
DIGITAL FORENSIC RESEARCH CONFERENCE

A Brief Study of Time

By

Florian Buchholz and Brett Tjaden

From the proceedings of

The Digital Forensic Research Conference

DFRWS 2007 USA

Pittsburgh, PA (Aug 13th - 15th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics

research. Ever since it organized the first open workshop devoted to digital forensics

in 2001, DFRWS continues to bring academics and practitioners together in an

informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,

annual conferences and challenges to help drive the direction of research and

development.

http:/dfrws.org

A brief study of time

Florian Buchholz*, Brett Tjaden

Department of Computer Science, James Madison University, Harrisonburg, VA 22807, United States

Keywords:

Computer forensics

Computer clocks

Time synchronization

Time measurement

Timestamp correlation

a b s t r a c t

In this paper we describe the first large-scale, long-term study of how hosts connected to

the Internet manage their clocks. This is important for forensic investigations when there

is a need for correlation of events collected from disparate sources, as well as for the cor-

relation of computer events to ‘‘real’’ time. We have sampled over 8000 web servers on the

Internet on a regular basis for a period of over six months. We have found that only about

74% of the hosts we observed were within 10 s of our reference time (UTC). The other hosts

exhibited a large variety of different clock behaviors, some of which are explainable by ex-

isting clock models, some not, warranting further research in the area of forensic time and

clock analysis.

ª 2007 DFRWS. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The reconstruction of events as part of computer forensics
and incident response can involve events from only a single
system, as well as events obtained from multiple, geographi-
cally separate sources, each with its own clock. An especially
useful technique for event reconstruction is ‘‘time-lining’’.
Here, discrete events that have a timestamp associated with
them are ordered into a timeline. Timestamps can be obtained
from file system metadata, system logs, or application data.

Depending on the source of the events, this can provide a de-
tailed sequence of the events that took place on a system (or
multiple ones), allowing an investigator to reconstruct the se-
quence of events that took place.

When considering timestamps that were recorded by
a computing system as evidence in an investigation, several
factors need to be considered: the time on a computing system
is kept by the system hardware clock, and in some cases by an
additional software system clock. Depending on the accuracy
of these clocks, how they were initialized, and whether they
are synchronized, the clock(s) may differ quite considerably

from the ‘‘real’’ time. Furthermore, clocks may be misconfig-
ured to be in the wrong time zone or be set to the wrong

time, clocks may be manipulated arbitrarily, and a clock
may run fast or slow (clock skew).

The goal in forensic event reconstruction is to sequence
all events that are important so that cause–time relation-
ships may be established for an investigation. If all events
we need to reconstruct are timestamped by the same system
clock, some of the factors discussed above may not matter
as the times will differ from ‘‘real’’ time in a consistent man-
ner and a sequence of events can be established. The possi-
bility of clock manipulation, however, is a factor that always

needs to be considered. In particular, when clocks are set
back in time, an identical time may be recorded for events
that occurred before and after the clock change. Further-
more, few computing systems are completely isolated, and
external timestamps are introduced in many ways. For ex-
ample, information from e-mail headers or HTTP cookie
data may play an important role in an investigation, at
which point the external and internal timestamps need to
be correlated. Also, whenever digital evidence is used to es-
tablish or support the point in time when events in the
physical world occurred, the timestamps of the systems

that are involved need to be translated to this reference
time.

* Corresponding author.
E-mail addresses: buchhofp@jmu.edu (F. Buchholz), tjadenbc@jmu.edu (B. Tjaden).

ava i lab le at www.sc ienced i rec t . com

journa l homepage : www. e lsev ier . com/ loca te / d i in

1742-2876/$ – see front matter ª 2007 DFRWS. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2007.06.004

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 3 1 – S 4 2

mailto:buchhofp@jmu.edu
mailto:tjadenbc@jmu.edu
http://www.elsevier.com/locate/diin

In this paper we present a study that aims to give us a better

understanding of the problems that need to be considered
when dealing with computer clocks. Over the course of six
months we remotely measured the clocks of over 8000 servers
on the Internet. For this purpose, we used two different
methods to ‘‘measure’’ time: ICMP and IP timestamp requests
and HTTP. The goal of the study is to establish how computers
connected to the Internet actually manage their clocks. The
study we present here is the first large-scale study of how
computers’ clocks behave over a long period of time. By find-
ing out how different computer clocks behave we can quantify
whether the hypothetical time correlation problem described

above is likely to be of practical concern. Another reason for
the study is to establish ways to measure the clocks of remote
hosts so that any techniques we develop from that may be
used in forensic investigations.

The following section will give an overview of the problems
we are trying to address with our research. Section 3 discusses
related work, Section 4 describes how we conducted our
study, in Section 5 we present our results, and we give conclu-
sions and discuss future work in Section 6.

2. Problem description

In digital forensic investigations, knowing the correct time
when events occurred can be of great importance. This could
be because of the need to correlate events from different sys-
tems, establish alibis, or to find out when events occurred
with respect to events in the real world. The importance of
knowing the correct time has been previously addressed by

Boyd and Foster (2004) and Weil (2002), actual investigations
(CBS News, 2005), as well as the analysis of the 2003 power
blackout in the Northeastern United States (Symmetricom_
Power Grid; McAlpin, 2003; Koff, 2003).

Ideally, we would like all computer clocks to be synchro-
nized to some common reference time, such as the Universal
Coordinated Time (UTC) (United States Naval Observatory,
2003). However, this may not always be the case, as computer
clocks inherently go slightly slower or faster than ‘‘real time’’
based on the quality of their quartz crystals or environmental
factors, such as temperature (Symmetricom_Stochastic

Model). Because of this and the fact that clocks may easily
be set to arbitrary values, it is quite possible that computer
clocks do not show values anywhere near real time. Instead
they would exhibit different time values at different points
in (real) time. When we sample these values over a long period
of time, they make up what we call a clock description with re-
spect to the reference time (normally UTC).

One method to overcome this deficiency of computer
clocks and keep them close to real time is to periodically syn-
chronize them with a computer’s clock that is more accurate.
The higher accuracy of these time servers is achieved through
specialized hardware such as GPS receivers or atomic clocks,

and the most commonly utilized method of time synchroni-
zation over a network is the Network Time Protocol (NTP)
(Mills, 1992).

If all computers synchronized their clocks with a suitable
time server using NTP, forensic event and time correlation
would be easy. It is, however, unlikely that all computers

perform this kind of clock synchronization. Furthermore,

there is currently no data on how many hosts on the Internet
do synchronize their clocks with a time server. To address this
shortcoming, this is the first large-scale study of its kind, and
it will give an indication of how many computers connected to
the Internet have clocks that differ significantly from UTC.
There have been previous surveys about the accuracy of the
NTP network (Guyton and Schwartz, 1994; Minar, 1999), but
these deal with measuring the quality of the information var-
ious NTP servers deliver. In our study we investigate web
servers, which are generally of more interest to forensic inves-
tigations, because timestamps from web servers often can be

found on client machines, and HTTP is a widely used protocol
in many aspects of computing today. We will show below that
there are a large number of servers on the Internet that do not
synchronize their clocks. This is a finding that underlines the
importance of performing research in time correlation and
mapping for the purpose of digital forensic investigations.
This is especially important when considering the analysis
of disparate sources of evidence, where timestamps were
recorded by different clocks.

The second reason for this study lies in the need to under-
stand how computer clocks behave. To translate timestamps

encountered on a host back to UTC, both Stevens (2005) and
(Buchholz, unpublished data) have developed clock models
that ‘‘describe’’ a host’s clock with respect to a reference
time. We will describe those models in more detail in Section
3. Buchholz predicts that clock descriptions will exhibit a pat-
tern of linear clock skew combined with possible discrete
‘‘jumps’’ in the clock value, but except for a small number of
cases, it is unknown how those computer clocks that do not
synchronize their time actually evolve with respect to UTC.
We look to either confirm the prediction made by Buchholz
or to see if there may be additional factors that need to be

taken into account when trying to obtain a description of
a computer clock.

As another goal of our research we want to establish ways
to reliably measure a remote computer’s clock over the net-
work. This may be important to a forensic investigation, be-
cause frequently timestamps from sources external to the
system may be found. Such timestamps may include cached
HTTP data or cookies, e-mail headers, or any other data saved
from network communication. If clock descriptions of such
external clocks can be obtained, it could be a valuable source
of independent evidence that can be used to establish or con-
firm local timestamps. Of course, obtaining a clock description

of an external host for a time frame that lies in the past may be
impossible. However, if our research should reveal that clocks
behave in a predictable manner, it may be possible to measure
the external host at a later time and then make predictions as
to how that clock behaved in the past. While this will not
prove that a clock indeed behaved that way, if the predictions
are consistent with the local evidence it can be used as an in-
dependent source to increase the overall confidence the inves-
tigator has in the evidence.

A second reason one may want to measure the clocks of re-
mote computers is to monitor one’s own machines within

a network. If a dedicated machine keeps clock information
of all other computers on the network, we have additional ev-
idence that can be used in forensic investigations and

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 3 1 – S 4 2S32

intrusion detection. First, full clock descriptions of all ma-

chines on the network will be available to an investigator.
Similar to an external log server, the clock information can
be more trustworthy than any information on a compromised
machine. Second, the clock monitor can look for ‘‘unusual’’
clock behavior for the purpose of intrusion or misuse detec-
tion. If an attacker on a local machine modifies the system
clock to hide his tracks, this can be detected by the monitor
and an alarm may be generated.

If we want to reliably monitor the clocks of remote hosts,
we need to determine the following:

! What methods can we use to measure time of remote hosts
on the Internet?
! What kind of accuracy can be achieved?
! How much data need to be stored?
! Looking at the observed clock behavior, what if anything can

be deduced about the past clock behavior of that host?

In this paper we will only address the first item. Should we
find that investigating computer clocks remotely is feasible
and that timestamp correlation is problem likely to occur in
practice, then the remaining items need to be addressed in

our future research.

3. Related work

In this section we describe previous work in the field of mea-
suring or synchronizing computer clocks that relates to our
study. We will briefly talk about clock synchronization and
then give an overview of the two clock models that are con-
cerned with forensic time correlation, which may benefit
from the results of this study. Finally, we present previous re-
search where small numbers of computer clocks have been re-
motely monitored.

3.1. NTP time synchronization

The problem of synchronizing time on distributed systems is
not new, and has been researched before it became relevant
for forensic investigations. Lamport and Melliar-Smith give

one of the earliest discussions about clock synchronization
in the context of distributed multiprocess systems (Lamport
and Melliar-Smith, 1985).

The Network Time Protocol specified by Mills is explicitly
designed to keep a group of networked hosts’ clocks synchro-
nized to within a certain range (Mills, 1992). For this purpose,
a time server is considered to be the authority that supplies all
its clients with the valid time. On the client side, an NTP dae-
mon runs on the host and manipulates the system clock. So as
not to constantly have to communicate with the time server,
the NTP daemon estimates the client’s clock skew and only
synchronizes with the server when deemed necessary.

When synchronizing their times, the client has to take any
network delays into account during communication with the
server.

Generally, when utilizing NTP, a client’s clock is very clos-
e to its time server’s reference time. However, Buchholz
identified small irregularities in the measured times of

a synchronized host (Buchholz, submitted for publication).

Even when NTP is utilized, there may be small discrepancies
in the clocks between different computers. While the time
differences are in the millisecond range this may be a problem
if a high degree of accuracy is needed, potentially making
time correlation difficult again. For most forensic investiga-
tions this may not be important, but when looking at the
analysis of the 2003 power blackout, about 10,000 separate in-
cidents were recorded spanning a mere 9 s (McAlpin, 2003;
Koff, 2003).

3.2. Measurements of computer clocks

Large-scale studies of the Network Time Protocol network
have already been conducted. Guyton and Schwartz (1994) de-
scribe a methodology to query the NTP hierarchy of different
Stratum-level NTP servers, and the most recent study of the
NTP network was conducted by Minar (1999). They discovered
great discrepancies among the NTP servers with times being
months and even years in the extreme. But even though Minar

sampled over 175,000 servers the study can only be used to
question the quality of a clock synchronized via NTP. From
a forensics perspective we further want to study these addi-
tional factors:

1. How do those computer clocks behave that do not utilize
NTP and how large is that number of hosts? While it is im-
portant to note that even when utilizing NTP a computer’s
clock may be wrong, the digital forensic community needs
to be aware of the quality and quantity of the other hosts,
as well.

2. How do clocks behave (change) over time? All previous
clock studies that we are aware of merely sample each
host once and compare it to a reference time. Our study
sampled each host once every day (and a small number of
hosts every hour) over the period of six months. This may
give insights of how certain clocks behave in general, how
frequently they are set to new times, or whether NTP is en-
abled or disabled for whatever reasons. In some future re-
search some of those hosts may be classified and
predictable behavior be qualified, which may allow a foren-
sic investigator to estimate how a clock may have behaved

in the past.

Paxson was one of the first to address the problem of com-
puter clocks skewing off synchronized time (Paxson, 1998). He
noticed misconfigured clocks having an adverse effect when
trying to measure delay experienced by network packets. He
also notes that even when hosts are synchronized utilizing
NTP, some of these adverse effects persist. This supports the
notion that NTP can only provide a certain precision not suffi-
cient for some situations.

Kohno et al. measured computer clocks so that their clock
skew could be used to uniquely identify the hosts on the Inter-

net (Kohno et al., 2005). They established that hosts could be
identified using their clock information even when physically
moved to different locations or placed behind a firewall using
NAT. While they mention the use of ICMP timestamp packets
to measure time remotely as we do in this study, they focus al-
most exclusively on the TCP timestamp options. Given that

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 3 1 – S 4 2 S33

the system clock is not used to create these timestamps, but

rather a network-stack internal clock, the kind of measuring
they describe will not work for the goals we pursue with our
research.

In the context of forensic time correlation, Schatz et al. ob-
served the computer clocks of a small network to see if web
browser information can be used to put bounds on events
(Schatz et al., 2006). Also, Buchholz performed some controlled
measurements of just a single machine’s clock to determine if
clock skew is indeed linear, and what effect factors such as
system load, turning the computer off, or using NTP have on
a computer’s clock (Buchholz, submitted for publication). In ei-

ther case, these are measurements of small scale that do not
allow us to make general observations or give us broad in-
sights about how computer clocks may behave.

3.3. Describing clocks and bounding events

When a forensic investigator needs to determine to what time
a computer’s clock was set at a given time in UTC, or find out
at what time a timestamp recorded on a system really oc-
curred, he/she needs to utilize either a clock model or time
bounding techniques.

The clock model introduced by Stevens (2005) takes a refer-
ence time (usually UTC) as a base, and then the investigator
has to specify offsets to the reference time for any clock he/
she wishes to describe. These offsets can be dynamic in na-

ture, although Stevens does not elaborate on how to define
an offset that changes its value over time. This model has its
strength in showing what values a computer’s clock had
over time, but to map a host timestamp back to its reference
time, the inverses of all offsets need to be computed and ap-
plied to the timestamp. Furthermore, Stevens neglects the
fact that a timestamp value found on a host may map back
to several times in the reference time, which is a result of
a host clock being set back in time.

The model described by Buchholz (submitted for publica-
tion) uses a graphical approach to describe a computer’s clock,

and from there he derives formulas to quickly map time-
stamps back to the possible reference times, taking the possi-
bility of a 1:n mapping into account. The model is based on
only one dynamic component, clock skew, and discrete points
in time when the clock is explicitly modified by external fac-
tors (such as a program setting the clock). Fig. 1 shows

a simplified example of how Buchholz predicts clocks will

generally behave. Here we see a clock description of a host
with clock skew s and two instances where the clock was
modified. It is one aspect of our study to determine if this is
the general behavior of the clocks we observe.

Time bounding techniques, such as described by Glady-
shev and Patel (2005) try to establish a causal order between
individual events and thus an overall order of all events on
the system. If some of those events can be attributed to
a time, it may be possible to define ranges of times when other
events must have happened. Time bounding techniques will
most likely be used in conjunction with a clock model: the

model will provide some of the timestamps associated with
events while the time bounding technique can be used to ver-
ify or disprove that the clock description that is derived for
a computer is consistent with the evidence found during the
forensic investigation.

4. Experimental setup

To begin our investigation, we first needed a list of a wide va-
riety of Internet hosts whose clocks we could sample. We
obtained a list of domain names from the DMOZ Top Listed
Domains website. Adding the prefix ‘‘www’’ before each do-
main name gave us 8329 unique fully qualified domain names
(FQDN). Resolving each of these FQDNs into its IP address(es)
using DNS resulted in 8410 unique IP addresses. This is due

to the fact that some FQDNs resolved to multiple different IP
addresses while some unique FQDNs resolved to the same IP
address. This list of 8410 unique IP addresses that we gener-
ated included machines located all over the world in the
.biz, .com, .edu, .gov, .mil, .org, and other domains.

4.1. Using HTTP to sample the clock on remote systems

We set up a Linux host named chronos from which to run
our experiments. This machine is configured using ntpd to
synchronize its time with the official JMU time server. We
wrote a tool, called web-time, that ran on chronos each
night. For each IP address on our list, web-time would first
take a reading of chronos’ clock using the ftime() function

which returns a structure containing the current date and
time (including milliseconds). Web-time next sent an HTTP
request to the IP address from the list, and used ftime() to
take another clock reading when the HTTP response was re-
ceived. Web-time then computed the difference (in millisec-
onds) between the timestamp returned in the ‘‘Date’’ header
field from the HTTP reply and the midpoint between the
time the HTTP request was sent and the time the HTTP reply
was received. This value was then rounded to the nearest
second since the ‘‘Date’’ field in the HTTP reply header con-
tains a date and time including seconds but not millisec-
onds. In this manner, the web-time program used HTTP to

measure the time difference in seconds between our local
machine, chronos, and each of the 8410 remote hosts on
our list. The ‘‘Date’’ header field was added for the HTTP
1.1 protocol and is mandatory in all HTTP replies. This is
used for caching purposes on most HTTP clients (Fielding
et al., 1999). It is therefore of interest to somebody who

δt_h

2

4

8

2 4 6 8 10 12 14 16

t_host − t_ref

t_ref
t2t1

δ_2

δ_1
1

s

10

6

Fig. 1 – A simple clock description.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 3 1 – S 4 2S34

maintains a web server to keep the time returned in this

field accurate so that clients use cached values rather than
generate traffic for the server.

One measurement was made of each remote host every
night so that we could plot the drifts of their clocks relative
to ours over time. It took approximately 45 min each night to
sample all 8410 hosts one after another using web-time.
More than 90% of the 8410 hosts on our list routinely an-
swered. Less than 1% of the hosts we tested either never an-
swered or never returned a ‘‘Date’’ field in the HTTP header.
An analysis of the results we obtained using web-time is given
in Section 5.

4.2. Using IP/ICMP to sample the clock on remote
systems

A separate tool that we used to sample the time difference be-
tween chronos and the 8410 hosts on our list was clockdiff –
part of the iputils package. Clockdiff sends multiple IP or

ICMP packets to a remote host and attempts to measure the
difference in time between the local host and a remote host
to the nearest millisecond. By default, clockdiff sends ICMP
timestamp request (type 13) messages and expects ICMP time-
stamp reply (type 14) messages in response. Clockdiff also
supports sending two different versions of the IP timestamp
option so that time differences can be measured on remote
hosts that do not receive/answer ICMP requests. Using any
of these three options, clockdiff can estimate the difference
between the time on the local host and the time on a remote
host to the nearest millisecond. However, due to the limited

length of the fields in the ICMP and IP timestamp messages,
all values reported by clockdiff are modulo 24 days. In other
words, if a remote clock was exactly 12 days and 1 ms behind
the local host, clockdiff would report the time difference as
"1 ms. So clockdiff gives a fairly fine-grained estimate of the
time difference between two machines as long as they are
roughly within a week of each other.

As with the HTTP experiment described above, we used
clockdiff to sample the time difference between chronos and
all 8410 hosts on our list once a night for several months.
Due to the multiple packets that clockdiff sends and receives,

it took several days to sample all 8410 hosts using clockdiff.
About 41% of the hosts on our list (3471 out of 8410) responded
to the default ICMP request by clockdiff. This was actually
a much higher success rate than we had expected as we
thought that most sites would block unnecessary ICMP traffic
for security reasons. An additional 540 hosts responded to the
first IP option used by clockdiff, and another 402 replied only
to the second IP option used by clockdiff. So clockdiff could
only be used on 4413 of 8410 hosts on our list (3471 that an-
swered ICMP, plus 540 that did not answer ICMP but answered
IP option 1, plus 402 that only answered IP option 2). We re-
moved the 3997 hosts from our nightly run list for clockdiff

(but kept all 8410 on the web-time run list) and only sampled
the hosts with clockdiff each night that we knew would an-
swer. This resulted in us being able to sample each of the
4413 hosts using clockdiff once every day for several months.
Each day’s clockdiff sampling run took approximately 18 h to
complete.

5. Analysis of results

We began to analyze the data we were collecting each day by
creating graphs of the cumulative distribution functions for
both our web-time and clockdiff data to try to understand
how closely synchronized all the hosts we were measuring

were as a group. Fig. 2 shows results of one run performed
October 18, 2006. On that night, 8410 hosts were queried using
our web-time program. A total of 8149 of those hosts
responded with a valid timestamp, and 261 hosts either did
not respond at all, or replied without a valid timestamp in
the response.

Approximately 74% (6040 out of 8149) of all hosts that
responded were within #10 s of our reference time. The other
26% (2109 out of 8149) that responded were more than 10 s out
of synchronization – some by seconds, some by minutes,
some by hours, some by days, some by weeks, some by

months, and some by years. About two thirds (5510 of 8149)
of the hosts that responded were tightly synchronized to
within #2 s of our reference time, and a little more than half
(4213 of 8149) showed a time difference of 0 s as measured
by web-time. We were a bit surprised to see only 50% of the
hosts with no time difference from our machine. Before run-
ning the experiment we had expected that this number would
be much higher as these are popular Internet web servers and
we had expected the vast majority to be tightly synchronized.
We were even more surprised at the large percentage of hosts
(approximately 26%) that were off by more than 10 s.

One interesting phenomenon that we noticed is that more
hosts’ clocks were behind our reference time than were ahead
of it. We observed that 4213 hosts differ from our reference
time by exactly 0 s. Of the remaining 3936 hosts that an-
swered, 2315 were behind our clock by one or more seconds,
and 1621 were ahead of our clock by one or more seconds.
Moreover, the clocks that were behind were further behind
(on average and at maximum) than the clocks that were
ahead. Of the 1621 clocks that were ahead, the average num-
ber of seconds that they were ahead by was 1348 (about
22 min). For the 2315 clocks that were behind, the average

number of seconds that they were behind was 1,876,820

 0.001

 0.01

 0.1

1

10 days1000 s 1 s 1 ms

Fr
ac

tio
n

w
ith

 o
ffs

et
 >

 x

Time difference according to web-time

Fig. 2 – The cumulative distribution function for all hosts
(measured with web-time).

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 3 1 – S 4 2 S35

(about 21 days). The five clocks that were set furthest in the

past gave readings (on October 18, 2006) of:

! October 18, 1906,
! January 1, 1970,
! May 19, 2006,
! July 12, 2006,
! October 6, 2006.

Clearly, the first two clocks have strange, but explainable
values. The first is exactly 100 years behind, and the second
is stuck on a value corresponding to 0 ms past the beginning

of 1970 (this means that likely a value of 0 is returned for the
timestamp as this corresponds to the beginning of the UNIX
time epoch). Even if we discard these first two extreme values
from the list of clocks running behind, the remaining 2313
slow clocks are, on average, 12,029 s (almost three and a half
hours) behind. By comparison, the five clocks that were set
furthest in the future gave readings (on October 18, 2006) of:

! October 18, 2006 (14 h ahead),
! October 18, 2006 (16 h ahead),
! October 19, 2006 (17 h ahead),

! October 19, 2006 (24 h ahead),
! October 19, 2006 (24 h ahead).

The results presented above are typical of all runs done to
date. Every day for the six months our experiment has been
running, approximately 50% of hosts that respond to our
web-time query show a time difference of 0 s. Some hosts
are almost always in this group while other hosts are in it
sometimes and not at others. Typically, about 75% of the hosts
we test each night are within#10 s of our reference time. As of
March 31, 2007, the two unusual hosts discussed above have

always been 100 years behind and stuck on midnight, January
1, 1970, respectively. There are other hosts whose clocks are
days, weeks, months, or years behind although some of these
clocks become synchronized occasionally, while other clocks
that were roughly synchronized have been observed to jump
backwards or forwards suddenly by several days, months, or
years. We will illustrate this phenomenon and discuss the be-
havior of several interesting individual clocks in a subsequent
section.

Since we had more than one mechanism for measuring the
clocks on the remote hosts, we were interested to see how
closely the time reading obtained with web-time would agree

with the time reading obtained with clockdiff. As mentioned
earlier, far fewer hosts replied to clockdiff requests than to
web-time queries. On the nightly run on October 18, 2006,
3767 of the hosts queried with clockdiff responded with a valid
timestamp. Fig. 3 shows the cumulative distribution function
for the results.

About 74% (2789 out of 3767) of all hosts that responded
were within #10 s of our reference time. The other 26% (978
out of 3767) that responded were more than 10 s out of syn-
chronization – some by seconds, some by minutes, and
some by hours. As noted earlier, due to the size of the integer

used for timestamps, clockdiff reports the difference in time
modulo 24 days, so it is not possible to observe time
differences greater than that using clockdiff. About two thirds

(2508 of 3767) of the hosts that responded were tightly syn-
chronized to within #2 s of our reference time, and a little

more than 57% (2161 of 2767) showed a time difference of be-
tween "500 and 500 ms as measured by clockdiff. Hosts (129)
showed an offset of exactly 0 ms. This distribution is fairly
similar to the one observed with web-time (though clockdiff
was only able to measure the time on about half as many
hosts as web-time).

As with the web-time measurements, clockdiff showed
that more clocks were behind our reference time (2028 of
3638) than ahead (1610 of 3638). However, perhaps because
of the 24 day modulus of clockdiff, we did not observe sub-
stantially larger average or maximal values. For the 2028

clocks that were behind, the average number of milliseconds
that they are behind was 599,144 (about 10 min). For the
1610 clocks that were ahead, the average number of milli-
seconds that they were ahead was 721,994 (about 12 min).
The five clocks that were set the furthest in the past accord-
ing to clockdiff gave readings that were approximately 11,
10, 10, 10, and 9 h in the past. The five clocks that were
set the furthest in the future according to clockdiff gave
readings that were approximately 12, 10, 9, 9, and 8 h in
the future.

The next question we explored was: for those hosts that

answered both web-time and clockdiff requests, how closely
did the two different clock measurements agree with one
another? To answer this question we computed the delta
(or difference) between the time offset (to our reference
time) obtained using clockdiff and the time offset obtained
using web-time. These two measurements were taken as
close to one another as possible for each host every night.
We were able to compute the delta between clockdiff and
web-time on 3714 hosts, which responded with a valid time-
stamp to both requests. About 95% of the hosts (3527 of
3714) had a delta of less than 10 s. Note that this does not

mean that all those hosts were synchronized with our refer-
ence time. It simply means that if we took a measurement
of a host with clockdiff, and clockdiff reported that the
host was 20 s behind our reference time, then the web-
time measurement would have to say that the host was

 1e-04

 0.001

 0.01

 0.1

1

10 days1000 s 1 s 1 ms

Fr
ac

tio
n

w
ith

 o
ffs

et
 >

 x

Time difference according to clockdiff

Fig. 3 – The cumulative distribution function for all hosts
(measured with clockdiff).

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 3 1 – S 4 2S36

between 10 and 30 s behind our reference time to be in-
cluded in this group. About 92% of the hosts (3430 out of

3714) had a delta of less than 1 s.
So on most hosts it seemed that the two time measure-

ment techniques were in at least rough agreement with one
another. However, there were some notable exceptions.
Fig. 4 shows the clock skew between one host and our ma-
chine, chronos, as measured by web-time over a period of
about six months.

According to web-time, this host is very tightly synchro-
nized with our reference time – the difference is almost al-
ways zero except for one day when the reading was "1 s
and another day when the reading was þ1 s. These two small

losses of synchronization could be legitimate or due to a mea-
surement error perhaps introduced by an unusually large net-
work delay. Next we look at the clock skew graph for the same
host, measured a fraction of second later each night using
clockdiff for the same period of time (Fig. 5).

The measurement taken with clockdiff reports (night af-
ter night for months) that the clock is about 27 million mil-
liseconds (about seven and a half hours) behind our

reference time. Furthermore, clockdiff reports that the clock

is losing a fraction of a second each day. This is a very differ-
ent view of the remote system’s clock than the one given by
web-time. There are several possible explanations for this
behavior. One explanation would be that the web server ob-
tains its time from a different (and synchronized) time
source that is not the system clock, while clockdiff giving
us a reading from a poorly synchronized (and drifting) sys-
tem clock. Or, perhaps, web-time is measuring the system
time and clockdiff is getting a different time – possibly
from a completely different machine that is responding to
ICMP requests before they reach the target host. We have

found examples on other hosts where the time reported by
clockdiff seems to be more closely synchronized with our
reference time and the time reported by web-time is very
different. Certainly, additional remote time measurement
mechanisms could give us further evidence about what the
true time on a remote system might be.

5.1. Daylight Saving Time

Daylight Saving Time (DST) is a clock adjustment that many
countries observe to prolong the daylight for afternoons dur-
ing the summer. Each year during the spring the clocks in
those countries are set forward by 1 h, and in the fall they
are set back by 1 h. UTC is not affected by Daylight Saving
Time and thus we should not observe any changes in the
clocks we monitored for our study during the Daylight Saving
Time adjustments. This is because both ICMP/IP timestamp
requests as well as the HTTP date field require that the reply
is sent in UTC.

There is no global agreement of when those Daylight Sav-
ing Time adjustments are done. Essentially, each country
may devise its own rules regarding DST. Europe, for example,
switches to DST the last Sunday each March at 1 am, and
changes back the last Sunday each October. The United States
this year changed its DST adjustment times. Instead of
switching to DST the first Sunday of April at 2 am, the switch
now takes place the second Sunday in March. The change
back now occurs the first Sunday of November instead of
the last Sunday in October. This was put into effect as of
Spring 2007 as part of the Energy Policy Act of 2005 (United

States House of Representatives, 2005).
We were curious if any of the clocks we observed actually

(incorrectly) show the DST adjustments in their clock behav-
ior. This is especially interesting given that many computing
systems needed a special patch to accommodate for the new
rules for the United States DST switch. Our study currently
spans a time period from mid-October 2006 through April
2007, which means that we cover both the switch back from
DST in October 2006, as well as the switch to DST for both
the US and Europe (including the date the US would have
switched under the old rules).

For the switch back from DST in October we did not find

a statistically significant difference in the number of hosts
that were 1 h or more off our reference time. However, on
March 11 (the day the US switched to DST under the new sys-
tem) we observed an increase of roughly 20% (the number of
hosts changed from a daily range of 180–190 to a range of
225–240). While the overall number of hosts where we observe

-1000

-500

0

 500

 1000

May,2007

Apr,2007

Mar,2007

Feb,2007

Jan,2007

Dec,2006

Nov,2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 w
eb

-ti
m

e
 (i

n
m

illi
se

co
nd

s)

Date

Fig. 4 – Time difference according to web-time (in ms).

-7.714

-7.712

-7.71

-7.708

-7.706

-7.704

-7.702

-7.7

May,2007

Apr,2007

Mar,2007

Feb,2007

Jan,2007

Dec,2006

Nov,2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 c
lo

ck
di

ff
(in

 h
ou

rs
)

Date

Fig. 5 – Time difference according to clockdiff (in h).

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 3 1 – S 4 2 S37

this phenomenon is low (at most 60 out of 8410), we should be
aware of this. Fig. 6 shows a host belonging to a US university,

whose clock jumps 1 h ahead of our reference time on Sunday,
March 11th, and then is again synchronized with UTC on Sun-
day, April 1st. We believe that this is caused by the way UTC is
determined on this host. If UTC is calculated as local time
minus the offset, then this would explain why the host’s clock
would yield this behavior.

5.2. Types of clock behavior

In addition to examining the general trends of host synchroni-

zation on the Internet using clockdiff and web-time, and com-
paring the measurements we obtain with the two different
methods when possible, we identified a number of interesting
hosts that exhibited strange clock behavior over time. We are
currently performing a more in depth study of these hosts to
see if we can determine what is causing these strange behav-
iors. We discuss some of these interesting hosts below.

As mentioned previously, a fair number of hosts in our
sample appear to have their clocks consistently set well in

the past or slightly into the future. We also encountered
some clocks that do not appear to be running (we are pretty
sure that the system clocks on these hosts must be running
since the systems are functioning, but they return the same
timestamp in response to our queries night after night). We
have already mentioned one of these systems previously –
one that does not respond to clockdiff but has returned the
timestamp (Jan 01, 1970 00:00:00 GMT) every time we have
queried it for the past six months. There are other hosts that
exhibit this same ‘‘stuck clock’’ behavior with different values.
Fig. 7 shows the clock skew graph for a host that has been

stuck on Jul 12, 2006 20:41:36 GMT for the entire time we
have been observing it (though this host stop responding in
mid-March).

-10

0

 10

 20

 30

 40

 50

 60

May,2007

Apr,2007

Mar,2007

Feb,2007

Jan,2007

Dec,2006

Nov,2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 w
eb

-ti
m

e
 (i

n
m

in
ut

es
)

Date

Fig. 6 – A host that does not follow the new DST rules for the US.

-240

-220

-200

-180

-160

-140

-120

-100

-80

Mar,2007Feb,2007Jan,2007Dec,2006Nov,2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 w
eb

-ti
m

e
 (i

n
da

ys
)

Date

Fig. 7 – A stuck clock.

-35

-30

-25

-20

-15

-10

-5

0

May,2007

Apr,2007

Mar,2007

Feb,2007

Jan,2007

Dec,2006

Nov,2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 w
eb

-ti
m

e
(in

 d
ay

s)

Date

Fig. 8 – A sticky clock.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 3 1 – S 4 2S38

Obviously, this clock is losing one second per second every
day. A related case is several ‘‘stuck clocks’’ that occasionally

get unstuck. Fig. 8 shows a clock that synchronizes occasion-
ally and then gets stuck for several days or weeks.

We also have observed a large number of clock jumps.
Fig. 9 shows a clock that jumped more than six years into
the past on two occasions.

Fig. 10 shows a clock that jumps about 6 h into the future
quite often.

Fig. 11 shows a host whose clock was consistently about 12
days behind for several months. It was then synchronized for
about a month, and is now about 5 days behind.

Other hosts displayed a consistent clock drift. Fig. 12 shows

a clock that loses about 100 min each day but is occasionally
synchronized back close to our reference time.

Other hosts show clock drift without synchronization.
Fig. 13 shows a host whose clock loses about 4 s a day and
has not been adjusted during the time we have observed it.

5.3. Mapping to the clock model

When looking at how well the sampled clocks correspond to
the predictions of Buchholz’s clock model, we get mixed

results. Some clocks exhibit a description graph that directly
maps to a behavior of linear skew with discrete jumps in the

clock value.
Fig. 14 shows a clock that has a negative linear clock skew,

and we can observe four jumps of the clock value. Twice the
clock jumps to a fairly high positive offset to UTC (over
50 min ahead). In both cases the clock jumps back after
a few days to what appears to be synchronized time, and the
negative skew continues.

The clock described by Fig. 15 exhibits a slightly different
behavior, but is still consistent with the clock model. There
is positive skew, and also a period in the beginning third of
our measurements where the clock is mostly synchronized.

During the ‘‘synchronized phase,’’ however, the clock jumps
ahead by 40 s and back to synchronized a few days later. In
the later two thirds of our observation period there is consis-
tent clock skew but the clock jumps back and forth between
some seemingly consistent offsets. Also, it is interesting to
see that the continuation of the slope of the first spike con-
tinues seamlessly with the top slope of the skew when the
clock is no longer synchronized. Why this happens exactly

-7

-6

-5

-4

-3

-2

-1

0

1

May,2007

Apr,2007

Mar,2007

Feb,2007

Jan,2007

Dec,2006

Nov,2006

Oct,2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 w
eb

-ti
m

e
(in

 y
ea

rs
)

Date

Fig. 9 – Clock jumps.

-1

0

1

2

3

4

5

6

May,2007

Apr,2007

Mar,2007

Feb,2007

Jan,2007

Dec,2006

Nov,2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 w
eb

-ti
m

e
(in

 h
ou

rs
)

Date

Fig. 10 – Jumpy clock.

-14

-12

-10

-8

-6

-4

-2

0

2

May,2007

Apr,2007

Mar,2007

Feb,2007

Jan,2007

Dec,2006

Nov,2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 w
eb

-ti
m

e
 (i

n
da

ys
)

Date

Fig. 11 – Clock jumps.

-70

-60

-50

-40

-30

-20

-10

0

May,2007

Apr,2007

Mar,2007

Feb,2007

Jan,2007

Dec,2006

Nov,2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 w
eb

-ti
m

e
(in

 h
ou

rs
)

Date

Fig. 12 – Clock drift with synchronization.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 3 1 – S 4 2 S39

we cannot tell. It may be that we are sampling two different
hosts that are reachable by the same IP address, or it could

be that the host was synchronized with NTP for a while and
then stopped. This would not explain why the clock resumed
at the continuation of the original skew, however, or why
there are so many jumps. Further research will be needed to
determine what is going on here.

The clock shown in Fig. 16 is again consistent with the
clock model until toward the end of our observation period
the clock skew changes. This is not supposed to happen for
a hardware clock as Kohno et al. (2005) point out. The most
likely explanation for this is that the hardware of the web
server for this IP address was changed and the new clock

has a different skew than the old one. Also, it could be that
again multiple hosts take on traffic from this IP address.

Fig. 17 shows another host that conforms with Buchholz’s
clock model. Two things are remarkable about this clock: first,
it seems to jump in fairly regular intervals. This does not al-
ways happen, nor are the jumps always of the same magni-
tude. However, the duration of many of the intervals where
the clock drifts off without a jump is roughly about a week
long. This could be the result of running a Microsoft Windows
operating system (The web server is ‘‘Microsoft IIS’’). Hosts

running Windows often periodically contact a time server to
synchronize their clock. Why the clock is almost never syn-

chronized with our reference time, we cannot say, though.
The second point of interest about this clock is that the

graph in Fig. 17 is an ‘‘hourly’’ graph, meaning that we sample
this clock every hour. The sample method for the hourly sam-
ples is clockdiff using IP option timestamps. In our daily sam-
ples, we also query this host, but here we use clockdiff ICMP
requests to sample. The ‘‘daily’’ graph of this clock is shown
in Fig. 18.

The clock graphs do not correspond at all. First, there are
very few samples actually successfully taken of this clock us-
ing ICMP, and second, the scale of the two graphs is very dif-

ferent. Occasionally when we ran clockdiff with the ICMP
option we received a message that the reply was in non-stan-
dard format. What we currently suspect is that some ICMP
(and possibly IP) clockdiff replies return some random value,
which sometimes may be interpreted as a valid timestamp.
The resulting graph may then look like Fig. 18.

-400

-350

-300

-250

-200

-150

-100

-50

0

 50

 100

Mar,2007Feb,2007Jan,2007Dec,2006Nov,2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 w
eb

-ti
m

e
(in

 s
ec

on
ds

)

Date

Fig. 13 – Clock drift without synchronization.

-10

0

 10

 20

 30

 40

 50

 60

May,2007

Apr,2007

Mar,2007

Feb,2007

Jan,2007

Dec,2006

Nov,2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 c
lo

ck
di

ff
 (i

n
m

in
ut

es
)

Date

Fig. 14 – A clock behaving in accordance to the model.

-20

0

 20

 40

 60

 80

 100

 120

May,2007

Apr,2007

Mar,2007

Feb,2007

Jan,2007

Dec,2006

Nov,2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 c
lo

ck
di

ff
 (i

n
se

co
nd

s)

Date

Fig. 15 – A clock that continues with its original skew slope
when no longer synchronized.

0

5

10

15

20

25

30

May,
2007

Apr,
2007

Mar,
2007

Feb,
2007

Jan,
2007

Dec,
2006

Nov,
2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 c
lo

ck
di

ff
(in

 m
in

ut
es

)

Date

Fig. 16 – Did the hardware for this host change?

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 3 1 – S 4 2S40

Finally, Fig. 19 shows a clock that seems to have two dif-
ferent clock skews and a very large number of jumps. Both

skews are negative and the one we can observe along the
top edge of the graph is steeper than the skew at the bottom
of the graph. It is very likely that in this case there are in-
deed two different hosts that handle requests for the same
IP address and when we sample the clock we sometimes
get an answer from one host, and sometimes an answer
from the other. What we cannot explain at this point is
why there is an overall positive progression for the top
clock, a negative progression for the bottom clock, or why
there is a time about in the middle of our observation period
where both clocks seem to be synchronized. It could be that

there is a common time server or domain controller that is
responsible for this behavior.

6. Conclusions and future work

In this paper we have described the first large-scale study of
how hosts connected to the Internet manage their clocks.
Some of the surprising observations from our study include:

! A significant number (26%) of the servers we observed dif-
fered by more than 10 s from of our reference time (UTC).

Some of these hosts were days, months, or years off.
! Some hosts give one clock reading when queried with one of

our measuring techniques and a very different reading
when queried with another measuring technique.
! Some hosts’ clocks fit well with established clock models,

and others are inexplicable as of yet.

Our conclusions from this study are:

! More study in the area of clock behavior and time correla-
tion is needed. Clearly, the lack of global agreement on
time could potentially hamper forensic investigations in

which there is a need for event correlation for events col-
lected from disparate sources, as well as for the correlation
of computer events with events in the real world. The large
number of hosts that were not synchronized to UTC shows
that there is a strong likelihood of event correlation prob-
lems when more than one host is involved in a forensic
analysis. This is especially true if a high degree of precision
is needed for the timestamps.
! Even though many of the clocks we observed were off our

reference time, we could sometimes discover certain regu-
larities in their behavior that may be useful to a forensic in-

vestigator who needs to correlate timestamps. Some hosts
we observed changed their clock value in regular intervals,
for others we could recognize a ‘‘pattern’’ with the human
eye, and further research will be needed to mathematically
explain these observations. Ideally, future research could
establish that certain classes of hosts exhibit regular clock
behaviors. This would enable an investigator to guess at
past clock behavior for systems that are beyond the control
of the investigation. This can then be used to strengthen the
evidence observed locally.
! Additional tools are needed for measuring the time on a re-

mote system over the Internet. Neither of the two tools we
made use of, web-time and clockdiff, worked on all hosts.
Furthermore, each tool displayed a different granularity of
measurement and success rate at measuring hosts.

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

May,
2007

Apr,
2007

Mar,
2007

Feb,
2007

Jan,
2007

Dec,
2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 c
lo

ck
di

ff
(in

 s
ec

on
ds

)

Date

Fig. 17 – A clock with periodic jumps (sampled hourly).

-15

-10

-5

0

5

10

15

May,
2007

Apr,
2007

Mar,
2007

Feb,
2007

Jan,
2007

Dec,
2006

Nov,
2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 c
lo

ck
di

ff
(in

 d
ay

s)

Date

Fig. 18 – The same host as Fig. 17 sampled differently.

-15

-10

-5

0

5

10

15

20

25

May,
2007

Apr,
2007

Mar,
2007

Feb,
2007

Jan,
2007

Dec,
2006

C
lo

ck
 s

ke
w

 a
cc

or
di

ng
 to

 c
lo

ck
di

ff
(in

 s
ec

on
ds

)

Date

Fig. 19 – Two different hosts ‘‘sharing’’ an IP address?

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 3 1 – S 4 2 S41

Additional methods of sampling a remote clock may be able

to perform better measurement or at least give us additional
evidence about the time on a remote system when perform-
ing a forensic analysis.
! Further study is needed of the unusual behavior we ob-

served for some of the clocks. This may lead to refinement
of existing clock models, or it may reveal peculiarities of
how certain hardware, operating systems, or applications
influence timestamps obtained from particular systems un-
der investigation.
! A ‘‘clock logging’’ tool that observes clocks on a local (or re-

mote) system can be devised using the methodology of our

study and any future techniques that may be developed.
Such a tool could centrally collect and store clock descrip-
tions of important hosts on a network. Once an investiga-
tion is necessary, the data stored can be used as extra
independent evidence. Any clock manipulations on a host
should be observed given that the external logging facility
is not also compromised. Thus such a clock observed could
also be used in the area of intrusion detection generating an
alert when ‘‘unusual’’ clock behavior is detected.

r e f e r e n c e s

Boyd Chris, Foster Pete. Time and date issues in forensic
computing – a case study. Digit Investig 2004;1(1):18–23.

CBS News. The Alibi: reasonable doubt, <http://www.cbsnews.
com/stories/2002/10/10/48hours/main525143.shtml>; January
2005.

DMOZ Top Listed Domains, <http://www.domaintools.com/
internet-statistics/dmoz-listings.php> [accessed October
2006].

Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, et al.
Hypertext Transfer Protocol – HTTP/1.1. Technical Report RFC
2616, Internet Society; June 1999. <ftp://ftp.isi.edu/in-notes/
rfc2616.txt>.

Gladyshev Pavel, Patel Ahmed. Formalising event time bounding
in digital investigations. Int J Digit Evid 2005;4(2).

Guyton James D, Schwartz Michael F. Experiences with a survey
tool for discovering network time protocol servers. In: USENIX
Summer; 1994. p. 257–65.

Koff Stephen. Task force in blackout outlines grid failure. The Plain
Dealer, <http://www. cleveland.com/blackout/index.ssf?/
blackout/more/106335939217%2910.html> September 2003.

Kohno T, Broido A, Claffy KC. Remote physical device
fingerprinting. In: IEEE symposium on security and privacy,
Oakland, CA, USA, May 2005.

Lamport L, Melliar-Smith PM. Synchronizing clocks in the
presence of faults. J ACM 1985;32(1):52–78.

McAlpin John P. U.S. energy secretary says weeks needed to
analyze blackout data. The Standard Times, <http://www.
southcoasttoday.com/daily/08-03/08-28-03/a19wn082.htm>

August 2003 [AP Press].
Mills D. Network Time Protocol (version 3): specification,

implementation and analysis. Technical Report RFC 1305,
Network Working Group; March 1992.

Minar Nelson. A survey of the NTP network, <http://www.media.
mit. edu/wnelson/research/ntp-survey99/>; December 1999.

Paxson V. On calibrating measurements of packet transit times.
Meas Model Comput Syst 1998;11–21.

Schatz Bradley, Mohay George, Clark Andrew. A correlation
method for establishing provenance of timestamps in digital
evidence. In: Proceedings of the 6th annual digital forensic
research workshop, August 2006.

Stevens Malcolm W. Unification of relative time frames for digital
forensics. Digit Investig 2005;1(3):225–39.

Symmetricom: Timing, Test, and Measurement Division. How
time finally caught up with the power grid, <http://www.
symmttm.com/pdf/Gps/wp_PowerGrid.pdf>.

Symmetricom: Timing, Test, and Measurement Division.
Stochastic model estimation of network time variance,
<http://www.symmttm.com/pdf/Network_Timing/wp_
Stochastic_Model.pdf>.

United States House of Representatives: Committee on Energy
and Commerce. Energy policy act of 2005, <http://frwebgate.
access.gpo.gov/cgi-bin/getdoc.cgi? dbname¼109_cong_bills
&docid=f:h6enr.txt.pdf>; 2005 [public law 109-58].

United States Naval Observatory: Astronomical Applications
Department. What is universal time?, <http://aa.usno.navy.
mil/faq/docs/UT.html>; 2003.

Weil Michael C. Dynamic time & date stamp analysis. Int J Digit
Evid 2002;1(2).

Dr. Buchholz received his Ph.D. in Computer Science in August
2005 from Purdue University, where he worked with his adviser,
Eugene Spafford. He joined the faculty of the Computer Science
Department at James Madison University in September 2005 as
an assistant professor. His research focuses on Digital Forensics
with an emphasis on time synchronization and event and data re-
construction, Operating System Security, and Network Traceback.
He is teaching Computer Forensics and Distributed Security clas-
ses at JMU as part of the online Master’s program with an empha-
sis in Information Security, as well as various undergraduate
classes, including a Computer Forensics course.

Brett Tjaden received his Ph.D. in Computer Science from the Uni-
versity of Virginia in May 1997. From 1998 to 2002 he was an Assis-
tant Professor in the School of Electrical Engineering and
Computer Science at Ohio University. He is currently an Associate
Professor in the Department of Computer Science at James Madi-
son University where he teaches undergraduate and graduate
courses on information security, network security, and secure
operations.

d i g i t a l i n v e s t i g a t i o n 4 S (2 0 0 7) S 3 1 – S 4 2S42

http://www.cbsnews.com/stories/2002/10/10/48hours/main525143.shtml
http://www.cbsnews.com/stories/2002/10/10/48hours/main525143.shtml
http://www.domaintools.com/internet-statistics/dmoz-listings.php
http://www.domaintools.com/internet-statistics/dmoz-listings.php
http://ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://www.%20cleveland.com/blackout/index.ssf%3F/blackout/more/106335939217%2910.html
http://www.%20cleveland.com/blackout/index.ssf%3F/blackout/more/106335939217%2910.html
http://www.southcoasttoday.com/daily/08-03/08-28-03/a19wn082.htm
http://www.southcoasttoday.com/daily/08-03/08-28-03/a19wn082.htm
http://www.media.mit.edu/~nelson/research/ntp-survey99/
http://www.media.mit.edu/~nelson/research/ntp-survey99/
http://www.symmttm.com/pdf/Gps/wp_PowerGrid.pdf
http://www.symmttm.com/pdf/Gps/wp_PowerGrid.pdf
http://www.symmttm.com/pdf/Network_Timing/wp_Stochastic_Model.pdf
http://www.symmttm.com/pdf/Network_Timing/wp_Stochastic_Model.pdf
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?0dbname=109_cong_bills&docid=f:h6enr.txt.pdf
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?0dbname=109_cong_bills&docid=f:h6enr.txt.pdf
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?0dbname=109_cong_bills&docid=f:h6enr.txt.pdf
http://aa.usno.navy.mil/faq/docs/UT.html
http://aa.usno.navy.mil/faq/docs/UT.html

	A brief study of time
	Introduction
	Problem description
	Related work
	NTP time synchronization
	Measurements of computer clocks
	Describing clocks and bounding events

	Experimental setup
	Using HTTP to sample the clock on remote systems
	Using IP/ICMP to sample the clock on remote systems

	Analysis of results
	Daylight Saving Time
	Types of clock behavior
	Mapping to the clock model

	Conclusions and future work
	References

