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Forensics memory analysis has recently gained great attention in cyber forensics commu-
nity. However, most of the proposals have focused on the extraction of important kernel
data structures such as executive objects from the memory. In this paper, we propose a for-
mal approach to analyze the stack memory of process threads to discover a partial execu-
tion history of the process. Our approach uses a process logic to model the extracted
properties from the stack and then verify these properties against models generated

from the program assembly code. The main focus of the paper is on Windows thread stack

analysis though the same idea is applicable to other operating systems.

© 2007 DFRWS. Published by Elsevier Ltd. All rights reserved.

1. Motivations and background

Nowadays, more and more cyber attacks are affecting corpo-
rate and government networks and sometimes even the IT
systems underlying the critical infrastructure. These attacks
raise major concerns from the law enforcement standpoint.
Owing to the borderless nature of cyber attacks, many crimi-
nals/offenders have been able to walk away due to the lack
of supporting evidence to convict them. In this context, cyber
forensics plays a major role by providing scientifically proven
methods to gather, process, interpret, and use digital evidence
to bring a conclusive description of cyber crime activities. In
the commercial software market flooded by security products,
the development of forensics IT solutions for law enforcement
has been limited. Though outstanding results have been
achieved for forensically sound evidence gathering, little has
been done on the analysis of the acquired evidence. This is
particularly true for volatile evidence sources such as physical
memory and cache which is mainly due to the volatile and un-
stable nature of data which is residing on these media. How-
ever, if not damaged, the information that is acquired from

such sources is the most pertinent and definitive evidence
which should be analyzed during the initial phases of investi-
gation. In this paper, we propose a new technique in memory
analysis and present the system that has been developed to
realize the application of this technique. The proposed tech-
nique would help forensics analysts to determine what a pro-
cess has done during the incident by recovering the chain of
function calls it has made during its execution. The technique
consists of the following phases:

Parsing the internal memory structures.

Retrieving the process assembly code and stack from the
memory.

Constructing the CFG from the executable code.

Modeling the program execution by transforming the CFGs
to local automata and combining the local automata models
into a Push Down System (PDS).

Modeling the stack residues properties using process logic.
Extracting all the possible execution paths by correlating
the stack residues properties and the program execution
model.

* The research reported in this paper is the result of a fruitful collaboration with Bell Canada under the PROMPT Quebec research part-

nership program.
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In this paper, for the sake of illustration, we focus on
Windows operating system. However, the same approach is
applicable to any operating system that applies stacking mech-
anisms to handle function calls. The paper is organized as fol-
lows. In Section 2, the related work on forensic analysis and
physical memory analysis, though limited, is discussed. In Sec-
tion 3, a summary of our approach is presented and Section 4
details different aspects of our approach by introducing the
problem, and then detailing the solution. Section 5 gives a gen-
eral overview of the pertinent kernel data structures and Win-
dows memory layout. Section 6 summarizes our discussion by
providing the conclusion and future research directions.

2. Related work

In spite of the limited research result available on forensic
analysis, there are some important proposals that we detail
hereafter. The state of the art on cyber forensic analysis could
be categorized as follows: baseline analysis, root cause
analysis, common vulnerability analysis, timeline analysis,
semantic integrity check analysis and memory analysis.

Baseline analysis, proposed in Monroe and Bailey (2003),
uses an automated tool that checks for the differences be-
tween a baseline of the safe state of the system and the state
during the incident. An approach to post-incident root cause
analysis of digital incidents through the separation of the in-
formation systems into different security domains and mod-
eling the transactions between these domains is proposed in
Stephenson (2003).

The common vulnerability analysis (Tenable Network
Security), involves searching through a database of common
vulnerabilities and investigating the case according to the re-
lated past and known vulnerabilities. The timeline analysis
approach (Hosmer, 1998) consists of analyzing logs, and
scheduling information to develop a timeline of the events
that led to the incident. The semantic integrity checking ap-
proach (Stallard and Levitt, 2003) uses a decision engine that
is endowed with a tree to detect semantic incongruities. The
decision tree reflects pre-determined invariant relationships
between redundant digital objects.

Gladyshev and Patel (2004) propose a formalization of dig-
ital evidence and event reconstruction based on finite state
machines. Other research on formalized forensic analysis in-
cludes the formalization of event time binding in digital inves-
tigation (Gladyshev and Patel, 2005; Leigland and Krings, 2004),
which proposes an approach to constructing formalized fo-
rensic procedures. The absence of a satisfactory and general
methodology for forensic log analysis has resulted in ad hoc
analysis techniques such as log analysis (Peikari and Chuva-
kin, 2004) and operating system-specific analysis (Kruse and
Heiser, 2002).

The DFRWS memory forensics challenge (DFRWS, 2005) is
considered as one of the initiatives for the research on mem-
ory analysis. The challenge led to the development of two
memory analysis tools: Memparser (Betz, 2005) and Kntlist
(Garner) each capable of traversing the link list of process
structures kept by the operating system to extract information
about a running process. Burdach presents an approach to re-
trieve process and file information from the memory of Unix

operating system by following the unbroken links between
data structures in the memory. The work in Walters and Pet-
roni presents an extensible framework (FATKit), which pro-
vides the analyst with the ability to automatically derive
digital object definitions from C source code and extract the
underlying objects from memory. Walters and Petroni (2007)
present an approach for extracting in-memory cryptographic
keying material from disk encryption applications.

Schuster (2006) proposes an approach to define signatures
for executive object structures in the memory and recover the
hidden and lost structures by scanning the memory looking
for predefined signatures. However, defining a signature that
uniquely identifies most of the data structures is not achiev-
able except for a small set of kernel structures. B. Carrier
and J. Grand in Kornblum (2007) discuss a strategy for robust
address translation by incorporating invalid pages and paging
file to improve the completeness of the analysis.

In this paper, instead of relying on the signatures of
the structures, we try to determine some of the actions that a
process has performed during its course of execution and by
correlating these actions with each other and the process
source code we will be able to extract a partial execution
history of the process.

3. Approach

In this section, we lay out the principles underlying our ap-
proach to the forensic analysis of stack leftovers. What makes
this approach possible is the way the stack operates in the
course of program execution. The stack mechanism is used
in most of the prevalent operating systems to make structured
programming possible. For each function call made by a pro-
cess, a stack frame is created and stored on the stack. The
stack frame contains the parameters passed to the function,
the return address, the previous value of the EBP register
and the local variables of the function. These function call
traces enclose the history of what a process has done during
its course of execution.

After a function returns, the stack pointer is moved down
to point to the previous stack. However, returned function
stack frame still resides in the memory until another call is
made by the process, and the stack grows up enough to over-
write the frame. The depth of the stack at each point of the ex-
ecution depends on the number of nested function calls that
are made by the process as well as the length of each stack
frame. Due to the fact that the depth of the stack has arbitrary
values during the execution, a large number of previously
called function stack frames stay on top of the stack un-
touched or partially overwritten. Moreover, current software
engineering best practices encourage the implementation of
a service through long chain of function calls with each com-
ponent serving some part of the requested service. This fact
intuitively enforces our doctrine.

The correlation of the stack with the program source re-
veals the execution history of the program in terms of func-
tion call chains. We have developed modeling techniques,
and the system that makes this approach possible. As shown
in Fig. 1, the physical image acquired from the system under
analysis is parsed to retrieve the process executable code
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Fig. 1 — Our approach. The program model is verified against stack residues ADM model.

and thread stacks. The stack frames are extracted by analyz-
ing the thread stacks. The extracted executable is analyzed
to produce the control flow graph of each function and all
the resulting CFGs are combined to form an abstract model
of the program execution. The stack frames and their interre-
lations are modeled using the ADM process logic. The created
model is verified against the generated program models using
the tableau based proof system introduced in Debbabi et al.
(2003). The next section discusses the details involved in this
process.
Some of the advantages of this technique include:

The analysis is performed on the extracted assembly code of
the process from the memory and there is no need for the
external provision of the source code or executable. This
feature overcomes the anti-forensics that hide the execut-
able in the filesystem by hooking operating system APIs.
The technique integrates the formal analytical power of
process logic and program models to retrieve the execution
history of the process. This feature bestows the precision re-
quired in most jurisdiction systems from the digital
investigation.

As stated before, the result of the analysis could reveal im-
portant fact about what a process has done rather than
what is currently existing in the memory. This is of para-
mount importance to forensics investigation since the final
goal of the forensics science is to discover what has been
done during the incident.

e The application of process logic instead of other modeling
approaches such as state machines and PDAs to model the
stack properties provides for higher performance in the
analysis. The stack residues are naturally constraints on
the execution history of the process. This is while, the state
machine based modeling approaches are most effective
when modeling the behavior of a whole system rather
than the properties of the system. Using process logic favors
the analysis by providing a means to model the constraints
(in our case stack constraints) rather than developing a com-
plete system.

4. Modeling the process and the stack traces

In this section, we detail our approach. The approach consists
of five phases. First, we generate the CFG of all functions of
the program. Second, the CFGs are transformed into finite
state machines. Third, the finite state machines are combined
to form a PDS system. The resulting PDS models the program
execution in terms of function calls and returns made by
the program. Fourth, we model the stack residues as a
process logic property using ADM process logic (Debbabi
et al, 2003). Fifth the resulting stack property is verified
against the execution traces which can be generated by
the PDS model of the program. The verification in this
step is done based on the tableau based proof system
introduced for ADM logic in Debbabi et al. (2003). In the
following sections, we elaborate on each phase. As an
example, consider the program shown in Fig. 2. We use this
program to clarify each phase. For simplicity, we chose a pro-
gram written in the C language. However, it is important to
note that since our approach only deals with function calls
and returns, exactly the same procedure is applicable to the
assembly code.

4.1. Control flow graph

A control flow graph (CFG) is a structure that characterizes
possible execution paths in a program. Vertices of the graph
contain one or more instructions of the program that execute
sequentially. Edges in the graph show how control flow trans-
fers between blocks.

Let f be a function in a program P. The control flow graph
for f is denoted by Gs=(Vj, Ep) where V is the set of vertices
and Ef S Vyx Vf is the set of edges. A vertex in Gy is a basic
block.

Eachv e Vycontains a sequential list of instructions in f sat-
isfying the following properties: there is no control flow trans-
fer into the middle of a basic block nor a transfer out of the
middle of a basic block. In defining basic blocks, notice that
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1. #include <iostream>

2. void op(int 1i);

3. wvoid h(int i, int j) {

4. return;

5. }

6. void g(int i, int j) {

7. return;

8. }

9. void b(int i, int j, int k, int 1) {

10. return;

11. }

12. void e(int i, int j, int k, int 1) {

13. op(2);

14. 3}

15. void a(int i, int j, int k, int 1) {

16. if (1 == 49) {

17. g(i,j);

18. e(i,j,k,1);

19. return;

20. Yelsed{

21 h(i,j);

22. return;

23. ¥

24. }

25. void c(int i, int j, int k, int 1) {

26. b(i,j,k,1);

27. return;

28. }

29. void d(int i, int j, int k, int 1) {

30 h(i,j,k,1);

31. return;

32. }

33. void op(int i) {

34. char input;

35. printf ("Input a value
betwean 1, 2:\n");

36. fflush(stdin);

37. scanf ("%c", &input);

38. a(i,0,0,0);

39. switch (input) {

40. case ’17:

41. d(0,0,0,0);

42. break;

43. case ’27:

44 c(0,0,0,0);

45. break;

46. }

47. return;

48. }

49. void inc(int i) {

50. if (1 < 2) {

51. inc(i+1);

52. } else {

53. op(1);

54. return;

55. }

56. }

57. void main() {

58. inc(0);

59. }

Fig. 2 — Sample program to analyze.

the call to a function is considered as a transfer of control out
of the basic block and therefore, each basic block at most has
one function call instruction. An edge <Uj, Up) € Erif there exists
a possible control flow from v; to vg.

The first step of our approach is the generation of a control
flow graph of each function called in the program. As an ex-
ample, the control flow graph of function op of the sample
program is shown in Fig. 3.

Having the CFG of a function, we generate the local autom-
ata model of the CFG as discussed in Giffin (2006). The local
automata model of a CFG is a finite state machine whose
states represent nodes of the CFG and its transitions are de-
fined based on the control flows among different nodes of
the CFG. Below is the formal definition of the local automata
model.

Suppose that F is the set of functions in program P, C is the
set of function call sites in P, and 6(c) denotes the target func-
tion of call site c. The local automata model of function f with
control flow graph of Gy=(Vj, Ey) is defined as follows:

Let a < v indicate that vertex v e V;contains call site a. The
local model for fis Ar=(Qy, Zj, 65 q5 Fp) where:

e Qr=V5

o Y= Cf U {e}.

e Ff=C;where Cf < C.

e gre Vyis the CFG entry state.

e Fr={ve V4u is a CFG exit state}.

e Function call transition: é;(p, a)=q if a<\p, ae C; and
{p, @) € Ey.

e e-transition: 6(p, € =q if {p, q) € Erand Vae Cg~(a < p)

0

Y

34.char input;
35.print f(...);

Y
37.scanf(...);

Y

38.a(i,0,0,0);

44.¢(0,0,0,0);

45.break;

41.d(0,0,0,0);
42.break;

Fig. 3 — The control flow graph of op.
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Please notice that we have changed the above model from
the original version in Giffin (2006) by removing the system
call transitions. This is due to the fact that, firstly since we
are analyzing the kernel stack as well as the user land stack
we do not need to restrict our analysis only to the user land
system calls. Secondly, depending on the extent of the analy-
sis, a stack trace analysis could expand to only the functions
inside the program, the system calls, the library calls or even
the low level kernel function calls. Therefore, we have intro-
duced the concept of the end function calls which are a set
of function names that are defined by the analyst to limit
the depth of the analysis. The CFG of end function calls has
only one state which is both an entry and an exit state. Intui-
tively, the local automata model of a CFG is a finite state ma-
chine whose states represent the nodes of the CFG and edges
are either the name of a function called from the originating
node, or e.

As explained in Giffin (2006), the e-reduction algorithm is
performed on the local models to remove the ¢ transitions.
This will increase the performance of the system since the ¢
edges are always traversed without consuming any symbol
from the input. As an example, Fig. 4 depicts the local autom-
ata model of function op. Notice that in Fig. 4, we have
included the line number in the transition names to differen-
tiate among different calls to the same function. For the same
reason, the definition of the local automata model of a CFG

35.print f

37.scan f

Fig. 4 — The local automata model of op.

contains the concept of the function call site rather than the
function name.

Until now, we have modeled the execution of the program
as a set of local state machines each representing the execu-
tion of a function in the program. However, in order to analyze
the execution of a program as a whole, we have to combine
the local state machine models into a global model. The
resulting model should encompass all the possible control
flows among the basic blocks of the program, while preserving
the inter-procedural control flows. We have developed a mod-
eling approach using Push Down System (PDS) that accurately
models the execution of the program in terms of function calls
and returns made by the program. The model maintains the
inter-procedural execution flows.

A PDS is a triple P=(Q, I', ¢) where Q is the final set of
control locations, I' is the finite set of stack alphabets and
g S (QxT)x(QxTI" is a finite set of transition rules. The
program execution in terms of the chain of function calls
and returns made by the program is modeled using a
PDS. We combine the local automata models of individual
functions to form the PDS model of the whole program as
follows:

Again suppose that F is the set of functions in program P,
C is the set of function call sites in P, §(c) denotes the target
function of call site c. The combination of the local models
of the functions of a program is defined as the PDSP=(Q, I, 0)
where:

e Q=UQsforallfeF.

e I'=C is the set of stack variables.

e Function call transition: ¢(p, €)=(q, 1) if Ife F, ce C such
that é{ p, c) =1, q=qy) Where gy is the entry state of the
local automata model of ¢(c).

e Function return transition: ¢( p, t) =(q, €) if 3fe F, re Q such
that ér, ¢) = q, p € Fy) Where Fy is the set of final states of
the local automata model of function 6(c).

As an example, Fig. 5 shows the resulting PDS model of the
program in Fig. 2. For clarity, in the diagram, the stack opera-
tions are represented as labels of edges. An edge labeled as
a call site represents the push operation and an edge labeled
as a bared call site represents the pop operation. Notice that
in our analysis we have considered the scanf and printf func-
tions as end functions. However, a more detailed analysis
could involve modeling the function calls inside these
functions.

4.2. Modeling the stack

The stack has a partial execution history of the program. How-
ever, based on the function call model of the program, the
stack remnant could be interpreted in several different
ways. A set of rules could be derived from the function call
implementation using stacking mechanism as follows:

o If stack frame b is on top of stack frame c, then either ¢ has
called b or b has been called before c.

e The function call history should generate exactly the same
stack trace and should not overwrite any of the currently
existing stack frames.
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Fig. 5 — The PDS model of the program.

To model these properties for a stack trace, we use the
ADM logic.

4.3.  ADM logic

ADM (Debbabi et al., 2003) is a dynamic, linear, modal and
trace based logic that has been developed for modeling
and verification of security protocols. Through its compact
and formal syntax and expressive semantic and due to it being
a trace based logic rather than a state based process logic, one
can specify a plethora of properties on the traces generated by
the system. The syntax of the logic is based on patterns that
are sequences of actions and pattern variables. A pattern is
defined by the following grammar:

p:=a-p[x-ple

where ¢ stands for the empty pattern, a is an action and x is
a pattern variable. Actions themselves may contain variables.
In the sequel, the set of action variables is denoted by V,, the
set of pattern variables is defined by V,, the set of message
variables is represented by Vp,, the set of session identifier var-
iables is Ves and the set of step identifier variables is referred
by Vp. Here is an example of a pattern containing message
variables, session identifier variables and pattern variables:

P =2Xp (X icredit(B,M,Xm)) ¥p

Intuitively, a pattern is an abstraction of a trace, where
some actions or some attributes of an action are replaced by
pattern and action variables, respectively. They are the basic
elements used to specify formulae in the logic.

4.4. Logic syntax

Let X be a formula variable, then the set of logic formulae is
obtained by the grammar given below:

@11 = X|=®|[py % P | B|PLND, X - D

The symbols - and A represent negation and conjunction,
respectively, while p; + p, is a modal operator indexed by
the two patterns p; and p,. The formula vX- @ is a recursive for-
mula; the greatest fixed point operator » binds all free occur-
rences of X in @. There is a syntactic restriction on the body
of vX- @ stipulating that any occurrence of X in ¢ must occur
under the scope of an even number of negations. It is also as-
sumed that the set of pattern variables in p, is included in the
set of pattern variables in p; (no new variables appearing in
p2). For instance [x ¢ x-y|vX-X is not a formula since {x,
yH & {x}.

From now on, £ denotes the set of formulae of the logic and
V is the set of formula variables (disjoint form V, and Vp).
Furthermore, for convenience, we use the following standard
abbreviations:

tt=vX-X

ff=uX-X

(p1 P P2)®=~[p1 P P2 ]~
uX - o=-wX--P[-X/X]
D1V D, Eﬁ(ﬁ@l/\ﬁ@z)
@14’@25‘@51\/@2
PPy =P; > PyNDy; — Dy

where @[I'/X] represents the simultaneous replacement of
all free occurrences of X in ¢ by I'.
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4.4.1. Denotational semantics
Suppose that Sub denotes the set of all possible substitutions
o such that:

gE [Vp _’T} ° [Vm _’M] ° [Va - A] ° [Vses - Ises} °© [Vstp _’Istp}

where V), is the set of pattern variables, Vy, is the set of mes-
sage variables, V, is the set of action variables, Vg is the set
of session identifier variables, Vy, is the set of step identifier
variables, M is the set of messages, I is the set of session
identifiers, sy, is the set of step identifiers and finally, 7 is
the set of valid traces. The operation o denotes function
composition.

Env also denotes the set of all possible environments in
[V—27]. Furthermore, we use e[X — U] to denote the environ-
ment ¢’ defined as follows:

e'(Y) = e(Y)
e/(X)=U

if Y#X

The semantics of formulae is given by the function:
[Jc:L£xT xSub x Env—>27

defined inductively on the structures of formulae as shown in
Table 1, where t; is the set of traces inductively defined as
follows:

{) tet,
(11) tl-a-tzeti :>t1't2€tl

Informally t, contains all subtraces that could be extracted
from t by eliminating some actions from the beginning, from
the middle and/or from the end of t. For instance, if t=a-b-c,
thent, ={¢a,b,c,a-b,a-c, b-c,a-b-c}. The notation t, is intro-
duced to simplify the presentation of the denotational seman-
tics. Intuitively, given a trace t, the semantics of a formula will
be all the traces in t; respecting the conditions specified by
this formula.

Environments are used to give a semantics to the formula X
and to deal with recursive formulae. Substitutions are internal
parameters used to give a semantics to the formula [p; % p,|®.
Given an environment e and a substitution ¢, we say that
a trace t satisfies ¢ if:

te[@].”

Intuitively, the trace t satisfies the formula [p; % p,]@ if for
all substitutions ¢ such that p;o =t, the new trace p,o (the
modified version of the trace t) satisfies the remaining part
of the formula (®). In this respect, the notation [p; ¢ p,] has
principally two effects. First, the part p; allows us to verify if
something has happened somewhere in the trace t. Second,

Table 1 — The denotational sementics of the logic

[X" = e(X)

[-ol” =t, - [2]"

[[4’1/\4)2112’0 = [[4)11]2’0”[[4’2}]2”

[y % p2] @] = {uet,|Vd' : prod’ = u:pzaa’e[[d?]]gzw’aloy}

: f:27 27
[vX-@]:° = of, where to
e = U [@lx..y)

the part p, allows us to modify the trace (delete some actions,
substitute some actions by others, add some actions) in such
a way the remainder of the formula (@) will be verified on
the modified version of the trace described by p,. Notice that
the restriction on the used patterns (var(p,) < var(p4)) en-
sures that if p;o =t, then p,o is a ground trace, that is, it does
not contain any variables.

4.4.2. Logical modeling

A stack frame contains the address from which the program
execution should continue after the function is returned.
Based on this address, except for dynamic function calls (using
function pointers), both the callee and the caller and the exact
address of the call site in the code are identifiable. Therefore,
each stack frame in our trace represents a unique call site
and since the PDS model also captures program flows based
on the call site instead of the function name, each stack
frame can be associated with a transition. The inclusion of
the call site in modeling is due to the fact that a function could
call another function in several different call sites. Accord-
ingly, each stack frame in our trace is modeled as a triple
(a, b, ¢) which represents function a being called by function
b at call site c. Also the alphabets of the Dyke model are anno-
tated by the call site as (a, ¢) showing the call to function a at
call site c.

We define a—b to represent a calling b and a < b with the
meaning of a happened before b. To capture the stated proper-
ties, we need to be able to model the following logical
statements:

o If the stack frame C=(c, call) is before frame B = (b, call)
then the following logical statement is true:

((C < B)A(C—B))V (B < C)A=~(B—C))

e Moreover, none of the stack frames currently existing on
the stack should have been overwritten meaning that for
each ce (the set of stack frames) the depth of the stack after
calling the function representing ¢ do not reach the depth
of c.

To formally model the above statements, we need to for-
malize the statement of b happening before ¢ and b calling c.
These two properties could be modeled using ADM as follows:

b<c: <x:b-x-b-X3-C-Xg e >tt

b—c: X < X1‘b‘C‘X2°"’E > ttVv
< X3'D-X4-y1-Xs Y| X6 C-X7 P X3 b Xy X5 X6:C- X7 > X.

In order to model the third property, we define the com-
bined execution trace:

Definition. If Sis the stack trace and E represent an execution
path that is accepted by the PDS model of the program, the
combined execution trace is defined as follows: comb(S,E ) =S:|-E

Essentially, the combined execution trace is the concatena-
tion of both traces while separating the traces using the | sym-
bol. The reason that we need to combine both traces is that
with ADM logic we can only express properties on one single
trace.
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Using the combined execution trace of a system we can
model the third property defined above concerning the persis-
tence of stack frames as follows:

vX(Z1 X1+ |- X2 Z; - X3 9> X3 -allow) (vY(z, - X4 - allow & X4)Y
V(2 X5 X5 -allow)Y - ) A[z4 - Xg > X - allow]X

Note that in the above formula, the trace variables starting
with x are subtraces and the variables starting with z are sin-
gle events. In analyzing each stack frame, the above formula
adds the same number of allow constants at the end of the
trace as the stack depth of the function frame. For each func-
tion call made after the return of the function representing the
stack frame (z}) the formula removes one allow from the end
and for each function return it adds an allow at the end.
This way, the formula does not allow the paths that overwrite
the stack frame being analyzed.

In order to model the whole stack we add all the properties
specified above in one formula by following the steps de-
scribed below for every two consecutive stack frames starting
from the bottom toward the top of the stack (stack limit):

1. Find the call and return states corresponding to the
currently being analyzed frame:

((z1,—,0)" — X1+ |"Xa"(21,0) X3~ (2}, €)Xy > X3)
x (vZ{(z3,1)-Xs- (25, 1) -Xe P X5 - X6)Z V empty- tt)

In the above formula, z; is the function representing the an-
alyzed frame. The formula first chooses a call and return
statements which appear after z; and both correspond to
the same function call site. It proceeds by verifying if the
right call and return are chosen by trying to match each
call with its corresponding return statement and removing
them from the trace.

2. Make sure that the stack frame is not overwritten by the fol-
lowing function calls:

((z1,—,0) — -X1-|"X2-(21,€) X3+ (2], C) - X4 P> Xa)

x (vY(z},-x; X7 -allow)Y - V(24 - X -allow %> xg)Y )

3. Model the properties. The properties consist of z; —z; and
(z2(z1A~23 = z1). Using the previous formulae, we have:

21— 2, =vU((21, 22,€) (22, —, —) X1 | X2 (21,C) " (22, =) " Xo P €)
x ttV{(21,22,0) (22, —, =) X1 |- Xp- (21, €) - X10- (23, d) X1
x - (25, d)-X12- (22, —, —) - Xo ¥ (21, 22,€) (22, —, —) X1 | X2

X '(217C)'X10'X11'X12'(Zz7—)'X9>U

Z5(21=(21 29 X1 - | “X12°Z2-X13Z X4 Z1 - X15 P )Lt

4. In order to be able to specify interrelationships among two
consecutive stack frames, we have to locate each function
call representing the stack frame in the trace. The first
function call is located in step one. Therefore it remains
for the second stack frame (b). The call site location for
b should be preserved for the specification of properties
among the next two consecutive frames (b, c). This is
while the variable substitutions do not propagate through
the iterations in the fix point formulae. Hence we will put

some markers in the trace to mark the call site that we
have found for b and in the next iteration, we remove
them. Since the context specifying the location of b depends
on the property we specify, depending on which property
we want to describe in the previous step, we put the
markers separately. In the following formulae 1 and | rep-
resent the before and after markers, respectively.

if 21020 ((21,22,—) (22, = —) X1 | X16" (22, =) Xo P>
(z2,—, =) X1-|-X16- 1+ (22, )" | -X9-allow)
if zy(zy : <(217227—)‘(227—7—)‘Xl‘\‘xlz'(zb—)‘an‘)
(22, —, =) X1|-X12° 1+ (22, =)+ | -Xq7-allow)

Note that the reason we add the allow at the end of the for-
mula is that the depth of the next stack frame that will be an-
alyzed in the next iteration is one more than the current stack
frame and therefore the maximum length of the function call
chain can increase by one. Moreover we have removed the
first frame from the stack to continue the specification of
the properties for the next two consecutive frames.

As stated before, the markers should be removed from the
trace in the next iteration. Accordingly we will add the for-
mula to remove the markers from the trace at the beginning
of the iteration after locating the related call site.

(21, =, =) (22, =, =) Xa | Xg- | (21, =) T Xoo P
(21, =, =) (22, = =) -X1-|- X2+ (21, =) - Xa0)

To model the whole stack, we combine all the formulae
using proper operators (V, A). However, in order to reduce the
complexity of the formula we define several macros to repre-
sent each step in the algorithm. In defining macros, it is
important to specify the trace and stack variables which are
used across several formulae as arguments in the macro.

1. Find the call and return states corresponding to the
currently being analyzed frame.

FindCallCite(a,d,e)={(a, —,y1) x1|-d- (a,y1) -e- (@', y1) X2 % e€)
x (vZ{(21,y2) X3~ (21, ¥2) -Xa P X3-X4)ZV empty-tt)

2. Make sure that the stack frame is not overwritten by latter
function calls.
NotOverWriten(a, d,e)=((a, -, y1)-x1-|-d- (a,y1)-e- (@', y1) X
%) (Y((25, —) -X3 > X3 -allow)Y - V((z2, —)-X4-allow
P x4)Y")

3. Model the properties.
a—b=Call(a,b,d,e)=vU{(a,b,y1)- (b, —,y2) - x1-|-d- (a,y1)
-(b,y2)-eettv{(a,b,—)-(b,—, y2)-x1-|-d- (a,y1) X2
“(21,y5) X3+ (21,¥3) Xe- (b,Y2) e (4, =, ¥1) - (b, = y2)
“Xp-|-d-(a,y1)-X2-X3-Xa- (b, y2) -)U.

b < a=Before(a,b,e,f)=((a,—, —)- (b, —,y2) X1 |-f- (b, y2)
Xy (a,—)-e-(a,—) X3P ett.
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4. Mark call site locations.

if a—b : MarkIfCall(a,b,e)=((a,b, —)- (b, 21,y1) X1+ |- X2
(b, —)~e%(b,21,y2)~x1~\~x2- 1-b- | -e-allow)

if b < a : MarkIfBefore(a,b,f)=((a, —, —)- (b, 21,y1) X1+ |-f
“(b,y1) %2 (b,z1,y1) %1 |-f- 1+ (b,y1)- | -x,-allow)

5. Unmark call site locations.

Unmark(a, 9)=((a,z1,y1) -X1-|-9- L - (a,y1) - 1 - %% (a, 21, 1)
'X1'}'9'(07Y1)'X2>

Using the defined formulae, the whole stack specification
could be modeled as follows:

vX-Unmark(a,d)(FindCallCite(a, d, e) ANotOverWrite(a, d, e)
A((Call(a, b, d, f)AMarkIfCall(a, b, f)X-) V (Before(a, b, g)
AMarklIfBefore(a, b, g)X-)))

5. Windows architecture and memory layout

In this section, we summarize the stacking mechanism used
in Windows. Knowing the functionality of Windows function
call mechanism, the reader will gain a better understanding of
the importance of the stack analysis in a digital forensics stack
investigation. Windows operating system executes in two
modes: user mode and kernel mode. Components that exe-
cute in the user mode are system support processes, service
processes, user applications and environment subsystem
server processes.

Under Windows, user applications do not call the native
Windows operating system services directly; all the calls
from user applications are redirected through a chain of sub-
system Dynamic-Link Library (DLL) calls to the appropriate in-
ternal Windows system service calls. The kernel mode
components of Windows include Windows executive, which
provides for the primary operating system services, Windows
kernel, device drivers, Hardware Abstraction Layer (HAL), and
the windowing and graphics system.

As stated before, user mode processes cannot directly call
services in kernel. The DLL ntdll.dll exports two sets of func-
tions that are mostly wrappers for services inside the kernel
and start with NT or ZW. Except for the functions that are han-
dled inside ntdll.dll such as NtCurrentTeb(...), which performs
a purely user land operation, ntdll.dll exported functions are
routed to a function with the same name in the ntoskrnl.exe
(Schreiber, 2001). The routing mechanism that is performed
by the system consists of switching the CPU from user mode
to kernel mode, locating the service inside the kernel, copying
the function parameters from user land stack to kernel land
and executing the related service inside the kernel.

In Windows, each user application thread has at least two
stacks, one in user land and one in kernel land. Accordingly,
all functions that are called during the execution of the thread
have a stack frame either in kernel land stack or the thread’s
user land stack depending on the mode they are executed un-
der. In order to locate a service inside the kernel, Windows

8
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R
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=
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Fig. 6 — Windows thread stacks during the execution of
a kernel service.

uses the service descriptor table that is located at the address
of KeServiceDescriptorTable symbol. This table contains the
address of each service and the number of arguments that
should be passed to the function inside two arrays of the
same length. A call to ntdIl.dll functions loads a service num-
ber, which is an index into the arrays kept by the service
descriptor table, and executes the sysenter command (Butler
and Hoglund, 2005). This command changes the execution
mode from user land to the kernel land and calls kiFastSystem-
CallEntry. This function locates the service address and jumps
to the beginning of it. Fig. 6 shows the threads stack during the
execution of a kernel service.

On returning from a kernel service, sysexit command is
called. This command switches the execution mode from ker-
nel mode to user mode and jumps to the kiFastSystemCallRet
that simply returns from the user land ntdll.dll function call
to the caller.

The provided kernel services can also be called by the
drivers and other kernel modules. In this case, the calling is
performed either in the context of a user application thread
that has requested a service from the driver or in the context
of system thread if the driver creates its own execution thread
by calling PsCreateSystemThread.

The addresses of the kernel and user stacks are stored in
the kernel structures. For each running process, there exists
an _eprocess block in the kernel that contains the head of
a link list of _kthread structures. Each _kthread structure repre-
sents one executing thread of the process. Fig. 7 depicts this
structure. The structure fields InitialStack, StackLimit and
KernelStack contain the stack base, the largest address that
the stack can extend to, and the current position of the stack
pointer, respectively. The teb field in the _kthread structure
points to a structure of type _TEB that contains the user land
information about a thread including the user stack. The first
field in this structure is of type _nt_tib. The fields StackBase and
StackLimit in this structure contain the stack base and the
largest address the stack can extend to, respectively.
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0:001> dt _kthread ntdll!_KTHREAD
+0x000 Header _DISPATCHER_HEADER
+0x010 MutantListHead _LIST_ENTRY
+0x018 InitialStack Ptr32 Void
+0x01c StackLimit Ptr32 Void
+0x020 Teb Ptr32 Void
+0x024 TlsArray Ptr32 Void
+0x028 KernelStack Ptr32 Void
+0x02¢c DebugActive UChar
+0x167 AutoAlignment UChar
+0x168 StackBase Ptr32 Void
+0x16¢ SuspendApc _KAPC
+0x19¢c SuspendSemaphore : _KSEMAPHORE
+0x1b0 ThreadListEntry _LIST_ENTRY
+0x1b8 FreezeCount : Char

+0x1b9 SuspendCount : Char

+0x1ba IdealProcessor UChar
+0x1bb DisableBoost UChar

Fig. 7 — The _kthread structure contains the address of
the stack and the address of the top of the stack.

As stated before, our approach can work on assembly code.
Moreover, the system we have developed is capable of extract-
ing executable code from the memory eliminating the need
for supplying the program executable based on the following
technique. Files in Windows are mapped to the memory in
two different ways: cached files and executables. The cached
files are managed by Windows cache manager using struc-
tures of type _VACB. The executable files in the memory
are mapped using the prototype PTE (Page Table Entry). The
SectionObject field in _eprocess structure points to an object of
type section. This object is represented by _section_object struc-
ture. For process executables, the segment field in this struc-
ture points to a structure of type _segment (although windbg
describe it as _segment_object). The _segment structure and
the process for extracting the first page of an executable are
shown in Fig. 8. The PrototypePte field in this structure points
to the beginning of the prototype page table for the process.
This table is essentially a page table. Each entry contains the
page frame number (physical page) of the physical memory
that the corresponding page (virtual page) is mapped to.
The executable code can be extracted by following each of
these entries and copying the content of the pointed page
frame.

6. Implementation and testing

The stack analyzer has been developed in a previously imple-
mented Windows memory forensics environment. The envi-
ronment enables the investigator to add analysis plugins,
introduce new data structures and view the result of parsing
a chunk of memory based on the introduced structures. The
stack analyzer parses the stack based on two stack tracing
techniques:

kd> dt _segment 0xe44db000

nt!_SEGMENT
+0x000 ControlArea: 0x86c7fc10 _CONTROL_AREA
+0x004 TotalNumberOfPtes : 0x6f5
+0x008 NonExtendedPtes : 0x6f5
+0x00c WritableUserReferences : 0
+0x010 SizeOfSegment : 0x6£5000
+0x018 SegmentPteTemplate : _MMPTE
+0x020 NumberOfCommittedPages : O
+0x024 ExtendInfo ¢ (null)
+0x028 SystemImageBase : (null)

+0x02c BasedAddress : 0x00400000
+0x030 ul : __unnamed
+0x034 u2 : __unnamed
+0x038 PrototypePte : 0xe44db040 _MMPTE
+0x040 ThePtes : [1] _MMPTE

kd> dd 0xe44db040

e44db040 2a73d121 80000000 25240121 00000000
€44db050 25201121 00000000 25e42121 00000000
e44db060 3a24e121 00000000 lelec121 00000000
e44db070 26245121 00000000 25e€06121 00000000
e44db080 00000460 86c7fc60 00000460 86c7fc60
e44db090 25dc8121 00000000 26209121 00000000
e44db0a0 25e4al121 00000000 2610b121 00000000
€44db0b0 2630c121 00000000 262cd121 00000000

kd> !'dc 2a73d000

#2a73d000 00905a4d 00000003 00000004 0000ffff MZ..............
#2a73d010 000000b8 00000000 00000040 00000000 ........ Q.......
#2a73d020 00000000 00000000 00000000 00000000 ................
#2a73d030 00000000 00000000 00000000 00000120 ............ ...
#2a73d040 OebalflOe cd09b400 4c01b821 685421cd ........ '..L.!Th
#2a73d050 70207369 72676f72 63206d61 6f6e6e61 is program canno
#2a73d060 65622074 6e757220 206e6920 20534f44 t be run in DOS

#2a73d070 65646f6d 0a0d0d2e 00000024 00000000 mode....$.......

Fig. 8 — _segment Structure and extraction of executable
content.

e As it is shown in Fig. 6, the OLD_EBP field on the stack
holds the address of the previous frame OLD_EBP. In
this way, stack frames are chained together and the
stack parser follows this chain to correctly identify each
stack frame. However, some compilers tend to use the EBP
pointer within the function as a general purpose register.
While this can optimize register utilization, it makes it
impossible to trace back the stack by following the EBP
chain.

e A stack frame can be identified by looking for return ad-
dresses that point to right after a call instruction. In this
technique the stack will be traversed word by word testing
which address is pointing to an instruction after a call
instruction.

Using these two techniques, we are able to retrieve the
addresses of call instructions as well as the arguments
passed to the function. On the other hand, based on the
technique discussed in the previous section, the parser
extracts the executables from the memory. In order to
disassemble the executable and generate the PDS model,
we use IDAPro (The IDA pro, 2007). We have developed a
plugin in IDAPro that generates the CFGs, local automata
and PDS model of the program using the SDK provided by
IDAPro.

Having the addresses (call sites) on the stack and the PDS
model, the analyzer proceeds to verify the query specified
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stack_trace!main+Oxb [C:\stack trace\stack_trace.cpp @ 58]: 004012db

e83efdffff call

stack_trace!ILT+25(?incYAXHZ) (0040101e)

stack_trace!inc+0x16 [C:\stack trace\stack_trace.cpp @ 51]: 004012a6

e873fdffff call

stack_trace!ILT+25(?incYAXHZ) (0040101e)

stack_trace!inc+0x16 [C:\stack trace\stack_trace.cpp @ 51]: 004012a6

e873fdffff call

stack_trace! ILT+25(?incYAXHZ) (0040101e)

stack_trace!inc+0x22 [C:\stack trace\stack_trace.cpp @ 53]: 004012b2

e853fdffff call

stack_trace! ILT+5(7opYAXHZ) (0040100a)

stack_trace!op+0x63 [C:\stack trace\stack_trace.cpp @ 41]: 00401243

e8dbfdffff call

stack_trace! ILT+30(?dYAXHHHHZ) (00401023)

stack_trace!d+0x11 [C:\stack trace\stack_trace.cpp @ 30]: 004011cl

e83ffeffff call

stack_trace! ILT+0(?hYAXHHZ) (00401005)

stack_trace!a+0x2f [C:\stack trace\stack_trace.cpp @ 18]: 0040112f

e8fefeffff call

stack_trace! ILT+45(?eYAXHHHHZ) (00401032)

stack_trace!e+0xb [C:\stack trace\stack_trace.cpp @ 13]: 004010eb

e8laffffff call

stack_trace! ILT+5(7opYAXHZ) (0040100a)

stack_trace!op+0x75 [C:\stack trace\stack_trace.cpp @ 44]: 00401255

e8ddfdffff call

stack_trace! ILT+50(?cYAXHHHHZ) (00401037)

stack_trace!c+0x19 [C:\stack trace\stack_trace.cpp @ 26]: 00401189

e8aefeffff call

stack_trace!ILT+55(?bYAXHHHHZ) (0040103c)

Fig. 9 — Extracted stack traces.

before to find the possible execution path. Please note that the
verification proceeds by first generating a possible execution
path using the PDS model and then verifying it against the
properties specified by the query. Which ever path that satisfy
the query, could have been taken by the process at the time of
the incident.

As a sample scenario, we have analyzed the program in
Fig. 2. The program is executed with inputs of 1 and 2, in order.
For simplicity, we limited our analysis to the functions called
directly by the program. In this case, since the program has
only two noncritical calls to the functions that are defined
outside the program, we would not benefit from analyzing
the kernel stack or other DLLs function calls. This is while
in real situations, a great deal of information can be extrac-
ted by going deep inside the kernel stack and correlate the
stack traces with program and operating system code. For
demonstration purpose, the program also creates a windbg
(Microsoft, 2007) script file that could be executed in the
debugger to show the name of the function calls on the stack.
The script file is essentially a list In commands each having
a function call address, that was found on the stack, as their
argument. The result of executing this script in a debug
session of windbg attached to our sample program is shown
in Fig. 9.

Submitting the logical statement created in the previous
section, the system is able to completely generate the exe-
cuted function chain as below:

(inc,58)->(inc,51)-> (inc,51)-> (op, 53) -> (printf, 35)
-> (printf,35) '-> (scanf,37)->(scanf,37) '->(a,38)->
(g,17)->(g,17)"->(e,18)->(op,13)->(a,38)->(h,21)
->(h,21)"->(a,38)’->(d,41)->(h,30)->(h,30) "->
(d,41)"->(op,13) "'->(e,18)"'->(a,38) '->(c,44)->
(b,26)->(b,26)"'->(c,44)'->(op,53) '->(inc,51) " ->
(inc,51) "->(inc, 58) '

7. Conclusion

In this paper, we presented a new forensic analysis technique
by analyzing the thread stacks. The information that is
retrieved using this technique can reveal what has been
done by the thread. A great deal of information can be
acquired by correlating this information with the source
code or the assembly code using different static code analysis
approaches. Moreover, the stack trace and stack residue
retrieved by our approach could be considered as a log
from system activities and could be correlated with other
sources such as network logs, operating system logs, etc. It
is important to notice that due to the fact that each possible
execution path is generated before it is verified, our approach
is susceptible to infinite loops. However, the loop detection
techniques could be applied to reduce the effect of infinite
loops.
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The stack analyzer.
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