
lable at ScienceDirect

Forensic Science International: Digital Investigation 32 (2020) 300920
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2020 EU e Proceedings of the Seventh Annual DFRWS Europe
Artifacts for Detecting Timestamp Manipulation in NTFS on Windows
and Their Reliability

David Palmbach a, Frank Breitinger a, b, *

a Cyber Forensics Research and Education Group (UNHcFREG), Tagliatela College of Engineering, ECECS, University of New Haven, 300 Boston Post Rd., West
Haven, CT, 06516, USA
b Hilti Chair for Data and Application Security, Institute of Information Systems, University of Liechtenstein, Fürst-Franz-Josef-Strasse, 9490, Vaduz,
Liechtenstein
a r t i c l e i n f o

Article history:

Keywords:
Timestamp manipulation
Forgery
$Logfile

$USNJrnl

SetMACE
nTimestomp
Timestomping
Anti-forensics
* Corresponding author. Cyber Forensics Resea
(UNHcFREG), Tagliatela College of Engineering, ECEC
300 Boston Post Rd., West Haven, CT, 06516, USA.

E-mail addresses: DPalmbach@gmail.com (D. Palm
(F. Breitinger).

URL: http://www.FBreitinger.de

https://doi.org/10.1016/j.fsidi.2020.300920
2666-2817/© 2020 The Author(s). Published by Elsevie
).
a b s t r a c t

Timestamps have proven to be an expedient source of evidence for examiners in the reconstruction of
computer crimes. Consequently, active adversaries and malware have implemented timestomping
techniques (i.e., mechanisms to alter timestamps) to hide their traces. Previous research on detecting
timestamp manipulation primarily focused on two artifacts: the $MFT as well as the records in the
$LogFile. In this paper, we present a new use of four existing windows artifacts e the $USNjrnl, link
files, prefetch files, and Windows event logs e that can provide valuable information during in-
vestigations and diversify the artifacts available to examiners. These artifacts contain either information
about executed programs or additional timestamps which, when inconsistencies occur, can be used to
prove timestamp forgery. Furthermore, we examine the reliability of artifacts being used to detect
timestamp manipulation, i.e., testing their ability to retain information against users actively trying to
alter or delete them. Based on our findings we conclude that none of the artifacts analyzed can withstand
active exploitation.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As computer crimes become more prevalent and sophisticated,
forensic examiners rely heavily on meta-data such as timestamps
during their investigations (Buchholz and Spafford, 2004; Koen and
Olivier, 2008). Due to their importance, and the fact that it is
relatively easy to alter timestampswith current (open source) tools,
the reliability of this evidence has been repeatedly called into
question in the court of law (Hannon, 2018). The integrity of
timestamps has become an increasingly important issue, while on
the other hand detecting timestamp manipulation is not trivial.
Sophisticated groups and state actors commonly add timestomping
capabilities into their malware which is well-documented by
MITRE (b). Hacking groups such as the Lazarus group for North
Korea (Novetta, 2016), Fancy Bear for Russia (Alperovitch, 2016),
rch and Education Group
S, University of New Haven,

bach), Frank.Breitinger@uni.li

r Ltd. This is an open access article
Threat Group 3390 for China (Works, 2015), Copy Kittens for Iran
(Sky, 2017) and many more, have been documented using it.

Problem description. While practitioners are aware of the pos-
sibility of timestamp forgery, there is a limited amount of peer-
reviewed literature on detecting timestamp manipulation as well
as the reliability of the artifacts being used to accomplish that. If the
artifact that is being used to identify timestamp manipulation can
be manipulated itself (or deleted), then it becomes less valuable to
an examiner. For instance, Jang et al. (2016) found that it is not
possible to detect timestamp manipulation by only analyzing the
values in the $MFT and subsequent methods were needed. How-
ever, the authors limited their research to one additional source
(the $LogFile) to detect timestamp forgery. Thus, at the time of
writing this paper, the two primary sources of information used for
identifying timestamp manipulation are the $MFT and $LogFile.
This lack of diversity is a problem for practitioners as it is possible
for an active adversary to hide/obfuscate evidence on a system and
avoid detection. Lastly, there is also only a confined amount of
research on the timestomping tools currently available and
methods for detecting their use on a system.

Research Questions. These current challenges led us to the
following three research questions:
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:DPalmbach@gmail.com
mailto:Frank.Breitinger@uni.li
http://www.FBreitinger.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2020.300920&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2020.300920
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2020.300920

D. Palmbach, F. Breitinger / Forensic Science International: Digital Investigation 32 (2020) 300920S2
RQ1. What is the range of artifacts that can be used by exam-
iners to identify timestampmanipulation in NTFS onWindows?
RQ2. How reliable are the artifacts (i.e., resilient to obfuscation
or deletion) that are being used for timestamp manipulation
detection?
RQ3. Besides identifying timestamp manipulation directly, can
we detect the execution/presence of timestamp forgery tools?

Contribution. This paper has two major contributions. First, we
expand the list of known artifacts that can be used for timestamp
forgery detection. While existing literature mostly focused on the
$MFT and the $LogFile, we present a new use of four existing
windows artifacts/methods for detecting timestamp manipulation
in NTFS. Secondly, we analyze the reliability of those four artifacts
as well as the $LogFile, i.e., the possibilities to delete or obfuscate
them anyway. For testing, we ran several experiments using three
prominent timestomping tools: Timestomp, SetMACE, and nTi-
mestomp. Lastly, as a minor contribution, we highlight some pe-
culiarities for these tools as well as present methods to identify
their presence on a system.

Overview. The remainder of this paper is organized as follows:
The Background section provides basic information about NTFS,
timestamps, and timestomping tools. and is followed by the Pre-
vious work section. The apparatus and methodology of our exper-
iment will be discussed in Sec. 4. The core of this article is Sec. 5
which presents our findings organized by artifact. The last two
sections include the discussion and our conclusion.

2. Background

Before covering the various methods that can be used to identify
timestamp manipulation, there are several key concepts and terms
that the reader should become familiar with. In the following we
provide a brief summary of NTFS (New Technology File System), for
more details refer to Carrier (2005). A list of commonly used ac-
ronyms for this article can be seen in Table 1. Readers familiar with
NTFS (i.e., terminology and files related to timestamps) may skip
this section.

NTFS relies on the $MFT which is a database containing a
comprehensive list of all files and folders on the volume. It reserves
the first 16 entries for Windows system files which can be identi-
fied by the $ at the beginning of their names. They are protected
and hidden from the user by default (they are essential to the
Table 1
Summary of acronyms used throughout the article.

Acronym Actual file

SIA $STANDARD_INFORMATION attribute
FNA $FILE_NAME attribute
$MFT Master file table
LNK Link file
PF Prefetch file
$LogFile Log file
$USNjrnl $UsnJrnl:$J

MACE Modified, Accessed, Created, MFT Changed

Table 2
File system timestamps (MACE).

Timestamp Information

Last Modified When the file's contents were modified.
Last Accessed When the file was last accessed.
File Creation When the file was created, copied, or changed directories.
MFT Entry
Changed

When the file's $MFT record was updated.
operating system and are not intended to be altered by a user). Two
of these protected files, the $LogFile and the $USNjrnl, keep
track of changes made to files on the volume and can be valuable
sources of information for an examiner trying to detect timestamp
manipulation.

Each record in the $MFT contains several attributes that are used
to organize a file's content and meta-data. With respect to time-
stamps, there are two particular attributes that keep track of that
information for every file. The first is the $STAND-

ARD_INFORMATION attribute (SIA) which contains four unique
timestamps that we collectively refer to as MACE1 and are
described in Table 2. We will use an abbreviated writing to refer
particular changes, e.g., SIA-M represents the ‘last modified time-
stamp in the SIA. The second is the $FILE_NAME attribute (FNA)
which contains the name of the file, the name of the parent
directory, and has its own set of the MACE timestamps. The time-
stamps in the FNA only update when one of the other attributes
stored in the FNA is changed as well, such as the file name or its
location on the drive. Consequently, the $MFT stores eight different
timestamps for each file on the volume; four in the SIA and four in
the FNA. It is important to note that NTFS stores each timestamp as
a 64-bit value representing the number of nanoseconds that have
passed since January 1, 1601 UTC (Windows, 2018).
2.1. Modification of SIA/FNA

The findings on SIA/FNAmodification presented in the following
are based on analyzing the three tools e Timestomp, SetMACE, and
nTimestomp. We are currently not aware of any other open source
tools that can alter timestamps in NTFS. Note, we do not cover
external manipulation techniques (i.e., manipulating a hard drive of
a turned-off computer) or altering files not located on the system
drive.

To alter the four SIA timestamps, tools use the NtSe-

tInformationFile (API) which can access and write to all four of
them (Schicht, 2018; Lim, 2019; Microsoft, 2018c; Minnaard et al.,
2014). Specifically, the API allows a user to set any of the SIA
MACE values to a 64-bit value of their choice. For our experiment,
we assume that the user making the alterations to the timestamps
has a good understanding of NTFS timestamp rules2 and thus there
is no possibility to detect timestamp manipulation by only looking
at the timestomped values in SIA or FNA (e.g., setting the SIA-C to
01/01/1910 at 14:15 EST; or setting milliseconds to all 0).

The timestamps in the FNA are set to mirror the SIA timestamps
when the file is created and cannot be altered directly. However,
FNAvalues are updated tomirror the SIA values whenever the file is
renamed or changes location on the drive. Thus, Schicht (2014), the
author of SetMACE, uses a combination of SIA changes and moving
as depicted in Fig. 1 to get FNA updated: First the SIA timestamps
are altered, the file is moved to a different directory causing the
timestamps in the FNA to update and mirror the changes made to
the SIA. The file has to be timestomped again before being relocated
back to its original location because the FNA values will be updated
again. Finally, the files SIA values are timestomped one last time to
ensure they are set exactly how the user wants them. This method
allowed for the timestamps stored in the SIA and the FNA to be
modified with nanosecond precision making the detection of
timestamp manipulation in NTFS difficult.
1 Note, sometimes also referred to as MACb where b stands for birth.
2 Here a rule is a logical behavior of timestamps, e.g., “When the SIA-M time is

equal to the SIA-C time, the file has neither been modified nor copied from another
disk location. It is suggested that the file is still intact and has not been updated.”
(Chow et al., 2007).

Fig. 1. Process to modify FNA.

D. Palmbach, F. Breitinger / Forensic Science International: Digital Investigation 32 (2020) 300920 S3
Later, Schicht (2014) realized that this method may leave addi-
tional evidence behind on the system and thus rewrote SetMACE to
write directly to the system drive for versions 1.0.0.6 and newer.
However, Microsoft (2018a) patched this and currently direct ac-
cess to the system drive is no longer allowed. Hence, we went back
to SetMace 1.0.0.5 which uses the API allowing it to alter files on the
system drive.

Another method for altering timestamps is the GetFileTime

and SetFileTime commands. The GetFileTime command can
be used to retrieve the MACE timestamps of any file the malicious
user wants and then the SetFileTime command can be used to
copy them to any file. This method requires write access to the file
just as the NtSetInformationFile command does and it also
cannot alter the FNA timestamps (Carvey, 2014). The previously
discussed method for altering FNA values by changing the file's
directory should also work with these commands although we did
not test it.
2.2. Peculiarities of timestomping tools

The tools considered in this paper are: Timestomp, SetMACE,
and nTimestomp. The first two are very prominent and have been
used by various researchers/practitioners; nTimestompwas chosen
as it was only recently released on January 10, 2019 (Lim, 2019).

Timestomp: As mentioned, Windows stores timestamps in 64-
bit values which allow for nanosecond precision. Gungor (2014)
discovered that the tool Timestomp truncates the nanoseconds
value for the timestamps it alters. The last 7 digits in the timestamp
used to describe the nanoseconds are set to zero by the tool. Given
that a series of 7 zeros is extremely unlikely to happen, this can be
used as an indicator for timestamp manipulation. SetMACE and
nTimestomp both write to nanosecond precision and thus are
harder to detect.

SetMACE: Up until version 1.0.0.6, SetMACE used the Windows
API to alter the SIA timestamps and the previously described
method in Fig. 1 to update the FNA timestamps. The tool is capable
of changing the targeted timestamp to a 64-bit user defined value.
The newer versions stopped using the API and instead write
directly to the hard drive which was patched by Windows
3 At the time of writing this paper, the latest version is 1.0.0.16.
(discussed in Sec. 2.1). Consequently, the latest version3 will not
work on the newest Windows.

3. Previous work

Timestamps and their value for investigations have been dis-
cussed in literature, e.g., by Schatz et al. (2006). However, time-
stamp manipulation and its detection are not as well explored and
only few peer-research articles exist where most of the current
work focuses its efforts on the Master File Table ($MFT) and the
$LogFile.

3.1. Detecting manipulation with timestamp rules

A first approach was timestamp rules which may be used for
manipulation detection and can assist the reconstruction of events.
Chow et al. (2007) was one of the first to create a comprehensive
list of rules that could be used by examiners to identify specific
behavior in NTFS. For example, “when a large number of files with
‘close’ A times are found inside the hard drive, those files are likely
to be scanned by some tool, e.g. anti-virus software.” While their
research was not specifically aimed at identifying timestamp
manipulation, it set the foundation for future research. Bang et al.
(2009) furthered this research by additionally analyzing the SIA-E
times as well as utilizing FNA timestamps. The authors were able
to use these timestamp rules to identify malicious user behaviors,
i.e., hiding information by replacing a folder with another folder
that had the same name. Bang et al. (2011) also researched the
timestamp behavior of files and folders within various versions of
operating systems as well as the adding more timestamp rules. For
instance, a list of actions where the existing MACE times are
maintained and a list of actions where they are changed to the time
of the operation. While previous research had focused on using
timestamp rules to identify specific user actions, Ding and Zou
(2010) was the first to use these rules to identify timestamp
manipulation using a set of conditions such as: SIA-M should be
less than or equal to SIA-E, SIA-C should be less than or equal to
FNA-C, or SIA-C should be less than or equal to SIA-A. They were
able to prove timestamp manipulation in an example case by
comparing the values in the FNA to the values in the SIA and
identifying inconsistencies.

3.2. Detecting manipulation with the $LogFile

Due to the fact that timestomping tools and techniques are
capable of altering all eight timestamps in the $MFT with nano-
second precision, none of the aforementioned rules can be utilized
to identify timestamp manipulation (as long as an attacker fol-
lowed the rules) (Jang et al., 2016). However, timestamps before
and after any change are also stored in the $LogFile which can
support an analysis. To the best of our knowledge, Cho (2013) was
the first to utilize the $LogFile to detect timestampmanipulation.
The author discussed the $LogFile as a supplemental technique if
timestamp rules failed to detect forgery. In their example they
concluded that since the $LogFile did not contain any records for
the file's FNA, those timestamps were never updated. Conse-
quently, the relationship between the FNA times and SIA times now
did not satisfy basic timestamp rules and they were able to identify
the manipulation.

While that research was a major advancement, an even newer
and more comprehensive study was published by Jang et al. (2016).
The authors used several different timestomping tools to make
random time alterations to a large number of text files. Next, they
applied their rules (similar to the ones we discussed previously) to
identify timestamp manipulation but combined it with evidence

D. Palmbach, F. Breitinger / Forensic Science International: Digital Investigation 32 (2020) 300920S4
from the $LogFile. One limitation to their research was the fact
that they used randomized timestamps for their alterations which
often did not obey basic NTFS timestamp rules.

3.3. Other methods for detecting manipulation

Minnaard et al. (2014) discovered that the directory indices
stored timestamps did not update when a timestamp was altered
using direct disk access. They concluded that while there were
discrepancies initially, there was an error correction method in
Windows that later updated the value and fix the discrepancy. This
paper also discussed different methods used for timestamp
manipulation such as direct disk access and using theWindows API.

Freiling and H€osch (2018) conducted an experiment to show
how altering digital evidence without leaving traces is a difficult
task. While their research was not focused on the same artifacts we
used in our research, some of their conclusions can be directly
applied. For instance, they found that the removal of evidence can
complicate the analysis of a system greatly. Rather than altering the
artifacts, we found it easier to delete them or wipe their contents.
Additionally, the notion that there are many different ways to
identify if digital evidence was tampered with directly relates to
our conclusion that the more methods examiners have for identi-
fying timestamp manipulation, the greater the chance they will
succeed.

Willassen (2008) created a tool that was able to detect time-
stamp manipulation by comparing $MFT record numbers. Since
new $MFT records are placed in the first one hole on the table just
looking at record numbers wouldn't provide an accurate chrono-
logical ordering for when files were added. However, by using
generational markers the author's tool was able to detect time-
stamp manipulation. Unfortunately, we were not able to locate the
author's tool and there were not enough details in the paper to
accurately reproduce their results for our experiment. The four files
we tested in this experiment were in the following order based on
their $MFT record numbers T4, T1, T3, T2. Considering that T1 was
our test document and T2, T3, and T4 were all timestamped to the
same dates and times in that order, there is no logical correlation
between their order and when or if they were timestamped. While
we were not able to replicate their results this should still be
considered an additional method that could potentially be used to
identify timestamp manipulation.

Aside from analyzing the actual timestamps, there has also been
research and suggestions that the tools themselves leave valuable
artifacts behind as well. For instance, Geiger (2005) researched six
different anti-forensics tools such as CCLeaner. They concluded that
all of them failed to completely erase or hide evidence which may
be due to how complex operating systems have become. Hence, it
may be possible to find a program's presence in unallocated space
or other artifacts. Cowen (2013) suggested that evidence relating to
the tools being used could be found in PF files, LNKs, shell bags,
jump lists, and Windows registry most recently used. Furthermore,
they suggested comparing the creation times of LNKs to the crea-
tion times found in the $MFT but they failed to provide any
reasoning, rules, or examples. Gungor (2014) found flaws with the
timestomping tools themselves. For instance, Timestomp does not
Table 3
Alterations made to the test files for the experiment.

File name Original SIA-C Altered SIA-MAC

f_default.txt 03/01/2019 at 14:15 EST N/A
f_Timestomp.txt 03/01/2019 at 14:16 EST 03/01/2019 at 18
f_SetMACE.txt 03/01/2019 at 14:17 EST 03/01/2019 at 18
f_nTimestomp.txt 03/01/2019 at 14:18 EST 03/01/2019 at 18
modify the entire 64-bit time value used in NTFS and thus the
nanoseconds are all set to zero making the changes easy to identify.
Singh and Singh (2018) identified 9 different artifacts in NTFS that
can be used to identify program execution: PF files, LNKs, jump lists,
userassist, amcache.hve, iconcache.db, appcompatflags, appcom-
patcache, runMRU, and muicacheandSRUDB.dat. They further went
on to test anti-forensic tools that delete system data such as
CCleaner and were able to find evidence that all of the tools were
run on the system.
4. Apparatus and methodology

Before discussing the procedure of our experiments and howwe
were able to extract evidence, we list all software products
including their versions that were utilized:

� Autopsy 4.7.0
� Oracle VM VirtualBox 5.2.16
� Windows 10 Pro version 1803
� UsnJrnl2Csv 1.0.0.22
� NTFS LogFile Parser 2.0.0.46
� Event Log Explorer 5.0.1.4018
� FTK Imager 4.2.0.13
� Tableau 2018.2.0
� SetMace 1.0.0.5
� nTimestomp (x64) v1.1
� Timestomp

All images were captured with FTK Imager and processed in
Autopsy for further analysis (to extract specific files/artifacts).
Certain files needed to be extracted and parsed with other open
source tools such as UsnJrnl2Csv for the $USNjrnl or NTFS LogFile
Parser for the $LogFile. The resulting CSVs were then loaded into
Tableau which helped visualize the information.

We realize that there are a variety of tools that could be used to
parse specific artifacts fromNTFS but we chose these ones based on
availability, ease of use, and their good reputation. Another tool
worth mentioning that could be used to parse much of the same
data is Plaso's Log2Timeline (Metz, 2019). While we did not use this
tool in our experiment we believe it would be able to carvemuch of
the same information from a forensic image.

Test image. We started by creating a virtual machine in Virtual-
Box having a 40 GB fixed virtual hard drive. The operating system
used for our tests was Windows 10 (default installation). There
were no additional partitions set up for this test, only the system
volume. Four test files were created on the system named:
f_default.txt, f_Timestomp.txt, f_SetMACE.txt, and
f_nTimestomp.txt.

Procedure. Our experiment was done using the following five
basic steps; results are presented in the Experimental results
section:

I. Preparation: The aforementioned test image was booted,
and all three timestamp manipulation tools were installed.
Additionally, we enabled the $USNjrnl running the
E Time tool was run FNA altered?

N/A N/A
:31:58 EST 03/02/2019 at 14:58:23 No
:31:58:1234567 EST 03/02/2019 at 14:59:05 No
:31:58:1234567 EST 03/02/2019 at 15:00:13 Yes

Table 4
Prefetch files for timestomping tools and their run times.

File Time of program run

Timestomp.exe-C3A5003F.pf 03/02/2019 at 14:58:23
SetMace.exe-9AD6A728.pf 03/02/2019 at 14:59:06
nTimestomp.exe-295C9CCD.pf 03/02/2019 at 15:00:14
nTimestomp.exe-295C9CCD.pf 03/02/2019 at 15:00:41
nTimestomp.exe-295C9CCD.pf 03/02/2019 at 15:01:08

4 https://github.com/jschicht/LogFileParser (last accessed 2019-04-25).

D. Palmbach, F. Breitinger / Forensic Science International: Digital Investigation 32 (2020) 300920 S5
following command: fsutil USN createjournal

m ¼ 1000 a ¼ 100 c:.
II. Timestamp manipulation: Each tool was executed to

perform a timestampmanipulation on its corresponding test
file. An overview is provided in Table 3 where we list the test
files with their original SIA timestamps along with their
altered ones.

III. Evidence identification and extraction: After the files had
been manipulated, we imaged the virtual machine for
further analysis. We extracted the $LogFile, the $USNjrnl,
the Windows Event Logs, and any Prefetch files for the
timestomping tools for further analysis (the Link files were
examined in Autopsy). The extracted artifacts were further
analyzed using open source tools, which we will discuss in
Sec. 5.

IV. Evidence reliability testing: After further analysis the test
machine was booted up again and we attempted to delete all
of the evidence of timestamp manipulation on the device.
The objective was to test each of the artifacts we analyzed in
the previous step and test their reliability, i.e., can a sophis-
ticated attacker/malware tamper with or delete them.

V. Verification: To test these results and because deleting evi-
dence could produce new evidence, we repeated step 3 and
analyzed the system again.

Various snapshots were created throughout the experiment
which allowed us to analyze the impact of each step individually.

5. Experimental results

An essential aspect of our work was to find artifacts that have
not previously been used to identify timestamp manipulation in
NTFS. In the followingwe provide a summary of artifacts we used in
our experiment along with the results from our tests. Overall, we
probed the following five artifacts:

1. $LogFile
2. Prefetch Files
3. $USNjrnl
4. LNKs (Link files)
5. Windows event logs

While the above artifacts may be well-known within the
forensic community, to the best of our knowledge, there are no
proposed methods for using them to identify potential timestamp
forgery with the exception of the $LogFile. The upcoming sec-
tions discuss each of these artifacts where each section will first
explain the artifact itself followed by our experimental findings.
The last paragraph of each section outlines the artifacts reliability
and our methods for deleting or otherwise obfuscating the evi-
dence it contained.

Note, as will be shown in the corresponding data reliability
paragraphs, an active adversary may be able to falsify information.
However, we argue that all digital evidence can bemanipulated and
thus our results are still helpful for practitioners.

5.1. $LogFile

The $LogFile has previously been used for detecting time-
stamp manipulation which is summarized in Sec. 3.

The $LogFile is a Windows protected file and is the 3rd entry
in the $MFT (Schwarz, 2007). It keeps track of changes that are
made to files on the volume and was created to help the system
recover from an unexpected crash. The records are stored
sequentially where each entry is given a unique Log Sequence
Number (LSN) that is also stored in the related file's $MFT record.
Before anymeta-data changes for a file aremade, a record is created
in the $LogFile that details the upcomingmodification and stores
a copy of the original data. Thus, if the system crashes, it can be
reverted to a valid state. Otherwise, the $LogFile record gets
flagged as the change was successful (Carrier, 2005). In order for
this journaling method to be successful, it needs to record every
change that is made to a file which in turn creates a large number of
records. It is important to note that the $LogFile is circular,
meaning the oldest entries are overwritten by newer ones when
the file reaches its capacity (Polakovic, 2016). Its size varies based
on the size of the system volume but is typically 64 MB or less. That
means, it holds approximately between two to 3 h' worth of in-
formation with normal computer usage (Oh, 2013).

Findings. We extracted and analyzed the $LogFile from the
snapshots using autopsy and further parsed the file with the Log-
FileParser.4 Each $LogFile extracted was exactly 56,639,488 bytes
(56 MB) which coincides with the earlier statement that the file is
� 64 MB. The $LogFile (after running the programs) contained
records for each of the timestomping tools PF files, i.e., a timestamp
of when each tool was executed. We were also able to recover a
record for f_nTimestomp.txt that contained the file's time-
stamps from before and after they were altered. However, there
were no records for the f_Timestomp.txt or the f_SetMA-

CE.txt in the $LogFile in our test, likely due to the small file size.
Data reliability. The $LogFile is protected, always enabled, and

records every meta-data change on the system. While we did not
find any way to alter it directly, we were able to exploit the small
capacity and its circular storage behavior. For testing, we ran a
python script to flood the $LogFile with irrelevant information.
The script makes a temporary directory in a user-specified location
and then creates, modifies, reads, and deletes a file. In our experi-
ment 1000 iterationswere sufficient to produce an overflow (in fact
the first 202 were overwritten themselves). While this requires
using an additional script, it is an effectiveway to clear the contents
of the $LogFile. Alternatively, one can wait until the file is natu-
rally overwritten (see Sec. 5).
5.2. Prefetch files

PF files are created by the system whenever a program is
executed for the first time and are used to speed up future execu-
tions; every time a program is re-run, Windows attempts to locate
the associated prefetch file. The naming convention for PF files is
simple as it starts with the name of the associated program
(including its extension) which is then followed by a hyphen and 8
characters representing a hash of the file path from where the
application was executed (McQuaid, 2014b). Most relevant, these
PF files store timestamps for the eight most recent executions and
remain on the system even if the software is deleted.

Findings. To analyze the PF files on the system, we mounted a

https://github.com/jschicht/LogFileParser

Table 5
BASIC_INFO_CHANGE record creation times compared to SIA-E times for our test
files.

File Time of meta-data change

f_Timestomp.txt (SIA-E) 03/01/2019 at 18:31:58 EST
f_Timestomp.txt (USNJ Record) 03/02/2019 at 14:58:23 EST
f_SetMACE.txt (SIA-E) 03/01/2019 at 18:31:58 EST
f_SetMACE.txt (USNJ Record) 03/02/2019 at 14:59:06 EST
f_nTimestomp.txt (SIA-E) 03/01/2019 at 18:31:58 EST
f_nTimestomp.txt (USNJ Record) 03/02/2019 at 15:00:14 EST

Table 6
BASIC_INFO_CHANGE records from the $USNjrnl.

File Time of Change

f_Timestomp.txt 03/02/2019 at 14:58:23 EST
Timestomp.exe-C3A5003F.pf 03/02/2019 at 14:58:23 EST
f_SetMACE.txt 03/02/2019 at 14:59:06 EST
SetMace.exe-9AD6A728.pf 03/02/2019 at 14:59:06 EST
f_nTimestomp.txt 03/02/2019 at 15:00:14 EST
nTimestomp.exe-295C9CCD.pf 03/02/2019 at 15:00:14 EST

D. Palmbach, F. Breitinger / Forensic Science International: Digital Investigation 32 (2020) 300920S6
copy of our image and pointed a tool called WinPrefetchView5 at
the test systems prefetch folder, usually C:/Windows/Prefetch.
As expected, all tools executed during our experiment created PF
files. Naturally, these PF files have their own $MFT record and thus
their own set of timestamps which can indicate the first time the
program was run. Additionally, PF files contained timestamps for
each execution as shown in Table 4. Besides timestamps, we also
know that each program remained in the same location/directory
due to the identical hashes. It should be noted that the file path
being hashed also includes the name of the programbeing run, thus
different programs (or renamed) run from the same directory will
not have matching hashes.

As discussed in Sec. 2.1, modifying the timestamp values in the
FNA requires the user to trigger a natural update from the file
system. To achieve this, the timestomping tool has to be run a
minimum of three times to overwrite the SIA values while moving
the target file around. Hence, PF files can be used to detect this
action by analyzing the timestamps for the previous eight times the
programwas run. For instance, Table 4 shows that nTimestompwas
run three times in less than 60 s. This can serve as an indication that
the FNA values may have been manipulated as well. Of course, if a
timestomping tool automates this process (and does not need to be
run three times) then this method is ineffective. In general, PF files
are a good source of evidence when trying to identify malicious
programs running on the system and should be utilized by
examiners.

Data reliability. PF files are regular Windows files and therefore
deleting them can be done by navigating to the prefetch folder. Due
to the fact that these files can be deleted individually, and the other
PF files are left unaltered, it is difficult for an examiner to identify
when information is missing in this folder. However, it should be
noted that whenwe processed the final image in Autopsy, we were
able to recover some of the data for the SetMACE PF file. The PF file's
SIA and FNA timestamps were carved from unallocated space but
the file content was not. This means that we were not able to
analyze the execution times that are typically stored in the file.
While none of the other PF files were recovered in this study, it is
certainly possible to carve entire files from unallocated space in the
memory.

5.3. $USN journal

The $USNjrnl, sometimes referred to as the change journal, is
log file in NTFS that keeps track of any when changes are made to
files. Change journals can be created or deleted using the followings
commands:

� fsutil USN createjournal m ¼ 1000 a ¼ 100 c: creates a
new journal and enables the file system to keep track of changes,
where m is the max size, a is the allocation delta, and c: is the
drive the $USNjrnl will be used on (Microsoft, 2017).

� fsutil USN deletejournal/d c: deletes the journal which
essentially dumps its contents into unallocated space.

The $USNjrnl is also a Windows protected file which makes it
more difficult to alter or to delete. The file is located in the $Extend
folder which is the 11th entry in the $MFT (Carrier, 2005, p. 202).
Within the $Extend folder, there is a file named $USNJrnl:$Max

which contains basic information about the journal itself and a file
named $USNJrnl:$Jwhich has the actual journal entries. For this
paper, we will focus on the latter of the two and use the term
5 https://www.nirsoft.net/utils/win_prefetch_view.html (last accessed 2019-04-
25).
$USNjrnl as a synonym.
When enabled, it can be extracted using Autopsy before being

parsed with UsnJrnl2Csv.6 The journal maintains several events but
most importantly it has a record for every file change on the volume
(event category: BASIC_INFO_CHANGE). While the journal func-
tions similar to the $LogFile, it should be noted that it does not
record the original data or what changes were made. Instead, it
records the time a change occurred, the associated file name, and
the category of the change that occurred. For this research, we
primarily focused on records that fell under the BASI-

C_INFO_CHANGE category which included any changes related to
file meta-data and timestamps (Microsoft, 2018d). Additionally,
each record in the $USNjrnl contains a unique identifier called an
Update Sequence Number (USN) that can also be found in any file's
SIA.

Findings. Upon parsing the $USNjrnl, we found BASI-

C_INFO_CHANGE records for each of the three files we had modi-
fied. These records provided us with the last time the test file had
its meta-data altered. Consequently, if the $USNjrnl recorded a
change to the files meta-data, then the file's SIA-E should also show
these changes. As seen in Table 5 (where we compare the file's SIA-
E times to the creation times for the $USNjrnl BASI-

C_INFO_CHANGE records), there are discrepancies. All of the test
files in our experiment had BASIC_INFO_CHANGE records created
on 03/02/2019 but their SIA-E times were last updated on 03/01/
2019. This is a strong indicator that the timestamps for these files
were altered.

Additionally, the $USNjrnl stored records on the PF files, i.e.,
whenever a program was executed (and the PF file changed) a
BASIC_INFO_CHANGE record was found. Consequently, we looked
for programs or files that had BASIC_INFO_CHANGE records at or
around the same time as the test files. These comparisons can be
seen in Table 6 and show that each of the test files had a meta-data
change at the same time a PF file was updated. This correlation can
help examiners to potentially identify what program(s) were run to
modify the timestamps. Additionally, if the $USNjrnl is not
available this same correlation can be made using the eight most
recent execution times stored within a PF file.

The $USNjrnl also creates a USN_REASON_FILE_CREATE7
6 https://github.com/jschicht/UsnJrnl2Csv (last accessed 2019-04-25).
7 Another category instead of the BASIC_INFO_CHANGE.

https://www.nirsoft.net/utils/win_prefetch_view.html
https://github.com/jschicht/UsnJrnl2Csv

Table 7
Test file's SIA timestamps compared to their LNKs SIA timestamps (extracted directly from Autopsy).

File SIA-M SIA-E SIA-A SIA-C

f_Deafult.lnk 2019-03-01 14:15:17 EST 2019-03-01 14:15:17 EST 2019-03-01 14:15:17 EST 2019-03-01 14:15:17 EST
f_Deafult.txt 2019-03-01 14:15:27 EST 2019-03-01 14:15:27 EST 2019-03-01 14:15:30 EST 2019-03-01 14:14:59 EST
f_Timestomp.lnk 2019-03-01 14:16:14 EST 2019-03-01 14:16:14 EST 2019-03-01 14:16:14 EST 2019-03-01 14:16:14 EST
f_Timestomp.txt 2019-03-01 18:31:58 EST 2019-03-01 18:31:58 EST 2019-03-01 18:31:58 EST 2019-03-01 18:31:58 EST
f_SetMACE.lnk 2019-03-01 14:17:29 EST 2019-03-01 14:17:29 EST 2019-03-01 14:17:29 EST 2019-03-01 14:17:29 EST
f_SetMACE.txt 2019-03-01 18:31:58 EST 2019-03-01 18:31:58 EST 2019-03-01 18:31:58 EST 2019-03-01 18:31:58 EST
f_nTimestomp.lnk 2019-03-01 14:18:10 EST 2019-03-01 14:18:10 EST 2019-03-01 14:18:10 EST 2019-03-01 14:17:17 EST
f_nTimestomp.txt 2019-03-01 18:31:58 EST 2019-03-01 18:31:58 EST 2019-03-01 18:31:58 EST 2019-03-01 18:31:58 EST

Table 8
Active user times according to windows system events.

Date Login time Logoff time

03/01/2019 13:19:09 EST 13:28:09 EST
03/01/2019 13:28:11 EST 14:52:03 EST
03/02/2019 14:37:03 EST 15:02:17 EST
03/02/2019 16:58:13 EST 17:13:22 EST

D. Palmbach, F. Breitinger / Forensic Science International: Digital Investigation 32 (2020) 300920 S7
record whenever a file is added to the system (Microsoft, 2018d).
This record can be used to identify when the timestomping tool
first arrived on the system which could be a crucial piece of evi-
dence in an investigation. Furthermore, we also recovered a file
creation record for the PF files associated with the timestomping
tools that allowed us to identify when the tools were first run on
the system.

Data reliability. An attacker could move the journal into unal-
located space running the fsutil usn deletejournal/d c:

command and create a new journal in the same location running
the fsutil USN createjournal m ¼ 1000 a¼ 100 c: command.
While wiping $USNjrnl is straightforward, these commands do
trigger Windows to record an event in its application event log:
Windows event ID 3079 is created when the $USNjrnl is deleted.
This can be a good indication for an examiner that further data
manipulation may have occurred on the system. Based on our
findings we conclude that since it is easy to delete it should not be
considered a reliable source of information for examiners.
8 https://eventlogxp.com/download.html(last accessed 2019-04-25).
5.4. Link files

LNKs are essentially shortcuts to local files that are created
manually by the user or automatically by the file system. The more
common of the two options is the latter case: whenever a local file
is created or opened for the first time, a LNK is created in C:/

Users/NAME/AppData/Roaming/Microsoft/Windows/

Recent (McQuaid, 2014a). All of the LNKs used in our analysis were
recovered from this location and automatically created. Addition-
ally, LNKs contain the file path for their associated file as well as
additional information about the file's storage location including
the volume name and potentially the MAC address of the remote
device the file is located on. Most importantly, each LNK has its own
$MFT entry that can be analyzed.

Findings. During our experiment we tested and confirmed that
anytime a file is opened on the local machine (either by clicking
directly on it or locating it in the file explorer), the associated LNK's
SIA-A and SIA-E times are updated as well. Thus, the SIA-A and SIA-
E timestamps for the LNK should approximately match to those
timestamps for their associated file. This rule excludes the file's SIA-
M and SIA-C timestamps because they can vary between a file and
its corresponding LNK. An example is provided in Table 7 which
shows several discrepancies when comparing the two file's SIA
timestamps. The default file that we created during the experiment
portrays the expected relationship: the difference between both
timestamps is in the range of seconds. On the other hand, there are
significant differences for the manipulated files as they were never
accessed by the user directly.

While this can be an indicator for timestamp manipulation, it is
important to note that the SIA-A time could be updated by other
programs that would not update the LNK's timestamps such as an
anti-virus scanner (Chow et al., 2007). For instance, running a scan
with Windows Defender confirmed that the SIA-A timestamps for
all of the test files were updated (the other three timestamps were
not affected). If there was an anti-virus scan that updated the SIA-A
time, then the SIA-E time could still be used.

Side note: A LNK cannot be created for a file that does not exist,
i.e., the file's SIA-C time is not allowed to be in the future. The LNK's
SIA-C time should be equal to or after the SIA-C time listed for its
associated file. This discrepancy can also be seen in Table 7 where
the SIA-C times for all three of the manipulated test files are 4 h
after their associated LNK's SIA-C times. Similarly, if a LNK's SIA-A
time is updated, the corresponding file's SIA-A time should be
updated as well. A LNK's SIA-A time should be equal to or before the
actual file's SIA-A time.

Data reliability. Similar to the PF files, LNKs are regular Windows
files that can be deleted easily. Singh and Singh (2016) extensively
researched LNKs and found that while they could be deleted, it was
possible to recover some of or all of their information from unal-
located space. They also found that if a LNK was modified in any
way, the changes would be reverted back as soon as the file was
accessed again. In our experiment, we were able to carve a LNK for
each of our test documents. However, other than the names of the
files, we were not able to recover any information. It should also be
noted that a new LNK will not be created until the file has been
accessed again.
5.5. Windows event logs

Windows keeps logs of events that happen on the systemwhich
are organized into several categories and separate log files: the
Application log, the System log, and the Security log (Microsoft,
2018b). While these logs have a diverse collection of data, we
focused on the System log which maintains events that allow us to
track user activity. Specifically, an event with the ID number 7001 is
created when a user logs in; logging off creates a 7002 event.
Hence, it was possible to create a timeline of when the user was
active which can be cross-referenced with other timestamps on the
system (timestamps outside of active user sessions are suspicious).

Findings. Autopsy was able to extract the artifact and we opened
it locally with a program called Event Log Explorer.8 An example of
user activity for our experiment is depicted in Table 8. If either the
SIA-C or the SIA-M times are outside an active session, it is an

https://eventlogxp.com/download.html

D. Palmbach, F. Breitinger / Forensic Science International: Digital Investigation 32 (2020) 300920S8
indication that timestamp manipulation has occurred. The SIA-A
and SIA-E times were not included due to the fact that they may
have been updated by anti-virus software or some other program
running as a background service. For our experiment files were
created outside an active user session (compare Table 7 vs. Table 8).

Data reliability. Both the Application log and System log can be
cleared by right-clicking them in the Windows event viewer and
selecting the clear log option. However, this action triggers a new
event (104) in the System log which includes the time it was
cleared and the user who cleared it. While Windows event logs
were the most persistent source of information, they are unable to
retain any evidence that could be used to identify timestamp
manipulation.

6. Discussion

The findings from previous work and our experiment showed
that timestamps can be a valuable source of evidence, but a so-
phisticated adversary could manipulate them. In the following, we
respond to the three research questions proposed in the
introduction.

[RQ1] What is the range of artifacts that can be used by examiners
to identify timestamp manipulation in NTFS on Windows? While
existing literature mostly focused on the $MFT (SIA/FNA time-
stamps) and $LogFile to detect timestamp forgery, we found four
new artifacts: $USNjrnl, PF files, LNKs, and Windows event logs.
These artifacts increase the diversity of artifacts available to ex-
aminers and therefore complement prior work. Each of these ar-
tifacts has its own unique value and data that relates to timestamp
manipulation. Compared to previous work, the new findings give
examiners more ‘long-term’ artifacts such as PF and LNK files as
compared to the $LogFile and $USNjrnl whose data can be
naturally overwritten rather quickly.

In general, we realized that there is a lot of (meta-)data avail-
able, and that we may have missed other artifacts during our ex-
periments. For instance, Schicht (2014), in their description of the
SetMACE tool, suggested that evidence of time forgery could also
potentially be recovered from shadow volumes. The importance of
the shadow volume data was addressed by Leschke and Nicholas
(2013) who created a tool for visualizing its changes, i.e., a file's
timestamps being changed. This conceptmay be applied on an even
larger scale by running comparisons against entire backups
attempting to identify suspicious behavior. However, further
research is needed to conclude the feasibility for detecting time-
stamp forgery.

[RQ2] How reliable are the artifacts (i.e., resilient to obfuscation or
deletion) that are being used for timestamp manipulation detection?
Our experiments showed that none of the five artifacts we tested in
this paper were a consistently reliable source for identifying
timestamp forgery as theywere not enabled by default ($USNjrnl)
or they could be deleted/exploited. A positive aspect was that
tampering with artifacts occasionally left behind other (more per-
manent) artifacts. For instance, clearing the Windows event log
resulted in a new Windows event. However, these artifacts are
merely suspicious and do not prove timestamp forgery.

As pointed out by Yoo et al. (2010), there is the possibility to
carve deleted data from unallocated space. During our experiments
we were only able to carve PF files and LNKs using Autopsy, but
there may be tools that have the capability to recover deleted re-
cords from the $LogFile and the $USNjrnl. Future work could
look into specialized techniques that are able to recover these
artifacts.

On the other hand, Microsoft has imposed restrictions in NFTS
which made it harder to tamper with some artifacts (e.g., no direct
disk writes to the system volume, no updating FNA timestamps,
andWindows protected files cannot be altered at all). One potential
solution could be identifying the misuse of time setting commands
in the Windows API. While these commands are used in a lot of
benign programs, they should not allow user input but instead rely
on the internal clock in the computer.

For future research, we recommend that in addition to finding
novel artifacts, one should also discuss their reliability. On the other
hand, the operating system should make it harder to tamper with
meta-data by putting more restrictions on their API or develop
methods for detecting changes, e.g., a ‘local Blockchain’ that cap-
tures information and does not allow changes (similar to Sutton
and Samavi (2017)).

[RQ3] Besides identifying timestamp manipulation directly, can we
detect the execution/presence of timestamp forgery tools? During our
experiments, we were able to detect the presence and execution of
timestomping tools utilizing the PF files. Additionally, an examiner
could perform string searches on the medium at hand to find evi-
dence. Note, if an adversary masqueraded the name of the tool
before execution (e.g., Windows/System32/svchost.exe), this
procedure will not be successful (MITRE, a).

Similar to howmalware can be detected by unique signatures or
its behavior, one could create signatures for popular timestomping
tools (Idika and Mathur, 2007; Conlan et al., 2016). For instance, in
our scenario Timestomp was flagged by Windows Defender and
Magnet AXIOM version 1.2.2.7502 as an anti-forensic tool (Set-
MACE and nTimestomp were not flagged). If the security tool's
logging is enabled, Timestomp may show up in another artifact
(application specific logs). Lastly, these signatures could be used to
proactively stop the timestomping tools from altering timestamps.

7. Conclusion

Timestamp forgery has become popular and many hacking
groups and malicious programs utilize these techniques to hide
evidence and hinder investigations. Thus, it is essential for re-
searchers and practitioners to have numerous artifacts and
methods for detecting timestamp forgery. The more artifacts ex-
aminers know for identifying timestamp manipulation, the harder
it becomes for a malicious user to obfuscate all of the traces.

In this article, we proposed four new methods that have not
previously been used in peer-reviewed literature to detect time-
stampmanipulation: $USNjrnl, PF files, LNKs, andWindows event
logs. These artifacts can contain evidence of timestamp forgery by
providing additional, unaltered, timestamps as well as evidence of
suspicious software activity. Based on our findings, we propose the
following five rules that can be used to detect timestamp in-
consistencies in NTFS on Windows:

1. The SIA-E for a file should be similar to the most recent BASI-
C_INFO_CHANGE record for the file in the $USNjrnl.

2. The SIA-E for a LNK file should be identical with the SIA-E of the
associated file.

3. The SIA-C for a LNK file should be equal to or newer than the
SIA-C of its associated file.

4. The SIA-A for a LNK file should be equal to or before the SIA-A of
its associated file.

5. The SIA-C and SIA-M times for a file cannot be at a time when
there is not a user logged in.

On the other hand, this article also explored the reliability of
different artifacts used for detecting timestamp forgery. We
concluded that none of the tested artifacts were a reliable source of
information as they could be exploited by a sophisticated attacker
or malicious software. Furthermore, to the best of our knowledge,
there are no current methods that can consistently prove

D. Palmbach, F. Breitinger / Forensic Science International: Digital Investigation 32 (2020) 300920 S9
timestamp manipulation as the evidence can always be deleted or
altered to avoid detection. Consequently, we recommended using a
combination of the previously mentioned methods such as time-
stamp rules and $LogFile analysis along with other system arti-
facts, such as LNKs and PF files, to increase the odds of detecting
timestomping tools and techniques. Furthermore, the evidence
stored in the $LogFile and $USNjrnl becomes obsolete after a
certain amount of time which creates another set of problems for
investigators as analysis on the targeted machine may not be done
for an extended period of time. While this research was a solid first
step at a more broad and holistic view of timestamp manipulation
detection, this domain needs more research.

References

Alperovitch, D., 2016. Bears in the midst: intrusion into the democratic national
committee. CrowdStrike Blog 15.

Bang, J., Yoo, B., Kim, J., Lee, S., 2009. Analysis of time information for digital
investigation. In: 2009 Fifth International Joint Conference on INC, IMS and IDC.
IEEE, pp. 1858e1864.

Bang, J., Yoo, B., Lee, S., 2011. Analysis of changes in file time attributes with file
manipulation. Digit. Invest. 7, 135e144.

Buchholz, F., Spafford, E., 2004. On the role of file system metadata in digital fo-
rensics. Digit. Invest. 1, 298e309.

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley Professional.
Carvey, H., 2014. Windows Forensic Analysis Toolkit: Advanced Analysis Techniques

for Windows 8. Elsevier.
Cho, G.-S., 2013. A computer forensic method for detecting timestamp forgery in

NTFS. Comput. Secur. 34, 36e46.
Chow, K.-P., Law, F.Y., Kwan, M.Y., Lai, P.K., 2007. The rules of time on NTFS file

system. In: Second International Workshop on Systematic Approaches to Digital
Forensic Engineering (SADFE’07). IEEE, pp. 71e85.

Conlan, K., Baggili, I., Breitinger, F., 2016. Anti-forensics: furthering digital forensic
science through a new extended, granular taxonomy. Digit. Invest. 18, 66e75.

Cowen, D., 2013. Daily blog #130: detecting fraud sunday funday 10/27/13 part 3 e

setmace. http://www.learndfir.com/2013/10/31/daily-blog-130-detecting-
fraud-sunday-funday-102713-part-3-setmace/.

Ding, X., Zou, H., 2010. Reliable Time Based Forensics in NTFS. School of Software,
Shanghai Jiao Tong University, pp. 1e2.

Freiling, F., H€osch, L., 2018. Controlled experiments in digital evidence tampering.
Digit. Invest. 24, S83eS92.

Geiger, M., 2005. Evaluating Commercial Counter-forensic Tools. DFRWS.
Gungor, A., 2014. Date forgery analysis and timestamp resolution. https://www.

meridiandiscovery.com/articles/date-forgery-analysis-timestamp-resolution/.
Hannon, M.J., 2018. Metadata in Civil and Criminal DiscoveryePart ii, vol 35. The

Computer & Internet Lawyer.
Idika, N., Mathur, A.P., 2007. A Survey of Malware Detection Techniques. Purdue

University, p. 48.
Jang, D.-I., Hwang, G.-J.A.H., Kim, K., 2016. Understanding anti-forensic techniques

with timestamp manipulation. In: 2016 IEEE 17th International Conference on
Information Reuse and Integration (IRI). IEEE, pp. 609e614.

Koen, R., Olivier, M.S., 2008. The Use of File Timestamps in Digital Forensics. ISSA,
Citeseer, pp. 1e16.

Leschke, T.R., Nicholas, C., 2013. Change-link 2.0: a digital forensic tool for
visualizing changes to shadow volume data. In: Proceedings of the Tenth
Workshop on Visualization for Cyber Security. ACM, pp. 17e24.

Lim, B., 2019. ntimetools. https://github.com/limbenjamin/nTimetools.
McQuaid, J., 2014a. Forensic analysis of lnk files. https://www.magnetforensics.com/

blog/forensic-analysis-of-lnk-files/.
McQuaid, J., 2014b. Forensic analysis of prefetch files in windows. https://www.

magnetforensics.com/blog/forensic-analysis-of-prefetch-files-in-windows/.
Metz, J., 2019. Plaso log2timeline. https://github.com/log2timeline/plaso.
Microsoft, 2017. Fsutil usn. https://docs.microsoft.com/en-us/windows-server/

administration/windows-commands/fsutil-usn.
Microsoft, 2018a. Changes to the file system and to the storage stack to restrict

direct disk access and direct volume access in windows vista and in windows
server 2008. https://support.microsoft.com/en-us/help/942448/changes-to-
the-file-system-and-to-the-storage-stack-to-restrict-direct.

Microsoft, 2018b. Event logging. https://docs.microsoft.com/en-us/windows/
desktop/eventlog/event-logging.

Microsoft, 2018c. NtSetInformationFile function. https://docs.microsoft.com/en-us/
windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntsetinformationfile.

Microsoft, 2018d. Read_usn_journal_data_v0 structure. https://docs.microsoft.com/
en-us/windows/desktop/api/WinIoCtl/ns-winioctl-read_usn_journal_data_v0.

Minnaard, W., de Laat, C., van Loosen MSc, M., 2014. Timestomping ntfs. https://
delaat.net/rp/2013-2014/p48/report.pdf.

MITRE (a). Masquerading. https://attack.mitre.org/techniques/T1036/.
MITRE (b). Timestomp. https://attack.mitre.org/techniques/T1099/.
Novetta, 2016. Loaders Installers and Uninstallers Report. Operation Blockbuster.
Oh, J., 2013. NTFS log tracker. http://forensicinsight.org/wp-content/uploads/2013/

06/F-INSIGHT-NTFS-Log-TrackerEnglish.pdf.
Polakovic, P., 2016. NTFS LogFile parser. https://www.codeproject.com/Tips/

1072219/NTFS-LogFile-Parser.
Schatz, B., Mohay, G., Clark, A., 2006. A correlation method for establishing prov-

enance of timestamps in digital evidence. Digit. Invest. 3, 98e107.
Schicht, J., 2014. SetMACE. https://github.com/jschicht/SetMace.
Schicht, J., 2018. mft2csv - setmace.wiki. https://code.google.com/archive/p/

mft2csv/wikis/SetMACE.wiki.
Schwarz, T., 2007. Ntfs Architecture for x86-Based Systems.
Singh, B., Singh, U., 2016. A forensic insight into windows 10 jump lists. Digit. Invest.

17, 1e13.
Singh, B., Singh, U., 2018. Program execution analysis in windows: a study of data

sources, their format and comparison of forensic capability. Comput. Secur. 74,
94e114.

Sky, C., 2017. Operation wilted tulip: exposing a cyber espionage apparatus. https://
www.clearskysec.com/wp-content/uploads/2017/07/Operation_Wilted_Tulip.
pdf.

Sutton, A., Samavi, R., 2017. Blockchain enabled privacy audit logs. In: d'Amato, C.,
Fernandez, M., Tamma, V., Lecue, F., Cudr�e-Mauroux, P., Sequeda, J., Lange, C.,
Heflin, J. (Eds.), The Semantic Web e ISWC 2017. Springer International Pub-
lishing, Cham, pp. 645e660.

Willassen, S.Y., 2008. Finding evidence of antedating in digital investigations. In:
2008 Third International Conference on Availability, Reliability and Security,
pp. 26e32.

Windows, 2018. File times. https://docs.microsoft.com/en-us/windows/desktop/
sysinfo/file-times.

Works, S., 2015. Threat group-3390 targets organizations for cyberespionage.
https://www.secureworks.com/research/threat-group-3390-targets-organiza-
tions-for-cyberespionage.

Yoo, B., Park, J., Bang, J., Lee, S., 2010. A study on a carving method for deleted ntfs
compressed files. In: 2010 3rd International Conference on Human-Centric
Computing. IEEE, pp. 1e6.

http://refhub.elsevier.com/S2666-2817(20)30015-9/sref1
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref1
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref2
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref2
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref2
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref2
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref3
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref3
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref3
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref4
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref4
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref4
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref5
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref6
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref6
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref7
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref7
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref7
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref8
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref8
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref8
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref8
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref9
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref9
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref9
http://www.learndfir.com/2013/10/31/daily-blog-130-detecting-fraud-sunday-funday-102713-part-3-setmace/
http://www.learndfir.com/2013/10/31/daily-blog-130-detecting-fraud-sunday-funday-102713-part-3-setmace/
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref11
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref11
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref11
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref12
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref12
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref12
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref12
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref13
https://www.meridiandiscovery.com/articles/date-forgery-analysis-timestamp-resolution/
https://www.meridiandiscovery.com/articles/date-forgery-analysis-timestamp-resolution/
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref15
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref15
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref15
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref15
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref16
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref16
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref17
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref17
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref17
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref17
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref18
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref18
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref18
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref19
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref19
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref19
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref19
https://github.com/limbenjamin/nTimetools
https://www.magnetforensics.com/blog/forensic-analysis-of-lnk-files/
https://www.magnetforensics.com/blog/forensic-analysis-of-lnk-files/
https://www.magnetforensics.com/blog/forensic-analysis-of-prefetch-files-in-windows/
https://www.magnetforensics.com/blog/forensic-analysis-of-prefetch-files-in-windows/
https://github.com/log2timeline/plaso
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-usn
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/fsutil-usn
https://support.microsoft.com/en-us/help/942448/changes-to-the-file-system-and-to-the-storage-stack-to-restrict-direct
https://support.microsoft.com/en-us/help/942448/changes-to-the-file-system-and-to-the-storage-stack-to-restrict-direct
https://docs.microsoft.com/en-us/windows/desktop/eventlog/event-logging
https://docs.microsoft.com/en-us/windows/desktop/eventlog/event-logging
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntsetinformationfile
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntifs/nf-ntifs-ntsetinformationfile
https://docs.microsoft.com/en-us/windows/desktop/api/WinIoCtl/ns-winioctl-read_usn_journal_data_v0
https://docs.microsoft.com/en-us/windows/desktop/api/WinIoCtl/ns-winioctl-read_usn_journal_data_v0
https://delaat.net/rp/2013-2014/p48/report.pdf
https://delaat.net/rp/2013-2014/p48/report.pdf
https://attack.mitre.org/techniques/T1036/
https://attack.mitre.org/techniques/T1099/
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref32
http://forensicinsight.org/wp-content/uploads/2013/06/F-INSIGHT-NTFS-Log-TrackerEnglish.pdf
http://forensicinsight.org/wp-content/uploads/2013/06/F-INSIGHT-NTFS-Log-TrackerEnglish.pdf
https://www.codeproject.com/Tips/1072219/NTFS-LogFile-Parser
https://www.codeproject.com/Tips/1072219/NTFS-LogFile-Parser
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref35
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref35
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref35
https://github.com/jschicht/SetMace
https://code.google.com/archive/p/mft2csv/wikis/SetMACE.wiki
https://code.google.com/archive/p/mft2csv/wikis/SetMACE.wiki
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref38
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref39
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref39
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref39
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref40
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref40
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref40
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref40
https://www.clearskysec.com/wp-content/uploads/2017/07/Operation_Wilted_Tulip.pdf
https://www.clearskysec.com/wp-content/uploads/2017/07/Operation_Wilted_Tulip.pdf
https://www.clearskysec.com/wp-content/uploads/2017/07/Operation_Wilted_Tulip.pdf
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref42
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref42
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref42
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref42
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref42
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref42
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref42
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref43
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref43
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref43
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref43
https://docs.microsoft.com/en-us/windows/desktop/sysinfo/file-times
https://docs.microsoft.com/en-us/windows/desktop/sysinfo/file-times
https://www.secureworks.com/research/threat-group-3390-targets-organizations-for-cyberespionage
https://www.secureworks.com/research/threat-group-3390-targets-organizations-for-cyberespionage
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref46
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref46
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref46
http://refhub.elsevier.com/S2666-2817(20)30015-9/sref46

	Artifacts for Detecting Timestamp Manipulation in NTFS on Windows and Their Reliability
	1. Introduction
	2. Background
	2.1. Modification of SIA/FNA
	2.2. Peculiarities of timestomping tools

	3. Previous work
	3.1. Detecting manipulation with timestamp rules
	3.2. Detecting manipulation with the $LogFile
	3.3. Other methods for detecting manipulation

	4. Apparatus and methodology
	5. Experimental results
	5.1. $LogFile
	5.2. Prefetch files
	5.3. $USN journal
	5.4. Link files
	5.5. Windows event logs

	6. Discussion
	7. Conclusion
	References

