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a b s t r a c t

In this paper we describe a method for recovering files mapped in memory and to link map-

ped-file information process data. This information is forensically interesting, because it

helps determine the origin and usage of the file and because it reduces the amount of

unidentified data in a memory dump. To find mapped-file content, we apply several differ-

ent techniques. Together, these techniques can identify approximately 25% of test memory

dumps as being part of a memory-mapped file.

ª 2008 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In 2005, when the Digital Forensic Research Workshop
(DFRWS) organized a memory challenge, contestants were en-
couraged to analyze the mechanics of the memory manager
implemented in Windows 2000 (http://dfrws.org/2005/chal
lenge/index.shtml). Before that time, physical memory of
a computer was mainly captured to retrieve strings, e.g. pass-

words, IP addresses or e-mail addresses (Carvey, 2007). Going
through these results manually is a tedious job; it is prefer-
able to have a tool that can automatically identify relevant
structures.

Modern Windows operating systems aggressively cache
file data in memory. We therefore expect that a large part of
the memory will be occupied by file data that is cached from
the hard drive. Current forensic tools and techniques, how-
ever, do not take mapped-file information into account. This
is unfortunate, because mapped-file information can be
exploited in several ways. First, this information tells us

something about the way a file was processed on a system.
Second, it can provide information about recent activities on
the system. Third, it helps reduce the amount of unidentified
data in a memory dump.

The remainder of this paper is structured as follows. Sec-
tion 2 describes file carving algorithms and the problems
that occur when carving for files in memory dumps. Section
3 discusses the memory structures involved in managing

mapped files. Section 4 explains the method developed for re-
covering mapped files from a memory dump. The next section
contains experiments conducted, followed by Section 6, the
related work. Section 7 shows the conclusions and the last
section describes possible future work.

2. File carving in memory dumps

A method often used for reconstructing files from an image is

carving. When carving for files, characteristic signatures are
used to identify the start of a file. A popular carving program
is Scalpel (http://www.digitalforensicssolutions.com/Scalpel/).
Scalpel uses a linear carving technique, which is effective
only for contiguous files. When a file is fragmented, linear
carving algorithms fail to reconstruct the file and the file
will be incomplete after the first fragment. Smart carving
algorithms may be able to recover fragmented files, as de-
scribed by Garfinkel (2007).

Unfortunately, carving is far less effective for recovering
files from memory dumps. Many operating systems, including

Windows, try to avoid fragmenting files on disk, which makes
linear carving relatively effective. Data in memory, however,
shows a high degree of fragmentation. We define a fragment
as consecutive blocks of data from a file that are in consecu-
tive pages of memory. It is possible for the memory manager
to load only parts of a file into memory. If a block from
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a memory-mapped file is not yet loaded into memory, this is

also defined as one fragment.
Fig. 1 shows the average number of fragments in memory

versus the number of blocks in a file. The data was gathered
by matching blocks from files on a hard drive with pages in
memory.1 As shown in the graph, the fragmentation of files
on the tested system approaches full fragmentation. This im-
plies that almost no files can be reconstructed using linear
carving methods. Even an algorithm that can recover frag-
mented files will fail to complete if a page is not yet loaded
into memory. The method presented in this paper overcomes
the need for file carving. This method interprets file-mapping

related structures for Windows to reconstruct the order of the
fragments. We are also able to link reconstructed files to the
processes that have these files in use.

3. Windows memory management

Just like a hard drive is divided into sectors, memory is divided
into pages. On Intel architectures a page consists of 4096 bytes
(4 K). A process is assigned pages through the memory man-
ager. It can then use these pages to store data required by
the process.

File mappings are administrated using a number of differ-
ent data structures. An overview of these structures is shown
in Fig. 2. These structures are allocated from memory pools. A

memory pool is a dynamic memory area allocated by the ker-
nel where it stores administrative structures. The type of
a pool structure can be determined through pool tag (Schuster,
2006), a four byte magic number (e.g. Proc, Obtb, and MmCa)
stored in the header of the structure.

Because we want to link mapped files to processes, the
memory pool structures that administrate processes (Betz,
http://dfrws.org/2005/challenge/betzReport.shtml; Garner,
http://dfrws.org/2005/challenge/RossettoeCioccolato-Respon-
ses.pdf) are a good starting point. The process structure is fur-
ther described by Schuster. The structure is identified via its

pool tag Proc and contains pointers towards the Virtual
Address Descriptor (VAD) Root (Dolan-Gavitt, 2007) and the
Object Table.

The VAD Root is the root of the VAD tree. The VAD tree de-
scribes memory ranges in use by a process and enables recon-
struction of a process his virtual address space. A node in this
tree can have a number of different pool tags, depending on
the type of Virtual Address Descriptor. Common tags are
VadS, Vad and VadL. The latter two objects contain pointers
to Control Areas, which are described below.

The Object Table is a list of private objects in use by a pro-
cess and is identified through pool tag Obtb. Besides pointers

to File objects (pool tag FILE), the Object Table also contains
pointers to other objects, like registry key objects (pool tag
Key) and event object (pool tag Evt).

The Control Area contains usage statistics of the mapped
file and pointers to a File object, Page Table (pool tag MmSt)
and Segment Object (pool tag MmSm). This object is identified
through pool tag MmCa. A similar structure is the Control

Area for Images (MmCi). The exact purpose of this structure
is not clear, but likely it is used for administrating a copy of

a number of pages from the data administrated by an MmCa
structure. An extension of the Control Area is the Segment Ob-
ject. This object contains, among other things, the file size of
the mapped file.

File objects have a pointer back to a Control Area and
a pointer to an Input/Output Name (pool tag IoNm), usually

Fig. 1 – Number of blocks in a file set off against the average
number of fragments per file in a memory dump. The
dotted line indicates fully fragmented files.

Fig. 2 – Overview of links between different memory
structures related to mapped files. Dashed lines indicate
pointers that are cleared when a process exits.

1 Matching was done by calculating MD5 hashes of blocks and
comparing the resulting hashes.
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the file name and path on the hard drive or removable storage

device. MmSt structures (Page Tables) contain lists of physical
addresses that point to the pages containing file data. A full
overview of pointers is shown in Fig. 2.

4. Mapped-file recovery

We have developed three methods for recovering files from
memory. These methods, and a prototype system that imple-
ments them, are described below.

4.1. Allocated file-mapping structures

Using the carving algorithm implemented by Schuster in
PTFinder we identify running, hidden and exited process
structures (pool tag Proc). The running and hidden processes
contain pointers to the VAD Root and Object Table. Processes
that have exited have these pointers set to 0. By walking the

VAD tree as described by Dolan-Gavitt (2007) we can identify
shared files. We will refer to this method as vadwalk. Shared
files are loaded by the kernel and can be accessed by any run-
ning process. By going through the Object Table it is possible
to reconstruct private files; files that can only be accessed by
the process that has mapped the file. This method will be
referred to as objecttables.

4.2. Unallocated file-mapping structures

When file handles are closed by processes, file data may still
be retained in memory. They cannot be linked to process

structures, because the pointers to the mapped-file structures
are set to zero when the handle is closed. This situation is sim-
ilar to traces left behind by deleted files on a file system. The
high degree of fragmentation of memory makes it harder to
reconstruct the logical order of the pages, so determining
this order by looking at the Page Table may make it possible
to reconstruct files. If the related Control Area is still present,
we can also link the file name to the file.

We can carve for the related structures of these files.
Closed files can sometimes be recovered by carving for Control
Area and Page Table structures (pool tags MmCa and MmSt).

The first structure can give detailed information about the
file like file name by linking to the IoNm (Input/Output
Name) structure. It also contains a pointer towards the Page
Table. Carving for Control Areas will be referred to as mmca/
mmci.

Because it is possible that a Page Table is still present in
memory after a Control Area has been overwritten, carving
for Page Tables may be useful. Once the order of the pages
has been reconstructed and the file extracted, it is sometimes
possible to determine the file type by looking at header infor-
mation. A commonly used tool for this is the Unix file

command.

4.3. Unidentified file pages

It is still possible that pages previously used for storing map-
ped-file data have no more structures pointing to them. The
file data is still present in the page and can be identified by

matching the MD5 hash of the data from the page with hashes

of 4 K blocks from files on the hard drive. Last blocks of files
are padded to 4 K (memory page size) with zeroes before
calculating the hash. Matching hashes is generic and does
not require knowledge about the structure of the memory.

There are reasons not to use this method sooner. First,
matching hashes requires access to the file system. Second,
this technique does not link information about processes to
files, and third, files that have been altered in memory will
not be recognized.

4.4. Prototype implementation

Based on PTFinder and VADTools we have implemented a pro-
totype program. This program currently supports memory
dumps from Windows XP SP2 systems. However, minor alter-
ations should provide support for other versions of Windows
NT kernel based operating systems.

There are two types of output from the tool. First the tool
writes the reconstructed files to an output folder, maintaining
the directory structure as retrieved from the memory dump.
Second, the tool creates an XML file that contains information
per page. The XML document is designed to be plugged into
other systems, like XIRAF (Alink et al., 2006). The XML file
contains:

! Page information: page number, offset of the start and end
of the page.
! File information: file name, path and sequence number of

the page in the file.
! Process information: if a process can be linked to a page, the

Process Identified (PID) is added as an element. It is possible
to have multiple PIDs per page.
! Entropy: if no file can be linked to a page, the entropy is

calculated to indicate the type of data in the page.

5. Experiments

To evaluate the behaviour of memory mapped files and the re-
lated administrative structures, three different experiments
were conducted. The first experiment classifies the content

of the mapped files. The second experiment evaluates the per-
formance of the different methods and the third experiment
looks at the relation between the time a system has been
running and the amount of pages that can be identified as
mapped files.

For the experiments around 90 different memory dumps
have been created. Each dump was made after performing
a variety of actions on the test system. These actions range
from installing software and running some common office ap-
plications to browsing the internet and instant messaging. All
memory dumps were created in a VMWare environment run-

ning Windows XP SP2 with 256 MB of memory, or, equiva-
lently, 65,536 pages of 4096 bytes.

5.1. Mapped-file content classification

Table 1 shows common file extensions of files found in three
different memory dumps. The first two images were used in
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the DFRWS 2005 challenge (http://dfrws.org/2005/challenge/
index.shtml). These were taken from a system running Win-

dows 2000 with 128 MB of memory. The last memory dump
was obtained from a system running Windows XP SP2 with
256 MB in a VMWare environment. This system was used for
browsing the internet.

DLL files (shared libraries under Windows) are the most
commonly identified file type. This is to be expected, because
these usually are loaded by the kernel and can be used by any
program for a range of common functions. The second most
occurring extension differs depending on the way a system
was used. The first system, which had been running for
some time, had a lot of .pnf files. These files are created

when an .inf file is run, most commonly during the installa-
tion of new software or hardware. On the second system,
executable (.exe) files occur the second most. On the third sys-
tem, the Windows XP machine, there are a lot of file types that
are usually found in the Temporary Internet Files, e.g. .gif, .jpg,
.htm and .js. The systems all have a number of .ttf files, True-
Type Fonts. The Windows 2000 systems also have .mmf files,
which in this case refers to files used by the installed McAfee
VirusScan.

5.2. Pages identified per method

It is interesting to know which method generally identifies the
largest number of pages. This experiment is based on the 90
memory dumps. The results are shown in Fig. 3.

The objecttables method results in the lowest number of
identified pages. This method identifies the private files of
a process which are not very common and only short-lived.
The vadwalk method results in more pages identified than
the previous method. This method identifies the shared files

loaded by the kernel and used by different processes. The
other two methods, mmca/mmci and mmst, carve the memory
dump for occurrences of these objects. These methods result
in the largest number of identified pages, because these ob-
jects are linked by both the Object Tables and the VAD tree.
It also includes files that were previously in use but have

been released. Scanning for Page Tables (MmSt structures)
can yield more identified pages when the control structure

(MmCa/MmCi) has been overwritten. It can also result in
fewer identified pages because the carving algorithm for
Page Tables is fairly conservative.

From Fig. 3, it follows that the average number of pages
that can be identified using MmSt carving is approximately
25% of the data. Only the VAD Walk and Object Tables
methods link process information. These combined methods
link approximately 40% of the total identified pages to the
related process or processes.

5.3. Uptime versus number of pages identified

In this experiment we determined the number of pages we

were able to identify with varying uptimes of a system. Be-
cause processes are started and pages are filled with data,
the expectation is that a longer uptime will result in fewer
pages identified.

Fig. 4 shows the total number of pages identified and the
number of empty pages in the image, versus the uptime of
the system. We have defined a page as identified if either
the page is empty or the contents of the page are found to
be part of a mapped file by one of the proposed methods.

Table 1 – Common extensions on several memory dumps

DFRWS 2005 – 1 DFRWS 2005 – 2 Windows XP 256 MB

.dll 202 .dll 211 .dll 298

.pnf 82 .exe 28 .gif 86

.exe 29 .mmf 11 .ttf 52

.mmf 11 .ttf 8 .ini 31

.png 11 .log 5 .jpg 30

.nls 9 .nls 5 .htm 29

.ttf 9 3 .exe 27
8 .dat 3 22

.log 7 .evt 3 .png 22

.dat 4 .drv 3 .js 20

.sys 3 .fon 2 .css 17

.evt 3 .lmd 2 .lnk 15

.drv 3 .png 2 .dat 14

.apo 3 .apo 2 .txt 14

.lmd 2 Other 11 .nls 9

.ogg 2 Unknown 132 .acm 9
Other 11 .log 8
Unknown 272 Other 63

Fig. 3 – Pages identified per method, showing average,
minimum and maximum number of identified blocks per
method.

Fig. 4 – Uptime versus the number of pages identified.
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Empty pages are defined as having an entropy (measure of

randomness) lower than 0.5, which does not mean they are
unused, but indicates a low information density. The general
trend is that the longer the system is running, the fewer the
pages are identified. The reason for this is that when a system
has just booted a lot of pages are still empty. Soon after the
system has started, programs are started and more pages
are filled with data. The decline in total pages is smaller
than the number of empty pages, because these empty pages
are, among other things, filled with mapped files.

Two points in the graph have been marked. Mark 1 shows
a valley in the graph in both the number of empty pages and

number of identified pages. Just before the memory dump
was created, the Windows Firewall was disabled and Skype
was started. A possible explanation for this is that Skype en-
crypts its data in memory and decrypts it on the fly. Further
research is needed to explain the results. Mark 2 shows
a high number of total pages identified, but a low number of
empty pages. Just before this memory dump was created,
a dump of the physical memory was created and written to
the physical drive of the system. A possible explanation is
that this leads to many false positives, because the file con-
taining the memory dump is then used to identify pages by

matching 4 K hashes of data blocks from the file with pages
of memory. This also needs further research.

6. Related work

Our mapped-file recovery techniques build on previous work
by Schuster and Dolan-Gavitt (2007) We have implemented

Schuster’s algorithm for carving process structures. These
process structures are linked to Dolan-Gavitt’s method for
walking the VAD tree to be able to reconstruct shared files.

The two most successful approaches of the DFRWS 2005
memory challenge (http://dfrws.org/2005/challenge/betzRe
port.shtml; http://dfrws.org/2005/challenge/RossettoeCiocco
lato-Responses.pdf) use allocated process structures to recon-
struct the running process list and point out potentially harm-
ful intrusions. Schuster presented a method to locate these
process structures, including unallocated structures. This
made clear that information about processes that have exited

is not removed immediately from memory. Schuster (2006)
describes how pool allocations work and how to locate struc-
tures in memory pools. Memory pools were discussed in
Section 3.

Dolan-Gavitt (2007) introduced a method to walk the Vir-
tual Address Descriptor (VAD) tree. Also in 2007 AAron Wal-
ters and Nick Petroni released Volatility, a collection of tools
that provides insight into digital traces contained in a memory
dump. The main focus is offering a replacement for incident
response tools by retrieving relevant data from a memory
dump, e.g. system time and date and open file handles. It cur-
rently also supports the VAD Walk algorithm and carving for

process structures. Retrieving this information from a memory
dump reduces the intrusiveness of incident response tools.

Fragmentation of data in memory has not received a lot of
attention. For data on hard drives Garfinkel (2007) has
researched file fragmentation. His research shows that only
a fraction of the files on a hard drive is fragmented. This

may explain the limited attention for reconstructing frag-

mented files in research related to carving. Yet reconstructing
fragmented files is a necessity when searching for files in
memory due to the high degree of fragmentation.

7. Conclusions

As shown, it is possible to retrieve mapped files from memory.
From the memory dumps created for the experiments around
25% of the pages in the dump could be identified as part of
a mapped file. Of these identified pages approximately 40%
could be linked to the relating process or processes. Looking
at the different methods, the general trend is that the less in-
formation we want to link to a page, e.g. process information
or file name, the more pages can be identified. This is caused

by unallocated structures that can still be identified, but not
linked to other information in the memory dump.

By identifying mapped-file data in memory dumps and
linking this information to process structures we obtain infor-
mation about the origin and usage of a file. It also reduces the
amount of unknown data in a memory dump.

8. Future work

For future implementations it should be possible to add more
versions of Windows. Some small adjustments in the code
allowed the program to work with the Windows 2000 memory
dumps and we expect that similar adjustments should allow
for the program to work on Windows Vista memory dumps.

It may be possible to extend the tools to include the page
file. This way, pages that are swapped out can be added to
the analysis (Kornblum, 2007). Note, however, that Farmer
and Venema (2005) suggested it is unlikely to find mapped files
in the page file.

The MmCi structure is currently supported by our proto-
type. The structure is similar to the MmCa structure, however,
it is not entirely clear what the function of the structure is.
Further research into the structure may be needed to deter-
mine its function.
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