the native
endianess of the processor. The processor fetches in-
structions from the instruction stream inmemory, and then
decodes and executes them. Computers share the same
architecture if they use the same (or similar) encodings for

J. Clemens / Digital Investigation 14 (2015) S156eS162 S157

these machine instructions. The encoding of the in-
structions is referred to as an instruction set. Some archi-
tectures define fixed-length instruction encodings while
others define variable-length instruction encodings. This
makes it impossible to determine the boundaries of in-
structions within an instruction stream without knowing
the target architecture.

Machine instructions consist of two parts: the opcode
specifies which instruction the processor is to execute, and
operands which specify what data (or pointers to data)
that the instruction applies to. Opcodes are the byte rep-
resentation of the instruction and are specified by the ar-
chitecture. Operands can be many things including
encoded register values, memory locations, and direct data
values. While opcode encodings are unique to a specific
architecture, operands vary with the data and flow of the
particular program. To accurately classify the architecture,
one should isolate its opcodes.

Endianess refers to the way the architecture stores
multi-byte data in memory. There are two ways multi-byte
values may be encoded: least significant byte first (little
endian) or most significant byte first (big endian).1 Most
architectures define an endianess, so knowing the archi-
tecture automatically infers the endianess. However, some
architectures (e.g. MIPS, ARM, Power) can be configured to
use either endianess at runtime, and thus a proper classi-
fication must also determine the endianess of a sample for
those architectures.

Since endianess deals with the layout of data in mem-
ory, it is difficult to determine from a sample of object code
alone. However, operands may contain immediate values
and/or address values which are encoded in the native
endianess of the architecture when stored in memory or on
disk. Any system that classifies endianess from an in-
struction stream may be able to extract that information
from the portion of the object code used for operands.

Hypothesis

Previous research (McDaniel and Heydari, 2003) has
shown that byte-value histograms over an entire file can be
useful when classifying a file's type. We propose to apply
this same basic technique to the object code embedded
within a sample. We deliberately ignore the rest of the file
as it may contain meta-data that is either not present or not
trustworthy within a given scenario.

Examples from some known architecture encodings
gives us reason to believe that a byte-value histogram will
be useful for classification. The ‘amd64’ architecture is a 64-
bit extension of the ‘i386’ architecture, and uses a special
“prefix” byte for every instruction that uses 64-bit oper-
ands. This byte has the high 4-bit nibble set to b‘0100’ and
the lower four bits change depending on the rest of the
instruction. One would expect a byte-value histogram for a
sample from the amd64 architecture to contain many
values that start with ‘0x4’. ARM instruction encoding
specifies the upper 4 bits of each instruction start with

‘condition codes’. For most instructions, these are set to
b‘1110’, which means ‘always execute’. Therefore, one
would expect that a byte-value histogram for ARM systems
to contain many values that start with ‘0xE’. Intuitively, a
machine learning algorithm should be able to accurately
classify between these two architectures based solely on a
byte-value histogram.

More generally, in order for a byte-value histogram to be
useful for classifying object code, the uniqueness of the
architecture's opcodes must be preserved within the his-
togram. To demonstrate this is possible, we need an esti-
mation of how likely an opcode is to influence each byte
within the code section. We call this the opcode density of
the architecture, and it is calculated by the formula:

Opcode Density ¼
length of opcode

average instruction length

For fixed-length instruction set architectures, the in-
struction length is fixed (normally 32 or 64 bits depending
on the architecture's word size), and the opcode takes up
between 6 and 12 bits, depending on the instruction. To use
MIPS as an example, the instruction length is 4 bytes, and
the opcode is 6 bits long, for an opcode density of
approximately 19%. Practically, this means the first byte of
every instruction (one in four bytes) will have the opcode
encoded in its top 6 bits, heavily influencing its value.
Similar analysis can be carried out using the SPARC and
Alpha architectures, where the opcode is encoded in 8 bits,
and ARM (8-bit opcodes þ 4-bit condition codes). Even if
we assume that the operands in the object code are random
values, one can see that for fixed length instruction
encodings one in four byte-values within the object code
will be heavily influenced by the opcode value.

For variable length instruction sets the analysis is more
difficult, as we no longer know the ratio of opcodes to total
instruction length. Intel i386 opcodes have a minimum
length of one byte (but can be two or more). Blem et al.
(2013) show that on average, the i386 architecture for
general desktop workloads has an instruction length of 3.4
bytes. This means that even if we assume one-byte opc-
odes, our opcode density is approximately 30%, or at the
very least it is higher than most fixed-length instruction
encodings for a typical workload.

These rough calculations give us some confidence that a
byte-value histogram can preserve information about the
opcode encoding, and thus can be used for architecture
classification.

Endianess

Unfortunately, determining endianess is impossible
with a byte-value histogram alone. Determining endianess
requires byte adjacency information, and adjacency infor-
mation is lost in the conversion to the histogram. Therefore,
in order to determine endianess, we need another set of
features that can preserve byte ordering information.

One approach would be to generate a 2-byte-value (bi-
gram) histogram. While this may encode adjacency infor-
mation, it would explode our feature space from 256 di-
mensions to 65536, adding a large amount of

1 There is also “mixed endian”, but that is no longer inwide use and not
considered for this analysis.

J. Clemens / Digital Investigation 14 (2015) S156eS162S158

computational complexity. Also, despite the intuition, our
experiments show that this approach is not useful for
determining endianess.

In the previous analysis we treated the operands for a
sample as random noise. While convenient for that anal-
ysis, at least some instructions encode ‘immediate’ data
within their operands. These operands are stored in the
object code in native-endian format. We aim to exploit this
information to determine endianess using a small set of
heuristics.

On machines without an increment instruction, one
common operation when incrementing by a small value is
to use an add instruction with an immediate operand of 1.
On big endian machines, one is encoded in 32 bit as
0$00000001, while on little endian machines it is encoded
as 0$01000000. This provides us with a heuristic: if we
scan the object code for the 2-byte strings ‘0$0100’ and
‘0$0001’, then the latter should occur more often in little
endian samples and the former should occur more often in
big endian samples. This could be repeated for other small
values. Another common immediate value encoded in op-
erands are addresses. Some addresses, typically for stack
values, are high up in the address space and start with
values like 0xfffe. Again, these addresses are stored differ-
ently on big endian versus little endian machines, and a
scan for both values 0xfffe and 0xfeff can be used as
another indicator of endianess.

We propose to use these four heuristically derived 2-
byte frequency counts (‘0xfffe’,‘0xfeff’,‘0x0001’,‘0x0100’)
as four new “endian” features to augment the byte-value
histogram, as shown in Fig. 1. We demonstrate that these
features add the ability to predict endianess with minimal
computational overhead.

Experiments

We tested the theory that our features are sufficient to
classify architecture and endianess by creating a dataset of
sample object code, generating the representative feature
vectors, and then training machine learning models using
our features.

Dataset

The Linux operating system has been ported to many
different architectures since its inception, and provides a
rich starting point for our dataset. A typical distribution
installs anywhere from 600 to 1300 files that contain
compiled object code for the supported architectures. A
large number of our samples come from the Debian Linux
distribution for different architectures. To augment the
dataset beyond what is available within Linux systems, we
collected samples of Arduino code that targets the AVR line

of 8-bit micro-controllers as well as CUDA samples that
target the nVidia line of GPUs. All sample files in this data
set are ELF files, and object code identified by using the
PyBDF (Russ and Muniz (2013)) library to parse ELF section
information.

A summary of the resulting dataset with samples from
20 different architectures is shown in Table 1. Of particular
interest to endianess classification is the inclusion of ‘mips’
and ‘mipsel’ as two different classes. As both classes use the
exact same opcodes, the only difference between the
samples is the endianess of values within their operands.

As with all datasets, this one could be improved. All
samples except the CUDA samples are compiled with GCC.
A different compiler might use a different mix of opcodes
and thus have a different signature. Additionally, there are
many more 8 and 16-bit architectures than what are rep-
resented here. We hope to augment this dataset over time
to add more diversity among the samples.

Feature generation

As described above, we will use a feature vector that
contains a byte-value histogram of the code section
augmented with four additional counts of specific values
we will look for to indicate endianess. The layout of the
feature vector is shown in Fig. 1.

When preparing the samples, we can choose to have
one feature vector per sample file, or we can choose to
extract the code from each file into one big pool and draw
equal-sized samples from the global pool. The latter
approach might be beneficial to avoid an issue where an
individual file's code sections are tiny, and thus has mostly
zero values in its histogram. However, the approach of one-
sample-per-file is a more realistic scenario in the field. For
this paper, one feature vector is generated per sample file.

Fig. 1. Layout of the full 260-dimension feature vector.

Table 1
Dataset statistics for all 20 architectures. Note that these reflect the
samples that are in the dataset, not the full capabilities of the architecture.
For example, there can be HPPA systems that are 64-bit, and ARM, MIPS,
and PowerPC can all be configured as either little endian or big endian.

Architecture # Samples Wordsize Endianess

alpha 1383 64-bit Big
hppa 625 32-bit Big
m68k 1296 32-bit Big
arm64 1134 64-bit Little
ppc64 823 64-bit Big
sh4 822 32-bit Little
sparc64 752 64-bit Big
amd64 965 64-bit Little
armel 960 32-bit Little
armhf 960 32-bit Little
i386 967 32-bit Little
ia64 650 64-bit Little
mips 960 32-bit Big
mipsel 960 32-bit Little
powerpc 992 32-bit Big
s390 649 32-bit Big
s390x 653 64-bit Big
sparc 648 32-bit Big
cuda 17 32-bit Little
avr 596 8-bit Little
Total 16,785

J. Clemens / Digital Investigation 14 (2015) S156eS162 S159

The byte-value histogram is generated by scanning
every sample file for all sections labeled as executable code,
and then reading those sections one byte at a time to
generate our byte-value histogram. When the entire file
has been processed, the histogram values are normalized
by dividing each value by the number of bytes of code
within that file. These make up the first 256 entries in the
feature vector. The four additional endianess values are
calculated by a linear scan of each code section for the
specific two-byte values. These counts are normalized over
the size of the code sections within the file as well. All parts
of the file that do not contain object code, as defined by the
ELF section's CODE flag (or, in the case of CUDA code, an ELF
section named .nv_fatbin), are explicitly excluded from the
feature vectors.

In addition to generating samples that use the entire
code section within the sample file, we also want to test
against object code fragments of varying size. To generate
those feature vectors, the same procedure is followed
except that the byte values are taken as a random sampling
of the code bytes up to the desired size (or the end of the

code section). Random sampling removes any bias that may
present itself by continuously using the beginning of each
code section. For these feature vectors, the endian feature
counts are also generated using random 2-byte sampling of
N offsets within the code section, where N is the maximum
size of the sample. The appropriate feature count is incre-
mented if the random 2-byte sample matches one of the
specific 2-byte values we're searching for. These counts are
also normalized to the number of code bytes used within
the sample.

To test the effectiveness of 2-byte bi-grams, we generate
64k-entry feature vectors for the ‘mips’, and ‘mipsel’ clas-
ses. We can then compare the results when using this data
subset to the overall results using our four endian features.

Results

We used the generated feature vectors to train a set of
common multi-class classifiers available in WEKA (Hall
et al. (2009)). The models chosen are inherently multi-
class, with the exception of the SVM (SMO) model which
uses a series of 1-versus-1 comparisons to choose the final
class. The results are summarized in Table 2 which shows
the 10-fold stratified cross validation accuracy for the
chosen classifiers. Of note, the linear-based classifiers (Lo-
gistic Regression, SVM) and the Decision Tree seem to have
the greatest accuracy, but all classifiers do very well. This
clearly shows that there is enough unique information
about the architecture exposed within the byte histogram
to accurately classify object code in nearly all instances.

Table 3 shows the F-Measure values broken down by
class for the Logistic Regression classifier. F-Measure is the
harmonic mean of Precision and Recall. Higher F-Measure
values indicate better classification performance, and a
value of 1.0 would be perfect classification. The chart shows

Table 2
10-fold stratified cross validation accuracy for variousmodels using the byte-value histogram alone, and the byte-value histogram augmentedwith heuristic-
based endianess attributes.

Trained model Multi-class Strategy WEKA name Histogram Hist þ Endian

1-NN Inherent IBk 89.3238% 92.7256%
3-NN Inherent IBk 89.8660% 94.9002%
Decision Tree Inherent J48 93.2976% 98.0697%
Random Tree Inherent RandomTree 87.8046% 92.9461%
Random Forest Inherent RandomForest 90.4617% 96.4373%
Naive Bayes Inherent NaiveBayes 92.5827% 95.8951%
BayesNet Inherent BayesNet 89.5144% 92.2252%
SVM (SMO) 1-vs-1 SMO 92.7256% 98.3497%
Logistic Regression Inherent SimpleLogistic 93.0831% 97.9386%
Neural Net Inherent MultilayerPerceptron 94.0244% 97.9565%

Table 3
Resulting per-class F-Measure for the Logistic Regression model. Note the
increase in score for the mips and mipsel targets with the addition of
endian features. Other models show a similar pattern.

Architecture F-measure

Histogram Hist þ Endian

alpha 0.992 0.997
hppa 0.994 0.993
m68k 0.995 0.993
arm64 0.987 0.994
ppc64 0.995 0.996
sh4 0.993 0.993
sparc64 0.987 0.993
amd64 0.987 0.990
armel 0.998 0.998
armhf 0.994 0.996
i386 0.995 0.998
ia64 0.995 0.995
mips 0.472 0.884
mipsel 0.476 0.886
powerpc 0.990 0.989
s390 0.998 0.998
s390x 0.998 0.998
sparc 0.988 0.988
cuda 0.444 0.516
avr 0.926 0.936

Table 4
Comparison of the F-Measure results when using straight bi-grams over
the four heuristic endianess features proposed in this paper. The perfor-
mance of the classifier when using the proposed features is significantly
better while being less computationally expensive.

Trained model 64k Bi-grams Hist þ Endian

mips mipsel mips mipsel

Random Forest 0.530 0.453 0.721 0.681
Decision Tree 0.477 0.476 0.897 0.897

J. Clemens / Digital Investigation 14 (2015) S156eS162S160

that the majority of the classification errors are caused in
the ‘mips’ and ‘mipsel’ classes when we do not include our
four endianess features and rely solely on the byte histo-
gram. The dramatic improvement in F-Measure with these
features shows that they are indeed useful heuristics for
determining endianess. Note that CUDA F-Measure scores
suffer from the small number of CUDA samples available
within the dataset.

These classifiers are mostly trained with their default
parameters. One notable exception to this is the Neural
Network classifier, which suffers from overfitting when
adding the endian features with the default network
structure of 260 $ 140 $ 20. A partial grid search over the
number of epochs and the number of hidden nodes suggest
a network configuration of 260 $ 66 $ 20 with 100 epochs
results in performance in line with the other classifiers. See
Table 5 for the full breakdown of all parameters used to

generate these results. Parameters for each classifier could
undoubtedly be tuned further for even greater classifica-
tion performance.

Finally, Table 4 shows the F-Measure of two models
classifying ‘mips’ versus ‘mipsel’ using a 64k bi-gram his-
togram versus our 260 feature byte histogram and endian
features. Surprisingly, the bi-gram encoding appears to
preserve much less endian information than our simpler
heuristic-based method despite the much higher compu-
tational overhead of its larger feature vector.

Sample size

The above results achieve high accuracy using the every
byte of object code available within each sample. Another
question is how large of a sample fragment do you need to
achieve high accuracy. This is a useful metric for analysts

Table 5
Full parameter list used for training each WEKA model. Deviations from the default values are marked in bold.

Trained Model WEKA name Parameters

1-NN IBk -K 1 -W 0 -A “weka.core.neighboursearch.-LinearNNSearch -A “weka.core.-EuclideanDistance -R first-last””
3-NN IBk -K 3 -W 0 -A “weka.core.neighboursearch.-LinearNNSearch -A “weka.core.-EuclideanDistance -R first-last””
Decision Tree J48 -C 0.25 -M 2
Random Tree RandomTree -K 0 -M 1.0 -V 0.001 -S 1
Random Forest RandomForest -I 100 -K 0 -S 1 -num-slots 1
Naive Bayes NaiveBayes N/A
BayesNet BayesNet -D -Q weka.classifiers.bayes.net.-search.local.K2 – -P 1

-S BAYES -E weka.classifiers.bayes.net.-estimate.SimpleEstimator – -A 0.5
SVM (SMO) SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K “weka.classifiers.functions.-supportVector.PolyKernel

-E 1.0 -C 250007”
Logistic

Regression
SimpleLogistic -I 0 -M 500 -H 50 -W 0.0

Neural Net MultilayerPerceptron -L 0.3 -M 0.2 -N 100 -V 0 -S 0 -E 20 -H 66

Fig. 2. 10-fold cross validation accuracy of the classifiers for different maximum sample sizes. Note that for both SVM and 1-NN, the accuracy approaches 90%
with only 16 bytes of sample data. By 8 KB, all classifiers are near or above 90% accuracy.

J. Clemens / Digital Investigation 14 (2015) S156eS162 S161

who often deal with incomplete fragments of samples. To
test this, we generate new feature vectors from our samples
using maximum sample sizes of four bytes up to one
megabyte using the random sample methodology
explained earlier. We then ran each of these size-based
feature sets through the models trained on the full-
sample instances. The results are summarized in Fig. 2.
These results show that for both the SVM and 1-NN clas-
sifiers, one can achieve very high accuracy even for tiny
amounts of sample data, and that by 8 KB, nearly all clas-
sifiers are above 90% accuracy.

Discussion and further work

We have shown that machine learning can be an
effective tool to classify the target architecture of object
code. As this method is independent of potentially
misleading meta-data, it provides both a way to verify
existing meta-data and a way forward when no meta-data
is present. We have developed heuristics that can be used
to predict the endianess of code. Of the classifiers tested,
SVM and nearest neighbor approaches appear to provide
good classification performance regardless of fragment
size.

Going forward, we would like to expand our current
architecture dataset to include a more varied sampling of
architectures. We intend to include more embedded plat-
forms, microcontroller code, and more GPU samples. We
will also include samples using different compilers than
GCC, including LLVM/Clang and Microsoft Visual Studio, to
make sure that different code generation engines do not
effect the overall classification performance.

In addition to expanding the dataset, wewill continue to
explore other areas to apply machine learning to binary
object code. Two interesting areas of research include code
attribution, and automated reverse engineering techniques
such as determining function boundaries. We feel that
machine learning could play an important role in
advancing these research areas.

Acknowledgments

The authors would like to thank Dr. Tim Oates of UMBC
for guidance on machine learning techniques, and Brad

Barrett and Charles Lepple of JHU/APL for discussion and
insight into previous research in this area. Additionally, we
would like to thank the reviewers for their comments and
help preparing this paper for publication.

References

Anh QN. Capstone: next generation disassembly framework. USA:
BlackHat; 2014.

Beebe N, Maddox L, Liu L, Sun M, Sept. Sceadan: using concatenated N-
gram vectors for improved file and data type classification. Inf Fo-
rensics Secur IEEE Trans 2013;8(9):1519e30.

Blanco A, Eissler M. One firmware to monitor em all. Ekoparty. 2012.
Blem E, Menon J, Sankaralingam K. A detailed analysis of contemporary

ARM and x86 architectures. Tech. rep., UW-Madison. 2013.
Chernov A, Troshina K. Reverse engineering of binary programs for

custom virtual machines. Recon. 2012.
Delugr!e G. Closer to metal: reverse engineering the broadcom netext-

reme's firmware. Presented at Hack.lu. 2010.
Fitzgerald S, Mathews G, Morris C, Zhulyn O. Using NLP techniques for file

fragment classification. Digit Investig 2012;9:S44e9.
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The

WEKA data mining software: an update. SIGKDD Explor. Newsl
Nov. 2009;11(1):10e8. URL, http://doi.acm.org/10.1145/1656274.
1656278.

Heffner C. Binwalk firmware analysis tool. 2010. Accessed 09.04.15. URL,
http://binwalk.org/.

Kolter JZ, Maloof MA. Learning to detect and classify malicious execut-
ables in the wild. J Mach Learn Res 2006;7:2721e44.

Li Q, Ong AY, Suganthan PN, Thing VL. A novel support vector machine
approach to high entropy data fragment classification. In: SAISMC;
2010. p. 236e47.

Li W-J, Wang K, Stolfo S, Herzog B. Fileprints: identifying file types by
N-gram analysis. In: Information Assurance Workshop, 2005. IAW
’05. Proceedings from the Sixth Annual IEEE SMC; June 2005.
p. 64e71.

McDaniel M, Heydari MH. Content based file type detection algorithms.
In: System Sciences, 2003. Proceedings of the 36th Annual Hawaii
International Conference on. IEEE; 2003. 10 pp.

Miller C. Battery firmware hacking: Inside the innards of a smart battery.
Tech. rep., Accuvant Labs. 07 2011.

Rad BB, Masrom M, Ibrahim S. Opcodes histogram for classifying meta-
morphic portable executables malware. In: e-Learning and e-Tech-
nologies in Education (ICEEE), 2012 International Conference on.
IEEE; 2012. p. 209e13.

Russ F, Muniz S. A python interface to the GNU binary file descriptor
(BFD) library. 2013. Accessed 09.04.15. URL, https://github.com/
Groundworkstech/pybfd.

Sickendick KA. File carving and malware identification algorithms
applied to firmware reverse engineering. Tech. rep., DTIC Document.
2013.

Xie H, Abdullah A, Sulaiman R. Byte frequency analysis descriptor with
spatial information for file fragment classification. In: Proceeding of
the International Conference on Artificial Intelligence in Computer
Science and ICT (AICS 2013); 2013.

J. Clemens / Digital Investigation 14 (2015) S156eS162S162

	Automatic classification of object code using machine learning
	Motivation
	Related research

	Problem
	Hypothesis
	Endianess

	Experiments
	Dataset
	Feature generation

	Results
	Sample size

	Discussion and further work
	Acknowledgments
	References

