
DIGITAL FORENSIC RESEARCH CONFERENCE

Capture: A Tool for Behavioral Analysis

of Applications and Documents

By

Christian Seifert, Ramon Steenson, Ian Welch, Peter

Komisarczuk, and Barbara Endicott-Popovsky

From the proceedings of

The Digital Forensic Research Conference

DFRWS 2007 USA

Pittsburgh, PA (Aug 13th - 15th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics

research. Ever since it organized the first open workshop devoted to digital forensics

in 2001, DFRWS continues to bring academics and practitioners together in an

informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,

annual conferences and challenges to help drive the direction of research and

development.

http:/dfrws.org

Capture – A behavioral analysis tool for applications and
documents

Christian Seiferta,*, Ramon Steensona, Ian Welcha, Peter Komisarczuka,
Barbara Endicott-Popovskyb

aSchool of Mathematics, Statistics and Computer Science – Te Kura Tatau, Victoria University of
Wellington – Te Whare W!ananga o te !Upoko o te Ika a M!aui, P.O. Box 600, Wellington 6140, New Zealand
bThe Information School, University of Washington, Box 352840, Seattle, WA 98195-2840, USA

Keywords:

Security

Forensics

Behavioral analysis

Application analysis

Document analysis

a b s t r a c t

In this paper, we present Capture, a tool for behavioral analysis of applications for the

Win32 operating system family. Capture is able to monitor the state of a system during

the execution of applications and processing of documents, which provides the analyst

with insights on how the software operates even if no source code is available. Capture dif-

fers from existing behavioral analysis tools in its ability to monitor state changes on a low

kernel level and its ability to be easily used across operating systems, various versions and

configurations. Capture provides a powerful mechanism to exclude event noise that natu-

rally occurs on an idle system or when using a specific application. This mechanism is fine-

grained and allows an analyst to take into account the process that causes the various state

changes. As a result, this mechanism even allows Capture to analyze the behavior of doc-

uments that execute within the context of an application. We demonstrate Capture’s capa-

bilities by analyzing a malicious Microsoft Word document.

» 2007 DFRWS. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Behavioral analysis is the process of reverse engineering the
inner workings of applications by examining their effects on
the system they operate in. Because source code is not always
readily available, behavioral analysis is the major technique
for determining what an application does and how it manipu-
lates data.

Behavioral analysis has long been used in the area of com-
puter security. Forrest et al. (1996) created system call finger-
prints of applications during normal operation for their
anomaly based intrusion detection system. These fingerprints
allowed them to detect attacks on these applications if

abnormal system call sequences were identified. Willems
et al. (2007) use behavioral analysis for automated analysis

of malware in a sandboxed environment. The generated re-
ports greatly simplify and automate the malware analysis
task and Symantec (2006) uses behavioral analysis for genera-
tion of heuristics of malware. The resulting reports are used to
generate heuristic detection mechanisms to identify the ana-
lyzed malware based on its behavioral characteristics.

In this paper, we present Capture – a behavioral analysis
tool for applications and documents. In Section 2, we describe
the difficulties behavioral analysis tools are faced with fol-
lowed by an analysis on how existing tools attempt to address
these difficulties in Section 3. In Section 4, we present our

* Corresponding author.
E-mail addresses: christian.seifert@mcs.vuw.ac.nz (C. Seifert), ramon.steenson@mcs.vuw.ac.nz (R. Steenson), ian.welch@mcs.

vuw.ac.nz (I. Welch), peter.komisarczuk@mcs.vuw.ac.nz (P. Komisarczuk), endicott@u.washington.edu (B. Endicott-Popovsky).

ava i lab le a t www.sc ienced i rec t . com

journa l homepage : www.e lsev ie r . com/ loca te /d i i n

1742-2876/$ – see front matter » 2007 DFRWS. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2007.06.003

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 2 3 Ð S 3 0

mailto:christian.seifert@mcs.vuw.ac.nz
mailto:ramon.steenson@mcs.vuw.ac.nz
mailto:ian.welch@mcs.vuw.ac.nz
mailto:ian.welch@mcs.vuw.ac.nz
mailto:peter.komisarczuk@mcs.vuw.ac.nz
mailto:endicott@u.washington.edu
http://www.elsevier.com/locate/diin

solution, the Capture tool and we describe its functionality

and technical aspects. And in Section 5, we present an exam-
ple of how Capture was used to analyze a malicious Microsoft
Word document. Last we conclude in Section 6.

2. Problem

To determine the behavior of software on a complex operating

system is a difficult endeavor. Many system events occur even
when an operating system is idle. Thousands of events are
generated that would overwhelm an analyst if one would sim-
ply ‘‘listen’’ to all events. On a clean, idle Windows XP SP2 in-
stallation, we observed 530 registry events and 60 file events
within 1 min. Even if an operator focuses on state change
events only, an overwhelming number of events are received:
log files are written, files are adjusted for optimization pur-
poses, etc. As processing components are added, such as
opening a document with an application, this noise increases
and it is difficult to decipher which events have been gener-

ated by the application as part of its normal operation and
which events have been caused by a document executing
within the client application. A tool that allows an analyst to
observe system state, therefore, needs to be able to report
on system events that are exclusively caused by the software
being observed. Because the analyst works on different envi-
ronments and configurations, the tool should be portable.

Once a tool captures the behavior of the software, there
should be a high level of confidence that the report it gener-
ates is correct. Malware, in particular, has a tendency to take
measures that avoid analysis. It, for example, encrypts its bi-

nary form to prevent static analysis. Behavioral analysis is
a technique that is harder to foil, but it is possible. If an appli-
cation manipulates the system using low level function calls,
behavioral analysis tools monitor high level function calls
which will fail to detect them and will not truly capture the be-
havior of the software. As a result, the monitoring of state
changes should occur on the lowest possible level.

Further, it is desirable that the tool itself has a level of
transparency that reveals its inner workings. Documentation
usually provides one level or transparency, but it needs to be
verifiable through inspection of the source code. As such, an

analysis tool should also provide its source code so that it
may be inspected, ensuring that the advertised functionality
is actually implemented by the tool on all levels.

We have reviewed a number of tools that can be used to
perform behavioral analysis: Sunbelt’s CWSandbox (Sunbelt,
2006), Microsoft’s Sysinternals (the old implementation as
well as Microsoft’s rewrite) (Microsoft Corporation, 2006a),
and the open-source software Winpooch (Blanchon, 2004).
Some of these tools have a different primary purpose, for ex-
ample Winpooch is designed to prevent malware infections,
but all share the functionality of capturing behavior of an ap-
plication and acting upon that information. As a behavioral

analysis tool, they do not fulfill the requirements of portabil-
ity, high confidence in the generated report, and transparency
as shown in Fig. 1. Either their state inspection mechanism is
not low level and therefore does not provide the necessary
confidence in the generated analysis report or the tools do
not provide the necessary portability due to technical or

functional aspects of the specific implementation. In Section

3, we review the various implementation techniques.

3. Background

In this section, we review the implementation aspects of anal-
ysis tools. We review several techniques on state monitoring
and aspects of portability that are used by behavioral analysis
tools today on the Win32 platform.

3.1. State monitoring techniques

First, we review three event-based techniques that allow be-
havioral tools to monitor system state changes: user level API
hooking, kernel level API hooking, and kernel level callbacks.

3.1.1. User level API hooking
User level API hooking is a technique that injects monitoring
code around shared, for example Win32 API, function calls
that an application utilizes (Ivanov, 2002). It changes the
pointers in a process address space that point to functions
and adjusts them to point to a user defined hook. The user de-
fined hook can manipulate and monitor the data. This tech-
nique only injects hooking code into the application that is
being executed, so no exclusion lists are necessary, because
the view of the monitoring code is naturally restricted to an
application of focus. This has some drawbacks. In particular,

applications that directly call the kernel and avoid using the
Win32 API cannot be monitored. This might be uncommon
for applications to do, but would reduce confidence in the gen-
erated report because one cannot discern whether such calls
have or have not occurred by examining the behavioral anal-
ysis report.

3.1.2. Kernel level API hooking
Kernel level API hooking uses a similar approach. However, in-
stead of injecting code into an application, kernel level API
hooking injects code into the kernel itself providing a system
wide view of state changes that is more difficult to circumvent

(Bassov, 2006). Modifications of the kernel in this manner are
now being discouraged by the vendor, as they can cause other
programs to crash or perform unexpectedly. Kernel level API
hooking is not portable across different versions of the operat-
ing system as hooked function calls are not a supported inter-
face and therefore are changing with each version.

Fig. 1 – Comparison matrix of fulfilled requirements.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 2 3 Ð S 3 0S24

3.1.3. Kernel callbacks
Instead of patching the kernel with kernel level API hooking,
Microsoft encourages the usage of callback functions (Field,
2006). Callback functions are publicly supported interfaces
on the kernel level that notify an application about state
changes on the system. These callbacks are designed with re-
liability and long-term supportability in mind allowing a mon-
itoring application to run on various versions of the Microsoft
Windows operation system without modification.

3.2. Portability

Second, we review implementation options around portability.

3.2.1. Code portability
As we have already mentioned above, certain state monitor-
ing techniques prevent portability of code across different
Win32 environments and configurations. While user level
API hooking is portable, kernel API hooking is not. If low level
system monitoring is required, the kernel level callback mech-
anism is the only portable solution.

3.2.2. Filtering mechanism
The monitoring application needs to be able to filter events
that occur naturally on the system so as not to overwhelm
the analyst with irrelevant events. The user level API hooking
has this sort of functionality already built in through its focus
on application events. System wide state monitoring as being
done by the kernel level technique requires a mechanism to
filter events after the events have been received by the moni-
toring application. An exclusion list or filter needs to be config-
urable and should be portable across instances of the
application. One should be able to import existing filters and
export created filters, so they can be reused across systems.

Fig. 2 shows a comparison of how the various tools realize
the requirements of the previous section. The three shaded
columns on the right indicate the desired implementation,
and no tool provides a desired state inspection mechanism
as well as portability of code and filtering mechanism.

4. Solution

Capture, the tool that we have created and present in this pa-
per, does fulfill all three requirements of high confidence in
the report, portability and transparency. Capture was origi-
nally designed as an open-source high interaction client hon-

eypot (Steenson and Seifert, 2006), but in stand-alone mode it

can also function as a behavioral analysis tool for software

running on the Win32 family of operating systems (Microsoft
Corporation, 1993) including the latest version of Windows
Vista. In this section, we describe the functionality of Capture
followed by a description of the technical aspects of the tool.

4.1. Functional description

Similarly to the other existing tools, Capture analyzes the

state of the operating system and applications that execute
on the system by monitoring the file system, the registry,
and process monitor and generating reports for any events re-
ceived by the three monitors. The three monitors are de-
scribed below:

! The file system monitor captures read or write events to all
mounted file systems as the events occur on the system, in-
cluding information about when the event occurred, the
event type (such as read and write), the process that trig-
gered this event, and the fully qualifying name of the file

or directory that was acted upon.
! The registry monitor captures a similar set of events, but fo-

cuses on the Windows Registry, which stores configuration
options of the operating system and installed applications
in a large construct of key/value pairs that are arranged in
five sections, or ‘‘hives,’’ and hierarchically in paths similar
to the file system. The registry monitor reports the time with
a resolution in milliseconds, the process that triggered the
registry event, the path to the key where the action oc-
curred, and the type of action performed on the key. Since
the Windows Registry allows the user to read and manipu-

late the key/value pairs, as well as to discover the content
of a particular registry path, more event types are captured
by the registry monitor, such as OpenKey, CreateKey, Close-
Key, EnumerateKey, EnumerateValKey, QueryValKey, Quer-
yKey, SetValKey, SetKey, DeleteValKey, and DeleteKey.

! The process monitor observes the creation and destruction of
processes, but does not report on already running processes.
With each event it captures the time, whether the process
was created or destructed, and the fully qualifying file
name that represents the process. In addition, the process
monitor captures the parent process, which assists in deter-

mining which process created or destructed the process that
caused the event to trigger. For example, when one double
clicks on an executable in Windows Explorer, Explorer is
the parent process.

Since normal events are constantly generated, portable ex-
clusion lists instruct the monitors to omit events from the fi-
nal report. There is one exclusion list for each monitor:
FileSystemMonitor.exl, RegistryMonitor.exl, and ProcessMo-
nitor.exl. The exclusion lists are simple text based files that
can be created once and moved around different environ-
ments and configurations. This allows the analyst community

to create a set of reusable exclusion lists that can be shared.
For example, one could create an exclusion list for an idle
Microsoft Windows XP SP2 system. Analysts can reuse this
list and customize it for their specific needs.

The default policy of the exclusion list is to report all
events. Each row within the exclusion list allows specificationFig. 2 – Comparison matrix of implementation aspects.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 2 3 Ð S 3 0 S25

of an exclusion list rule. A user can specify omission or inclu-
sion of events by event type and the object name. An omission

is denoted by a plus and an explicit inclusion by a minus sign
at the beginning of the rule. This allows one to omit a larger
group of events and then overwrite these settings for a subset
of events to be included. The exclusion list is processed in se-
quence to determine the final rules that should be applied.
Fig. 3 shows an example of a file monitor exclusion list. Lines
2 and 3 express that write events in C:\WIN\.* are omitted, but
that events in C: \WIN\sys\.* are reported.

By allowing the user to specify the process that caused the
event, the exclusion list is a powerful mechanism for partition-
ing the monitoring rules further. For example, one could specify

that BROWSER.EXE’s write access to its cache is not recorded,
but access to it by any other application is, as shown in line 4.

Each not-excluded event that is triggered during the execu-
tion of Capture is output into a report. The report includes the
name of the monitor and the event information described
above. The report is a simple comma separated value report.
An example of a report is shown in Fig. 4, which shows pro-
cess, registry, and file system events.

4.2. Technical description

Capture consists of two components, a set of kernel drivers
and a user space process (Fig. 5). The kernel drivers operate
in kernel space and use event-based detection mechanisms
for monitoring the system’s state changes that application
like Microsoft Word and Internet Explorer cause. The user

space process, which communicates with the kernel drivers,
filters the events based on the exclusion lists and outputs
the events into a report. Each component is written in unman-
aged C code, code that directly compiles into machine code,
and described in the following sections.

4.2.1. Kernel drivers
The Capture client uses kernel drivers to monitor the system
by using the existing kernel callback mechanism of the kernel
that notifies registered drivers when a certain event happens.
These callbacks invoke functions inside of a kernel driver and

pass the actual event information so that it can either be mod-
ified or, in Capture’s case, monitored. The following callback
functions are registered by Capture:

! CmRegistryCallback
! PsSetCreateProcessNotifyRoutine
! FilterLoad, FltRegisterFilter

The CmRegistryCallback function allows the registry mon-

itor driver to observe the Windows Registry. The Windows
Registry Manager invokes this function each time the registry
is modified. Since create and delete events can occur, the call-
back function is invoked before and after the event is commit-
ted to the registry, which allows Capture also to monitor
delete and creation events on the registry. The event contains
information such as the action that occurred on the registry,
the process that asked for this event to be carried out, as
well as a path to the event, such as a registry key.

The PsSetCreateProcessNotifyRoutine function allows the
process monitor driver to watch changes to running pro-

cesses. The Windows Process Manager invokes it each time
a process is created or terminated. The event data specify
what occurred to a process and the name of the actual process
that was operated on. It also contains the parent process that
requested the action to occur.

The last kernel driver, the file monitor driver, works slightly
differently. Instead of registering with a callback mechanism
on the kernel to receive events directly about the file system,
the file monitor driver is a minifilter driver that sits between
the I/O manager of the Windows kernel and the base file sys-
tem. A Windows Filter Manager manages these drivers and reg-

isters the callbacks to be called when a particular file event
happens. Capture uses the FilterLoad function to load the file
monitor minifilter driver with the Filter Manager. After it has
been loaded, the minifilter driver proceeds to register with
the Filter Manager on what events it wants to listen to. It is
then notified when a file is either read or written to. Again, in-
formation about the process that caused the event and the path
of the file is provided with the event.

When events are received inside the Capture kernel
drivers, they are queued waiting to be sent to the user space
component of the client. This is accomplished by passing

a user allocated buffer from user space into kernel space
where the kernel drivers then copy information into that
buffer, so the application can process it in user space.

4.2.2. User space process
The Capture process is an application that resides in user
space. It is responsible to load the drivers, process the events
received by the drivers and output the events to the report.

As mentioned above, the user space application, once it
has loaded the drivers, creates a buffer and passes it from
user space to the kernel drivers. Passing of the buffer occurs
via the Win32 API and the I/O Manager. The kernel drivers

copy the event data into the buffer, so the user level applica-
tion can process the events. Each event is serialized and com-
pared against the entries in the exclusion list. The exclusion
lists are built using regular expressions, which means event
exclusions can be grouped into one line. This functionality is
provided by the BoostT regex library. For each monitor, an ex-
clusion list is parsed and internally mapped between event
types and allowed regular expressions. If a received event is

Fig. 3 – Example of file exclusion list.

Fig. 4 – Example of report output.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 2 3 Ð S 3 0S26

included in the list, the event is dropped; otherwise, it is out-
put to the final report that Capture generates.

5. Results

To demonstrate the capabilities of Capture, we expose Cap-
ture to a malicious Microsoft Word document that exploits

vulnerability MS06-027 (Microsoft Corporation, 2006b). We
have chosen to analyze an Office document because it repre-
sents a more complex case in application analysis than the
mere analysis of a stand-alone executable. The Word docu-
ment will be executed within a legitimate application and
the analysis tool, as a result, is tasked to differentiate between
legitimate actions of the application and actions performed by
the malware document. This situation allows us to show the
power of Capture’s exclusion list and its system wide monitor-
ing mechanism.

The analysis is performed on a virtualized environment
that runs an unpatched Microsoft Windows XP SP2 installa-

tion with Microsoft Word 2003. Capture has been installed
on this machine and configured to exclude state changes
that occur during idle operation of the system, such as addi-
tion to log files, as well as during the legitimate operation of
the Microsoft Word application. These excluded events are
events that revolve around keeping backup copies of

documents, creation of document history, etc. The corre-
sponding exclusion lists are shown in Fig. 6 (the Microsoft
Windows XP SP2 exclusion list has been omitted because of
space limitations). With these exclusion lists, no events will
be reported when opening or closing an existing benign
Word document.

With this configuration, we proceed to open the malicious
Word document a1.do by double clicking on the document
from Windows Explorer. As expected, Word starts and at-

tempts to open the document, but shortly after our action,
Word crashes. After 30 s, we proceed to inspect the report pro-
duced by Capture. The formatted report is shown in Fig. 7. The
report shows that 14 unique unauthorized state changes oc-
curred. First, we observe that Microsoft Word writes a file
C:\WIN\sys\.exe and then proceeds to execute this newly writ-
ten out file. This newly created file and process are likely to be
the payload of the malicious Word document. From this point
forward, the Microsoft Word application is not involved in fur-
ther state changes, but rather the .exe payload takes over to
modify the registry and write additional files to the system.

Note that the information about the process that cause the
state change is helpful to follow the events that occurred.
Line 5 shows the malicious document we originally opened
is being written to a temporary file as well as a process called
WINWORD.exe as shown on line 6. WINWORD.exe is opened
in line 11 and proceeds to further modify the registry and

Fig. 5 – Capture architecture diagram.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 2 3 Ð S 3 0 S27

file system. It is expected that WINWORD.exe inserts itself
whenever the Microsoft Word application is executed, allow-
ing the malware to execute without raising suspicion.
Whether it exhibits viral behavior and replicates itself via
newly created documents or whether it exhibits spyware
qualities to collect information about the user and system re-
mains to be determined in further analysis, which is beyond
the scope of this paper.

As shown, Capture has successfully been used to deter-
mine the behavior of a malicious document. While further
manual analysis remains to be undertaken, the tool allowed

us to quickly assess whether the document was indeed mali-
cious. Such analysis could be done in an automated fashion
across a set of applications and documents. Capture also con-
veyed information about the state changes that occurred on
the system. Because the system is now contaminated with
malware, an analyst would have to proceed to an offline

analysis, but with the information provided in the report,
a good foundation has been laid for a speedy and comprehen-
sive offline analysis.

6. Conclusion

In this paper, we have presented Capture, an open-source tool
for behavioral analysis of software. We have presented the
functionality and technical details of this tool that fulfill the
needs of the analyst: (1) system state monitoring with high

confidence in the generated reports, (2) portability with a fu-
ture proof state monitoring technique and portable exclusion
lists, and (3) transparency through an open-source approach.

We presented a powerful portable exclusion list mechanism
that allows to omit noise that occurs naturally on a system.
With the power of regular expressions, the analysis is able

Fig. 6 – Microsoft Word exclusion lists.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 2 3 Ð S 3 0S28

to exclude groups of events on one line of the exclusion lists.
In addition, the mechanism is fine-grained allowing the ana-
lyst to exclude events on a process level. For example, we
have illustrated that it is possible to report on write events
to a browser cache by any application but the browser itself.

In Section 5, we have presented the feasibility of using Cap-
ture as a tool to analyze the behavior of a document executing
within the context of an application. We have opened a mali-

cious Microsoft Word file and observed its behavior on the sys-
tem. This example shows the power of the exclusion list that
assists in the analysis. While we opened a document with the
client application, Microsoft Word, we were not overwhelmed
by thousands of normal system events that occur upon such
action. Instead, the exclusion list allowed us to concentrate
on examining the behavior of the malicious document.

In future versions of the tool, we are planning to add addi-
tional capabilities around the level of information captured.
Currently, Capture only obtains identifying event information,
such as the name of the underlying object and the action that

was taken on the object. We are planning to capture the con-
tent of the state change itself, such as the registry key value
before and after the modification, and store it for later com-
parison. In addition, we are planning to extend the tool
around system state monitoring, such as monitoring of net-
work connections, that the tool currently does not support.

Capture relies on the kernel callback functions for its infor-
mation. There is the possibility for a malicious application to
modify the kernel and change the functionality of these call-
backs. We do not want to put the burden on Capture to deter-
mine whether the kernel is intact, because existing tools

already allow such an assessment. However, Capture should
have the capability to determine whether the kernel was
modified during the operation of the software that one would
like to analyze. A kernel integrity monitor would provide
such functionality and is a top priority for the next version of
the tool.

This current version of Capture can easily be detected by
software that might be running on the system. We are not
planning to introduce stealth capabilities to Capture, because
it would place Capture into the rootkit family necessitating
implementation techniques that are not portable, namely ker-
nel level API hooking. However, we are intending to imple-
ment capabilities that allow Capture to assess whether any
software attempts to determine Capture’s existence. If no

such attempts were made, one can be assured that the behav-
ior of the application was not altered because of the presence
of the Capture tool.

The Capture tool is open-source and available from our
web site at: http://www.nz-honeynet.org/capture-standalone.
html.

Acknowledgements

We would like to thank Manuel Fries from Rising Antivirus,
Ltd. in providing us with a malware sample that we used in
our sample analysis.

r e f e r e n c e s

Blanchon B. Winpooch watchdog. Available from: < http://
winpooch.free.fr> ; 2004 [accessed 15.03.07].

Bassov A. Hooking the kernel directly. Available from: < http://
www.codeproject.com/system/soviet_direct_hooking.asp> ;
2006 [accessed 10.11.06].

Forrest S, Hofmeyr SA, Somayaji A, Longstaff TA. A sense of self
for Unix processes. In: 1996 IEEE symposium on security and
privacy. Oakland: IEEE; 1996. p. 120–8.

Field S. An introduction to kernel patch protection. Available
from: < http://blogs.msdn.com/windowsvistasecurity/archive/
2006/08/11/695993.aspx> ; 2006 [accessed 15.03.07].

Fig. 7 – Capture report on execution of malicious Word document.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 2 3 Ð S 3 0 S29

http://www.nz-honeynet.org/capture-standalone.html
http://www.nz-honeynet.org/capture-standalone.html
http://winpooch.free.fr
http://winpooch.free.fr
http://www.codeproject.com/system/soviet_direct_hooking.asp
http://www.codeproject.com/system/soviet_direct_hooking.asp
http://blogs.msdn.com/windowsvistasecurity/archive/2006/08/11/695993.aspx
http://blogs.msdn.com/windowsvistasecurity/archive/2006/08/11/695993.aspx

Ivanov I. API hooking revealed. Available from: < http://www.
codeproject.com/system/hooksys.asp> ; 2002 [accessed 13.
03.06].

Microsoft Corporation. Windows Sysinternals. Available from:
< http://www.microsoft.com/technet/sysinternals/default.
mspx> ; 2006 [accessed 15.03.07].

Microsoft Corporation. Windows (32bit) home page; 1993.
Microsoft Corporation. Microsoft security bulletin MS06-027:

vulnerability in Microsoft Word could allow remote code
execution. Available from: < http://www.microsoft.com/
technet/security/bulletin/ms06-027.mspx> ; 2006 [accessed 05.
04.07].

Symantec. Understanding heuristics: symantec’s bloodhound
technology. Available from: < http://www.symantec.com/
avcenter/reference/heuristc.pdf> ; 1997 [accessed 25.06.06].

Sunbelt Software USA. Sunbelt CWSandbox. Available from:
< http://www.sunbelt-software.com/Developer/Sunbelt-
CWSandbox/> ; 2006 [accessed 15.03.07].

Steenson R, Seifert C. Capture – honeypot client. Available from:
< http://www.nz-honeynet.org/capture.html> ; 2006 [accessed
22.02.07].

Willems C, Holz T, Freiling F. Toward automated dynamic malware
analysis using CWSandbox. IEEE Secur Priv 2007;5(2):32–9.

Christian Seifert is a PhD candidate at Victoria University of
Wellington, New Zealand. He also leads the New Zealand Hon-
eynet Alliance, member organization of the internationally oper-
ating Honeynet Research Alliance that uses honeypots to attract,
track and study current and emerging security threats across
the Internet. Christian has an MS in Software Engineering with
a focus on computer security from Seattle University, WA. His
research interests include network security, honeypot technol-
ogy, in particular client honeypot technology, and malware
analysis.

Ramon Steenson is a software engineer working as a research as-
sistant at the University of Victoria in Wellington, New Zealand.
He has a Bachelor of Information Technology from that Univer-
sity. His interests include honeypot technologies, computer secu-
rity, and kernel development.

Ian Welch is currently a lecturer in the School of Mathematics,
Statistics and Computer Science at the University of Victoria
at Wellington, New Zealand. He has a PhD from the University of-
Newcastle upon Tyne (UK). His research interests include
intrusion detection, privacy-preserving auctions, community
informatics and the preservation of New Zealand-developed
computer games.

Peter Komisarczuk received his PhD from the University of Surrey
(UK) and is a senior lecturer at the University of Victoria in Wel-
lington New Zealand. He teaches Networking, Internet Technol-
ogy, Computer Architecture and coordinates student work
experience. His research interests include next generation net-
works, Internet architecture, grid computing and crosslayer and
location aided techniques in wireless networking.

Barbara Endicott-Popovsky has an MS in Information Systems En-
gineering and an MBA. She is completing her PhD in computer sci-
ence, focused on computer security/computer forensics, at the
University of Idaho’s NSA Center for Academic Excellence in In-
formation Assurance. As Director for the CIAC, an emerging Cen-
ter for Academic Excellence in Information Assurance, she is
responsible for guiding the research direction and developing an
information assurance curriculum. She has a joint faculty ap-
pointment with the Information School and the Computer Science
Department at the University of Washington at Tacoma. Her re-
search interests include forensic-ready networks and integrating
secure coding practices.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 2 3 Ð S 3 0S30

http://www.codeproject.com/system/hooksys.asp
http://www.codeproject.com/system/hooksys.asp
http://www.microsoft.com/technet/sysinternals/default.mspx
http://www.microsoft.com/technet/sysinternals/default.mspx
http://www.microsoft.com/technet/security/bulletin/ms06-027.mspx
http://www.microsoft.com/technet/security/bulletin/ms06-027.mspx
http://www.symantec.com/avcenter/reference/heuristc.pdf
http://www.symantec.com/avcenter/reference/heuristc.pdf
http://www.sunbelt-software.com/Developer/Sunbelt-CWSandbox/
http://www.sunbelt-software.com/Developer/Sunbelt-CWSandbox/
http://www.nz-honeynet.org/capture.html

	Capture - A behavioral analysis tool for applications and documents
	Introduction
	Problem
	Background
	State monitoring techniques
	User level API hooking
	Kernel level API hooking
	Kernel callbacks
	Portability
	Code portability
	Filtering mechanism

	Solution
	Functional description
	Technical description
	Kernel drivers
	User space process

	Results
	Conclusion
	Acknowledgements
	References

