
DIGITAL FORENSIC RESEARCH CONFERENCE

Preparing for Large-Scale Investigations

with Case Domain Modeling

By

Chris Bogen and David Dampier

From the proceedings of

The Digital Forensic Research Conference

DFRWS 2005 USA

New Orleans, LA (Aug 17th - 19th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics

research. Ever since it organized the first open workshop devoted to digital forensics

in 2001, DFRWS continues to bring academics and practitioners together in an

informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,

annual conferences and challenges to help drive the direction of research and

development.

http:/dfrws.org

 1

Preparing for Large-Scale Investigations with Case
Domain Modeling

A. Chris Bogen

Engineering Research and Development Center, United States Army Corps of
Engineers, Vicksburg, Mississippi

Dr. David A. Dampier
Department of Computer Science and Engineering

Mississippi State University
Chris.Bogen@erdc.usace.army.mil, dampier@cse.msstate.edu

Abstract
In any forensic investigation, planning and analysis activities are required in order to
determine what digital media will be seized, what types of information will be sought in
the examination, and how the examination will be conducted. Existing literature and
suggested practices indicate that such planning should occur, but few tools provide
support for such activities. Planning an examination may be an essential activity when
investigators and technicians are faced with unfamiliar case types or unusually complex,
large-scale cases. In complex, large-scale cases it is critical that the investigators
provide computer forensics technicians with the appropriate amount of case data
supplemented with keyword lists; too much case data or too little case data can make the
forensics technician’s task very difficult.

This paper presents the concept for a novel application of ontology/domain modeling
(known as case domain modeling) as a structured approach for analyzing case facts,
identifying the most relevant case concepts, determining the critical relationships
between these concepts, and documenting this information. This method may be
considered as a foundational analytical technique in computer forensics that may serve as
the basis for useful semi-automated tools. An example case domain model is presented,
the method for constructing a case domain model is described, and applications for case
domain modeling are presented.

1. Introduction
Traditionally, digital forensics practitioners have been recruited from careers in criminal
justice and law enforcement with limited previous computer or IT (information
technology) experience. However, the increase in the occurrence of cyber crimes and the
growing demand for more digital forensics technicians is extending recruitment to
persons who originate from careers in computer science, software engineering, and
information technology with limited previous criminal justice or law enforcement
experience (such as the authors of this paper). As career IT personnel migrate to digital
forensics, their problem solving approaches will follow. This paper describes how we
have attempted to adapt a software engineering domain analysis method to computer
forensics examination planning.

2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

 2

Many investigating agencies, especially in law enforcement, have distinct roles for an
investigator and a forensics technician [13]. The investigator executes warrants and
subpoenas, interviews persons involved in the case, conducts preliminary forensics tests,
and populates the case file. The forensic technician forensically images media, uses
forensically-sound examination tools, tags evidence, analyzes evidence, and reports the
results. The scope and goals of an examination is initially defined by the investigator and
refined by the technician. In large-scale cases, this activity of filtering voluminous case
information is critical: Too many case details may overwhelm the forensics technician
and lessen his/her productivity, and too few case details could make the forensics
technician’s task impossible to perform. Documenting the examination scope and goals
is also important if the technician begins the examination several weeks after the
investigator finishes working the case.

In large-scale cases, there may be an abundance of diverse case information often related
to an unfamiliar case domain. Consequently, there is a high degree of uncertainty
regarding the goals of a large-scale examination. For example, a computer forensics team
may be tasked with imaging and examining more than 30 workstations and a few servers
if they conduct white collar crime investigations of corporations or large organizations.
In such circumstances it can be difficult to characterize the evidence of a crime and
clearly outline the scope/goals of the forensics examination.

Some manuals and best practice guides for digital forensics stress the importance of
planning a digital examination [1, 12, 13] and establish fundamental planning concepts.
But there seem to be few tools, standards, or structured methods to support such planning
activities. We propose that a case domain modeling methodology, adapted from software
engineering requirements analysis, could serve as a structured analytical technique for
deriving and representing relevant computer forensics case information. This structured
derivation of relevant case information could be especially useful for decreasing the
uncertainty associated with the goals of large-scale examinations.

The products of software engineering and computer forensics differ significantly. The
former delivers a practical software configuration that consists of documentation,
computer executable code, and data structures [8], while the latter delivers digital
evidence and documentation that indicates the occurrence of a digital event. However,
there are significant similarities between the approaches and underlying philosophies of
software engineering and computer forensics: a focus on delivering a quality product, the
importance of structured and scientific methods, the application of repeatable processes,
the application of computer science concepts, and the application of software tools for
supporting methods and processes. The remainder of this paper is organized as follows:
Section 2 provides an introduction to domain modeling with UML (unified modeling
language) and presents an example of a case domain model, Section 3 describes the
process of building a case domain model, Section 4 introduces future applications of case
domain modeling, and Section 5 presents conclusions and future work.

2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

 3

2. Introduction to Domain Modeling with UML
Software is typically developed for a specific field of discourse known as the application
domain. Banking, audio recording, architectural design drafting, photography, and fluid
mechanics are all examples of application domains. These application domains are
populated by tangible objects, places, organizational hierarchies, processes, jargon, and
policies that are often unfamiliar to the software developers. Software developers have
varying viewpoints and assumptions regarding the application domain, and according to
Uschold and Gruninger [14]: “the consequent lack of a shared understanding leads to
poor communication within and between these people and their organizations…[and]
difficulties in identifying requirements and thus in the defining of a specification of the
system.” In software engineering, domain analysis and modeling was proposed as a
method for addressing this problem and reaching a shared understanding [4].

Domain modeling (aka ontology modeling) is a method for describing the characteristics
of and relationships between concepts in a specific domain or field of discourse. Domain
or ontology modeling is rooted in Plato’s classical philosophical frameworks [9], and in
the 1970s it emerged in artificial intelligence research (knowledge representation and
content theory) [3]. Now there are several domain and ontology modeling languages and
methodologies in Computer Science and software development: OWL (web ontology
language) for Web development [6], UML (unified modeling language) conceptual and
class diagrams for software engineering [5], and KIF (knowledge interchange format) for
artificial intelligence [7]. The UML conceptual model and its underlying methodology
are used as the framework case domain modeling because they provide the necessary
expressive abilities while being relatively easy-to-understand. Alternatively, other
ontology or domain modeling languages could be used to represent case domain models;
ultimately the knowledge gained by building the model is more important than the syntax
of the model.

UML conceptual models are developed during the requirements elicitation phase of
software projects, and they help developers arrive at a shared understanding of the
project’s application domain [5]. The UML conceptual model notation is relatively
simple as the model is intended to be reviewed by a layperson customer1. The
foundational element of the UML conceptual model is the concept. A concept represents
a “real-world” entity that may contain zero or more attributes that characterize the
concept. Larman provides a list of common concept categories that may be used to
identify candidate concepts [5]. Table 1 provides an abridged list of Larman’s list of
concept categories with specific examples of candidate concepts in the digital forensics
domain.

Figure 1 provides an example of a case domain model (represented with a UML class
diagram) for email threat cases in a university environment. The example case domain
model assumes that a student sent his/her professor a threatening email from a public-use

1 Customers or users may review the domain model to validate the developers’ understanding of the
problem domain.

2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

 4

Table 1: Concept Categories and Examples

university lab computer. Concepts are represented by boxes, with the concept name
appearing in the top of the box, and concept attributes are listed in the field below the
concept name. Lines drawn between concepts indicate a named relationship; for
example, Class is taught by Faculty member. A line with an “arrowhead” indicates a
generalization specialization relationship; for example, Faculty member is a specialized
type of the general concept, University personnel. The case domain model is an abstract
representation of case information that is relevant to a specific case type, and this abstract
representation is instantiated when applied to specific circumstances. To instantiate the
model the investigators or technicians simply replace the attribute names with the specific
values dictated by the case circumstances. For example, the GPA attribute of Suspect can
be instantiated with the value 4.0. The following section describes how to build a Case
Domain model by adapting the UML methodology for conceptual modeling

3. Building Case Domain Models
As the UML conceptual model allows software engineers to identify relevant concepts in
a software problem domain, designing a case domain model is a process that offers a
structured approach for analyzing, filtering, organizing, and documenting relevant case
information in a computer forensics examination. The process of constructing a case
domain model consists of three steps:

1. Select Case Concepts
2. Select Concept Relationships
3. Identify Concept Attributes
4. Instantiate Model

Concept Category Examples
Physical or tangible objects Cell phone, Hard Drive, CDR disk
Descriptions of things Marketing Report, Incident Report
Places Home, Street
Transactions Payment, Sale, Money Deposit, Email Transmission
Roles of people Victim, Suspect, Witness
Containers of things

 Databases, Hard Drives

Things in a container Files, Transactions
Computer or Electro-mechanical systems Internet Store, Credit Card Authorization System
Abstract noun concepts Motive, Alibi, Insanity, Poverty
Organizations Mafia, Corporate Department, Government Organization
Events Robbery, Meeting, Phone Call, File Access
Rules and policies Laws, Procedures
Records of finance, work, contracts, legal
matters

Employment Contract, Lease, Receipt, Subpoena

Services Internet Service Provider, Telephone Service, Cell Phone
Service

Manuals, Books Flight Manual, Explosives Manual

2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

 5

-Campus Logon ID
-GPA
-Classname List
-Recent Test Grades

Suspect

-Office Number
-Office Hours
-Class Names

Faculty Member

-Time Sent
-Time Received
-To
-From
-Subject
-Body
-Addressee
-Signature
-Misspellings
-Internet Headers

Email

-Provider Name
-Service Provider IP
-Address
-Date Established
-Registrant IP
-Access Log
-Alternate Email
-Registrant Name
-Registrant Location

Email Account

-Physical Location
-Type
-MAC Address
-IP Address
-System Time Source
-Name

Workstation

-Accessed IP Address
-Originating IP Address
-Time Stamp
-Time Source

Network Log Entry

-Room Number
-Meeting Days
-Meeting Times
-Instructor
-Students
-Name
-Code

Class

generalizes

Suspect's Email Account
Faculty Member's Email Account

Faculty WorkstationLab Workstation

enrolls in

is taught by

uses
uses

generalizes generalizes

accessed by
accessed by

sent to

sent

generalizesgeneralizes

network access logged by

-Profanity Words
-Threat Time
-Threat Place
-Threat Quotes
-Weapons Mentioned

Murder Threat Email

-Full Name
-SSN
-DOB
-Phone Numbers
-Email Addresses
-Physical Addresses
-Nicknames

University Personnel

generalizes

Figure 1: University Email Threat Case Domain Model (in UML notation)

2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

 6

The golden rule for selecting concepts, relationships, or attributes is, “if it is not relevant
to the examination, then do not include it in the case domain model.” The case domain
model should not be a comprehensive representation of all entities/concepts involved in a
case. Rather, the case domain model should represent all case concepts that are essential
to the forensics examination. In large-scale cases it would be especially
counterproductive to model every involved concept; even relatively simple cases could
yield an unmanageable case domain model if all concepts are exhausted. Thus, each step
in the process of constructing a case domain model must be supported by methods and
heuristics for selecting appropriate concepts, attributes, and relationships. The following
subsections will provide a brief discussion of methods and heuristics for each step of the
model building process. These principles are derivative of Craig Larman’s instructions
on conceptual modeling in his textbook, Applying UML and Patterns [5].

Selecting Case Concepts
A list of candidate concepts may be identified by extracting nouns and verbs (known as
noun-verb extraction [5]) from case documents such as underlying facts and
circumstances, warrants, subpoenas, arrest reports, incident reports, etc. Additionally, a
concept category table may be referenced when selecting concepts (see Table 1). Finally,
the USDOJ’s Electronic Crime Scene Investigation a Guide for First Responders
provides a checklist (pp. 42-44) of common evidence entities that should be sought in
certain types of investigations [12]; these may be directly mapped to case concepts. It is
important to begin with a very exhaustive list of concepts and gradually eliminate
concepts that are irrelevant. Some of the eliminated concepts may be modeled as
attributes instead of concepts, so it is useful to preserve the candidate list of concepts for
later use.

Reusability is an important factor to consider when selecting concepts; reusing concepts
can save time when developing future case domain models. A concept name that is
more abstract is easier to reuse than a concept name that is more specific. For example,
Suspect is more general than Patrick Bateman and thus is easier to reuse in a later case.
An attribute such as Name may be included in the Suspect concept in order to distinguish
between actual instances of the concept.

Identifying Concept Relationships
For the purposes of planning a forensics investigation, the concept names and attributes
are the most important items of information; concepts and attributes are the relevant
pieces of information that the technician will use to seed the examination plan. However,
relating the concepts adds an additional layer of information that can help an outsider
understand the background and circumstances of a case. Table 2 lists some typical
relationships that may occur between case domain concepts [5]. Such a table may be
used as a checklist for identifying potential relationships between selected case concepts.

When too many relationships are selected then the complexity of the case domain model
becomes unmanageable; imagine Figure 1 with lines drawn between every pair of
concepts. Larman states that, “it is undesirable to overwhelm the conceptual [domain]
model with associations [relationships] that are not strongly required and which do not

2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

 7

illuminate our understanding. Too many un-compelling associations obscure rather than
clarify,” [5]. Thus, redundant and derivable relationships should be avoided in favor of
essential relationships that foster an understanding of the case domain. Multiplicity (aka
cardinality) constraints may be added to the relationships to specify how many items are
involved in the relationship: A Suspect owns 0 or more Vehicles. Such constraints may
enhance case domain understanding but they are not essential for deriving and identifying
important case information.

Table 2: Typical Concept Relationship Categories
Category Examples
A is a physical part of B DVD Drive – Workstation
A is a logical part of B Network Mapping – Network Intrusion
A is physically contained in/on B Used CDR Media – CD Case
A is a description for B Readme file – Executable Program
A owns B Suspect – Vehicle
A is a member of B Suspect – Gang
A is an organizational subunit of B Information Technology Division – Company
A uses or manages B Systems Administrator – Company Network
A is a specialized version of the generalized B Systems Administrator – Company Employee
A communicates with B Suspect – Associates
A is known/logged/recorded/reported in B Email Registration – Network Logs

Selecting Concept Attributes
Attributes are the defining characteristics of a concept, and they represent the information
that is essential to the computer forensics examination. These attributes may be referred
to when constructing keyword searches, examining text documents, examining network
logs, etc. For example, when looking for documents that refer to the suspect, the name
attribute of concept Suspect can be elaborated to form a short keyword list that includes
initials, nicknames, first name, last name, middle name, etc.

As a minimum, the list of attributes should be exhaustive enough to uniquely distinguish
between instances of a concept. For example, the name attribute is insufficient for
distinguishing between unique instances of a Suspect concept. What if two distinct
people have an identical name? Appending this attribute list with social security number
and birth date is sufficient information to distinguish between two distinct instances of
Suspect. Common attribute types that may occur in a case domain include names, phone
numbers, IP addresses, physical addresses, account numbers, email addresses, times, and
dates. As was the case with other steps in the modeling process, it is important to
maintain a moderate approach between providing a comprehensive attribute list and a
minimal attribute list.

Instantiating the Model
When the abstract model is complete, then actual values are assigned to the case domain
concept attributes. A significant amount of unknown attribute values may indicate the
need to revisit pre-forensics investigative efforts.

2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

 8

4. Future Applications of Case Domain Modeling
Thus far, case domain modeling has been presented as an analytical framework for
determining and documenting the scope of a forensics examination. Other applications
of case domain modeling may include but are not limited to selecting keyword search
terms, building expertise and reusing knowledge, providing an intelligent tool
infrastructure, and supplementing existing forensics modeling approaches.

Selecting Keyword Search Terms
Keyword lists are often an important artifact for defining the scope of a search warrant
and an examination. Given a case domain model a keyword search term list may be
developed by following a process of attribute selection and elaboration. Investigators and
technicians would select concept attributes that will be included in a keyword search.
Each attribute may have its own list of keyword search terms that represent various
synonymous permutations of the modeled attribute (e.g. a date keyword list should
contain several representations of a date). The process of elaborating the attributes may
be semi-automated with ontology modeling tools such as Protégé2.

Knowledge Reuse and Expertise Building
Case domain models present an abstract view of case information, and the model
becomes specific when the attributes are instantiated with actual values. These abstract
domain models may be used on cases that share common characteristics. Additionally,
concepts that are common to many cases may be shared between several case domain
models (e.g. Vehicle, Email, and Person). Novice investigators may develop their
investigative skills by attempting to construct case domain models, or by attempting to
apply an expert’s case domain models. Additionally, the abstract attributes of a Case
Domain model may indicate what types of questions should be asked during
suspect/witness interviews; i.e. the attributes provide the blanks of information on a form
that the interviews attempt to fill in via interviews. Such an application could also extend
the usefulness of case domain modeling from large-scale to small-scale cases. Successful
reuse of case domain modeling would be highly dependent upon the availability of an
effective tool for cataloging and searching case domain models.

Providing infrastructure for intelligent computer forensics software agents
If case domain models are supplemented with inference rules, then they could provide a
robust knowledge base for intelligent computer forensics software agents. These
intelligent agents could observe a technician’s digital examination, refer to a case domain
knowledge-base, and offer guidance or automated functionality of examination tasks.
Such an application may be unrealized due to the complexity associated with constructing
a formal knowledge base for general use. Developing a formal knowledge base for a
specific case type is relatively easier, but doing so decreases the number of potential
applications for its associated intelligent agents; if the knowledge base is specialized then
the intelligent agents are also specialized.

2 Protégé is an open-source ontology modeling tool developed by the Medical Informatics group at
Stanford University. Protégé has an easy-to-use graphical interface and there is a terminological
enhancement plug-in that could automate the elaboration of attributes.

2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

 9

Supplementing existing computer forensics modeling and analytical approaches
Case domain models can be used to represent the underlying information domain of
existing computer forensics models such as Stephenson’s DIPL [11], Bruschi and
Monga’s forensic graphs [2], and Schneier’s attack trees [10]. Such supplementary views
are common in software engineering modeling languages such as UML. If computer
forensics researchers continue to propose modeling methodologies, then someday a
comprehensive, unified computer forensics modeling language may emerge from several
existing computer forensics modeling approaches.

5. Conclusions & Future Work
With semi-automated support, case domain modeling could increase the amount of
evidence recovered without significantly increasing the combined effort of planning and
executing a large-scale examination. The value of this additional effort may also be
realized when general case domain models are reused on similar cases.

Adoption of case domain modeling and its associated applications will be unrealized until
a suitable software tool is developed for designing, representing, and managing reusable
case domain models. Such a tool could also include semi-automated support for keyword
term selection and other applications. The most significant challenge of producing such a
tool would be providing case domain modeling functionalities and interfaces that are
practical and comprehensible to a diverse (with respect to professional and educational
background) population of computer forensics practitioners. Preliminary research
indicates that Stanford Medical Informatics’ Protégé, an open-source ontology modeling
tool, may be an appropriate starting point for building a prototype case domain modeling
tool.

In general, any method or tool should be chosen based on the characteristics of the
problem, and case domain modeling is no exception to this rule. Planning and
developing an examination strategy are necessary tasks when a high degree of uncertainty
is associated with the goals of the forensics examination; such circumstances are ideal
for the proposed case domain modeling method. However, case domain modeling may
involve too much overhead for straightforward, common examinations that do not require
extensive pre-planning or execution effort. Furthermore, the proposed method could be
outright ineffective for tasks that involve the recovery of little or no textual data (e.g.
recovering illicit pornographic images).

We attempted a preliminary application of case domain modeling on a case at the
Mississippi State Attorney General’s Cyber Crime Unit. Though no formal experiments
were conducted, the case domain modeling principles were successfully applied to a
typical, small-scale case. The investigating officer remarked that the modeling
framework was simple, appropriate, and would provide a nice enhancement to the typical
“dry-erase board” method of outlining case information. Surprisingly, our modeling of
the case domain identified a few important pieces of information that the experienced
cyber crime investigator had overlooked. This positive anecdotal evidence has
encouraged our further exploration of case domain modeling.

2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

 10

Bogen is currently evaluating case domain modeling applied to the selection of keyword
search terms (and the automation thereof). Experiments will evaluate the amount of
effort required to apply case domain modeling, the amount of evidence recovered using
case domain modeling, and other qualitative factors. Additionally, this research may
necessitate the construction of a case domain modeling software tool. The empirical
results of this research will be included in Bogen’s upcoming PhD dissertation (May
2006).

References
[1] Association of Chief Police Officers (AOPO), "Good Practice Guide for Computer Based

Electronic Evidence," 2003; http://www.nhtcu.org/ACPO%20Guide%20v3.0.pdf (current 2004
May 31).

[2] D. Bruschi and M. Monga, "How to Reuse Knowledge About Forensic Investigations," presented

at Digital Forensics Research Workshop, Linthicum, Maryland, 2004.

[3] B. Chandrasekaran, J. R. Josephson, and V. R. Benjamins, "What are ontologies, and why do we

need them?," Intelligent Systems and Their Applications, IEEE [see also IEEE Intelligent
Systems], vol. 14, no. 1, 1999, pp. 20-26.

[4] N. Iscoe, G. B. Williams, and G. Arango, "Domain modeling for software engineering," presented

at Software Engineering, 1991. Proceedings., 13th International Conference on, 1991.

[5] C. Larman, Applying UML and Patterns An Introduction to Object-Oriented Analysis and Design.

Upper Saddle River, New Jersey: Prentice Hall, 1998.

[6] D. McGuiness and F. van Harmelen, "OWL Web Ontology Language Overview," 2004;

http://www.w3.org/TR/owl-features/ (current

[7] N. Noy and C. Hafner, "The State of the Art in Ontology Design," AI Magazine, vol. 18, no. 3,

1997, pp. 53-74.

[8] R. Pressman, Software Engineering A Practitioner's Approach, 6th ed. New York, New York:

McGraw Hill, 2005.

[9] R. Prieto-Diaz, "A faceted approach to building ontologies," presented at Information Reuse and

Integration, 2003. IRI 2003. IEEE International Conference on, 2003.

[10] B. Schneier, "Attack Trees," Dr. Dobb's Journal, vol. 24, no. 12, December, 1999, pp. 21-29.

[11] P. Stephenson, "Applying DIPL to an Incident Post Mortem," Computer Fraud and Security, vol.

2003, no. 8, August, 2003, pp. 17-20.

[12] United States Department of Justice Office of Justice Programs, "Electronic Crime Scene

Investigation a Guide for First Responders," United States Department of Justice, Washington, DC
July 2001.

[13] United States Department of Justice Office of Justice Programs Computer Crime and Intellectual

Property Section, Search and Seizure Manual: Searching and Seizing Computers and Obtaining
Electronic Evidence in Criminal Investigations, 1.0 ed. Washington, DC, 2002.

[14] M. Uschold and M. Gruninger, "Ontologies: Principles, Methods, and Applications," The

Knowledge Engineering Review, vol. 11, no. 2, 1996, pp. 93-136.

2005 Digital Forensic Research Workshop (DFRWS)
New Orleans, LA

