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a b s t r a c t

ZFS is a relatively new, open source file system designed and developed by Sun Micro-

systems.1 The stated intent was to develop ‘‘.a new kind of file system that provides

simple administration, transactional semantics, end-to-end data integrity, and immense

scalability’’ (OpenSolaris community). Its functionality, architecture, and disk layout take

a relatively radical departure from many commonly used file systems (e.g. FAT, NTFS,

EXT2/3, UFS, HFSþ, etc.). Since file systems play a very important role in how and where

data are stored, as well as the likelihood of their retrieval during digital forensic investi-

gations, it is important that forensics researchers and practitioners understand ZFS and its

forensic implications. That is the goal of this article. We first provide the reader with

a primer of sorts about ZFS, which lays the foundation for our discussion of ZFS forensics.

We then present the results of our analysis of ZFS functionality, architecture, and disk

layout – identifying and discussing several digital forensic artifacts and challenges unique

to ZFS.

ª 2009 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Large scale storage, information security, and ease of admin-
istration are key operational and business enablers in many
organizations today. Organizations are ever increasing the
amount of data they store, warehouse, retrieve, and mine. As
is often the case in computing, IT solutions providers are
hurriedly adapting current technologies to meet new storage,

security, and administrative needs.
Perhaps one of the best examples of adapting current

technologies to meet new needs is in the context of managing
storage arrays and the advent of logical volume managers
(LVMs). Storage arraysdtheir size, configuration, and man-
agementdquickly outgrew the capabilities of many existing
file systems; hence, the advent of LVMs. The problem is that
LVMs can be difficult to manage; the addition or removal of

block devices in the array is not as simple as inserting or
removing physical drives. So, while current technologies
arguably do scale to meet current storage needs, they are not
trivial to administer as storage needs and capacity frequently
change. Furthermore, they have a finite capacity limit. Given
the exponential growth in data stores in recent years, we
contend that even 64 bit file systems will be a limiting factor
someday.

Another growing concern is the issue of information
security, particularly data integrity, of critical data stores.
Organizations remain vulnerable to silent data corruption. We
have relatively robust mechanisms in place to ensure data
integrity of network-based data (e.g. message digests,
message authentication codes in SSL, etc.), but we do not have
robust, widespread means to scrub on-disk data. We have
hashing, but that is certainly not self-healing. We have RAID

* Corresponding author.
E-mail address: nicole.beebe@utsa.edu (N.L. Beebe).

1 As of the writing of this article, Sun Microsystems publicly acknowledged a plan for Oracle to acquire Sun. ZFS was released as open
source software under a CDDL license. It is unknown what impact the not yet finalized acquisition will have on ZFS.
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implementations that will rebuild a disk, should one fail, but

typical RAID implementations do not prevent against silent
data corruption and write-hole vulnerabilities. They do not
calculate and verify checksums at an object (i.e. file) level, and
self-heal when errors are detected. Such mechanisms are
needed to validate the integrity of data stored on-disk, as well
as when data is being read/written, which would detect and
self-correct errors. Today, such errors remain largely unde-
tected and uncorrected, except via user detection which is
often too late to correct the errors.

For these reasons, and others, Sun Microsystems designed
and developed ZFS (OpenSolaris community). ‘‘ZFS is a new

kind of file system that provides simple administration,
transactional semantics, end-to-end data integrity, and
immense scalability. ZFS is not an incremental improvement
to existing technology; it is a fundamentally new approach to
data management’’ (OpenSolaris community).

Digital forensics researchers and practitioners know all too
well that a different file system often necessitates funda-
mentally different approaches to search and retrieval –
extraction and analysis. As Carrier points out, a thorough
understanding of the file system is critical to one’s knowledge
of where digital artifacts will be found during an investigation

(Carrier, 2005). If ZFS represents a paradigm shift in file system
design from commonly used file systems (e.g. FAT, NTFS,
EXT2/3, UFS, HFSþ, etc), significant digital forensic implica-
tions follow.

ZFS is currently the native file system for OpenSolaris and
Solaris 10. Kernel-level ports have been developed for
FreeBSD, NetBSD, and Apple’s OS X 10.5 Leopard (read-only).
User-level ports have been developed for Linux and Apple’s OS
X 10.5 Leopard via FUSE. A kernel-level port is currently under
development for Apple’s OS X 10.6 Snow Leopard Server.
These implementations and ports have been publicly

announced, but there are also rumors of ports to Desktop
Snow Leopard and Linux via a kernel-level port provided by
Sun. Furthermore, we contend that even if ZFS’s prominence
in the file system market does not show marked increase in
years to come, next-generation file systems will tackle
modern storage array, security, and administration issues in
a similar ways.

The purpose of this article is to introduce the digital
forensics research and practitioner community to ZFS and the
digital forensic implications thereof. The remainder of the
article is structured as follows. First, we familiarize the reader
with ZFS in generaldits functionality, its architecture, and its

disk layout. Second, and more importantly, we discuss
significant digital forensic implications of this relatively new
and different file system over commonly used file systems.
Finally, we conclude with a discussion of limitations, future
research needed, contributions, and a few concluding
remarks.

2. Background

This section will introduce the reader to ZFS and show how it
fundamentally diverges from commonly used file systems. It
is a primer of sorts, which is intended to serve the digital
forensics community from an educational standpoint, but

does not claim a knowledge contribution in the traditional

research sense. Such background will help readers under-
stand the subsequent digital forensic implication
discussionsdthe primary contribution of this article. The
background should also serve the community by lessening
their burden in understanding the architecture of ZFS. We aim
to coalesce what we have learned from ZFS documentation,
conference presentations and proceedings, source code
reviews, ZFS developer blog posts, direct observation, and
other related sources into an instructive introduction of ZFS
for the digital forensics community.

2.1. ZFS functionality

ZFS integrates traditional file system and logical volume
manager functionality and uses a pooled storage model,
facilitating a highly dynamic file system that supports flexible
and large storage arrays. Block devices can be added to the
storage array, into what ZFS calls zpools. ZFS facilitates the
integration automatically and autonomously. The devices are
immediately added to the pool, are immediately available for

use/storage, and all of this occurs transparent to the user. ZFS
eliminates the need for managing and resizing volumes.

Storage arrays, their constituent zpools, and their constit-
uent datasets (i.e. file systems, snapshots, clones, and
volumes) can be exceptionally large, as ZFS is the first 128 bit
file system. Also, it is endian adaptive,2 making it architecture
independent. Data can be created by any architecture and
read by any architecture, and the ordering can be intermixed
within a zpool.

ZFS is designed to be impervious to silent data corruption,
because of its extensive use of checksumming. A checksum3 is

calculated and stored for all ZFS objects (e.g. content and
metadata). The checksum is stored in the data’s metadata and
verified incident to any and all data transactions. ZFS then
uses the checksums to self-heal whenever errors are detected,
thereby facilitating automatic, on-going live data scrubbing,
as well as on-demand data scrubbing.

To ensure the validity of the on-disk state, ZFS implements
a copy-on-write (COW) transactional object model. When
block modifications are prescribed, the modified block(s) are
written to newly allocated blocks. When the write trans-
actions complete successfully, metadata are updated, also

using the COW model. Following the transactional object
model, synchronous operations are grouped and tracked in
ZFS intent logs (ZILs). Should part of the transaction complete
successfully and the other fail, all completed transactions are
rolled back to ensure transaction synchronicity requirements
are achieved. The model also improves I/O performance by
batching write transactions and committing them every few
(5–10) seconds, or earlier in the event of a forced sync. Both
the COW model and transactional object model ensure that

2 Endian ordering of data structures is a function of the archi-
tecture used to write it. A flag is set within objects’ block pointers
to indicate the endian ordering, which ZFS then uses to read the
data in the appropriate order. The manipulation required is
entirely transparent to the user.

3 Supported checksums include SHA-256 (default), fletcher2,
and fletcher4 algorithms.
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unexpected events, such as system failure due to power

failure, do not result in data corruption.
ZFS also facilitates system resiliency and data redundancy

through its native support of snapshots, clones, and ditto
blocks (multiple, automatic, on-disk copies of metadata and/
or content category data). A snapshot is a read-only, point-in-
time version of a file system. A clone is a read–writeable, fully
operational file system, created from a snapshot. Ditto blocks
are allocated copies of file metadata and potentially file
content and will be discussed in greater detail later due to
their digital forensic implications.

Compression (LZJB) is built-in and implemented by default

in ZFS for metadata. Content category data is not compressed
by default, but can be compressed. Its implementation gains
return on the processing (CPU load) investment by signifi-
cantly lessening disk I/O time.

2.2. ZFS architecture and disk layout4

Like most file systems, ZFS starts with a superblockda block
of data reserved for key file system category data, often stat-
ically located at the beginning of a physical disk. ZFS calls this
the uberblock (big endian magic number: 0x00 ba b1 0c – note
its phonetics). The uberblock is a 1 KB data structure (element)
contained within an uberblock array (128 KB array). Even the
uberblock follows the COW model in the sense that updates to
the active uberblock are accomplished by writing to a different

uberblock in the array than that which contains the active
uberblock and then updating the transaction group (TXG)
number. The uberblock with the highest TXG and valid
checksum is deemed the active uberblock. The uberblock
array starts at offset 128 KB within the vdev label.

A vdev is a virtual device; it may be a physical or logical
device. Vdev types include: disk, file, mirror, clone, RAID-Z
(similar to RAID-5), replacing, and root. (See Anonymous, 2006
for further explanation of these types.) A vdev label is a 256 KB
data structure located in quadruplicate on each vdev (two
consecutive copies at the beginning of the vdev and two

consecutive copies at the end of the vdev). The vdev label
contains information that facilitates access to zpool contents
and verifies the zpool’s integrity and availability. See Fig. 1 for
illustrations of the above concepts.

This is the full extent of statically located data structures in
ZFS. To put this point into perspective, we compare ZFS to
EXT2/3. EXT2/3 divides the file system into sections, called
block groups, and subsequently stores backup superblocks,
group descriptor tables, block bitmaps, inode bitmaps, and
inode tables at specific locations within each block group. File
content is stored in equally sized logical allocation units
within the block group. Finally, EXT2/3 intentionally co-

locates file metadata and file content to minimize disk latency
and seek time.

ZFS behaves oppositely by design. The analogous data lis-
ted above may be stored anywhere on a top-level vdev, which
includes intentionally spreading it across multiple physical/
leaf vdevs to reduce the risk of catastrophic (non-recoverable)
data loss. While metaslabs subdivide vdevs in a similar manner

as block groups, the corresponding data stored within the

metaslabs is not stored in specific locations, as with EXT2/3
block groups.

Unlike many commonly used file systems, including NTFS,
EXT2/3, and HFSþ, ZFS does not store file content in equally
sized logical allocation units (what ZFS calls file system blocks,
or FSBs). It uses neither block-based allocation, nor extent-
based allocation in the traditional sense. Block-based alloca-
tion means files are allocated space at the block (i.e. sector)
level, as is the case with UFS. When a file grows, more blocks
are allocated to meet the need. Extent-based allocation
usually means a file system’s data storage space is broken up

into equally sized, contiguous groups of blocks upon file
system creation, and files are allocated space at an extent-
level. (Note: Extents are also referred to as clusters, logical
allocation units, and data units.) When a file grows, more
extents (groups of blocks) are allocated to meet the need.
While the extent size can be variably determined upon file
system creation, all extents are usually equally sized and the
extent size does not vary after install, nor between files.

In contrast and conceptually similar to JFS5 (Eckstein, 2004),
ZFS dynamically and variably sizes its extents according to the
needs of individual files. ZFS ‘right-sizes’ extents up to the max

FSB record size set for the file system (default¼ 128 KB). So,
allocated extents are not equally sized in a single ZFS file
system. Files smaller than FSB record size will be allocated to
extents that are smaller than FSB record size. Files larger than
FSB record size will be allocated to multiple extents equal in
size to FSB record size.

This functionality means that ZFS maintains sector-level
allocation awareness. This is accomplished via per metaslab
allocation/free log files called space maps. Space maps are
loaded into memory and converted to space efficient, offset
sorted, AVL trees of free space.

Since space maps merely track free space and provide no
other data location information, ZFS relies heavily on block
pointersddirect and indirectdsimilar to EXT2/3. In fact,
everything after the uberblock is located via block pointers.
Unlike other file systems, ZFS does not use statically located
inode tables, or file system category files to store data location
information (e.g. NTFS’s Master File Table – $MFT). ZFS
supports six levels of indirection, and several instances of
such indirection can exist as one traverses from the uber-
block, to the meta-object set, to the dnode array for the file
system objects (directories, files, etc.), and to the file content
itself. This traversal is particularly important to digital

forensic investigators, as it relates to how data is stored,
located, and retrieved.

2.2.1. On-disk data walk
To provide the big picture of how content and metadata are
stored, located, and retrieved, the following discussion walks
through how to locate a target file starting from the uberblock.
First, however, we must discuss a few key data structures.

All, or nearly all, objects in ZFS are described by dnodes. As
‘‘everything is a file’’ in NTFS, ‘‘everything is an object’’ in ZFS,
thus the list of object types is long. See Anonymous (2006) for

4 Primary resources for this section are (Anonymous, 2006;
Bruning, 2008a,b,c).

5 JFS and ZFS implement what Eckstein (2004) calls ‘‘variable-sized
allocation units’’ in very different ways.
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a full listing, but a few example object types include: files,
directory listings, space maps, intent logs, attribute lists,
access control lists, and dnodes.

Dnodes (conceptually similar to inodes in UFS) are 512B
data structures that contain, among other things, block

pointers (data structure: blkptr_t). Block pointers store infor-
mation about what the object is, where it is, and how big it is.
Dnodes are stored on-disk, usually in dnode arrays, but in-
memory copies exist as objects are accessed. Dnode arrays are
often fragmented (stored in non-contiguous space on-disk)
(Bruning, 2008c).

Objects of similar type are grouped in ZFS and called object
sets. Whereas individual objects are described by dnodes
(dnode_phys_t data structures), object sets are described by
metadnodes (objset_phys_t data structures; 1 KB in size).
Objset_phys_t data structures contain: 1) a dnode that often
points to a dnode array for that object set, 2) a ZIL header, and

3) the object set type. One object set is of particular impor-
tance: the meta-object set (MOS). The MOS is the superset of
all objects in the zpool.

With an understanding of these key concepts and data
structures, we can move forward with the on-disk data walk
discussion. (See Fig. 2 for an illustrative view of the data walk).

At the zpool level, the active uberblock’s block pointer
points to the meta-object set’s (MOS) metadnode. Its dnode’s
block pointer points to the MOS dnode array. The second
element (index¼ 1) of the MOS dnode array points to the
Object Directory ZAP object (ZFS Attribute Processor; an object

that contains name–value pairs). One name–value pair within
the Object Directory ZAP is the root_dataset pair, whose value
is the object ID (index number) within the MOS dnode array for
the DSL (Dataset and Snapshot Layer) directory. The DSL
directory provides a mapping of object IDs (indices) of dnodes
within the MOS dnode array for the various DSL datasets (e.g.
a specific file system within the zpool). Respective DSL dataset
dnodes then point to the metadnodes for the DSL datasets,
which in-turn point to each dataset’s dnode array.

At the dataset level (e.g. a single file system), each dnode
within the dataset’s dnode array pertains to a specific file

system object (e.g. files and directories). The block pointers
within directory dnodes point to ZAP objects, which provide
the object IDs for the directory’s child objects (i.e. files and
subdirectories in the case of a directory object). The block
pointers within file dnodes point to file content (or block
pointer arrays in the case of indirection).

2.2.2. Files, directories and their metadata
The discussion above centers on file and directory traversal by
walking through the steps and data structures involved in
ultimately locating file content. Some ambiguity may remain,

however, with regard to data typically of forensic interest,
such as filenames, directory structures, and file metadata.

Filenames and directory names are stored in ZAP objects
(name–value pair data structures). The dnode within the file
system’s dataset dnode array that pertains to the file system’s
root directory points to the root directory ZAP object. Its
constituent name–value pairs consist of the named directories
and files within the root directory and their associated object
IDs (dataset dnode array indices). Each file and directory has
a dataset dnode, which either points to another directory ZAP
object, or the file content, for directories and files respectively.

File and directory metadata is stored in its respective
dnode within variably sized ‘‘bonus buffer’’ space (referred to
as a znode when storing such metadata). This metadata
includes MAC date/time stamps, creation transaction group
number (relevant for chronologically ordering different
versions of data), read–write–execute permissions (e.g. 755),
file type (e.g. regular, symbolic link, socket, etc.), file size,
object ID of the parent directory, number of hard links, owner
ID, group ID, and access control lists. See Anonymous (2006)
for specific data structure information.

3. Forensic implications

Now that readers are familiar with ZFS, its functions, its
architecture, and its on-disk layout, we can shift our discus-
sion to its digital forensics implicationsdthe primary focus of
this article. The discussion will outline several important
artifacts left behind by normal ZFS operation that may be of
investigative interest and recoverable during analysis. We
also discuss several analytical challenges ZFS introduces.

3.1. Artifact: copies of data

Sun’s design goals of protecting against data corruption, live
data scrubbing, instantaneous snapshots and clones, fast
native backup and restore, and file system survivability
resulted in several features that create and leave behind
copies of metadata and content. Such data is forensically
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Fig. 1 – vdev, vdev label, and uberblock layouts (Figure adapted from ZFS On-Disk specification illustrations 2, 3 & 7).
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recoverable. These features include the COW transactional
object model, ditto blocks, snapshotting, and cloning.

3.1.1. Copies in unallocated space
Several unallocated copies of metadata and content will likely
exist, because of the COW model. COW is designed to prevent

data corruption by not overwriting in-place data. Instead,
when data are to be modified, the modified blocks are written
elsewhere on disk. When the modified blocks are written
correctly, associated metadata are updated, also via the COW
model. Because disk I/O is such a critical performance issue,
ZFS (like most file systems) does not securely delete the
outdated blocks and the data remains in unallocated space
until overwritten. The blocks are, of course, discoverable and
recoverable. The impact of this is that forensic examiners will
likely find numerous copies of metadata and content
throughout the zpool in unallocated space

COW is implemented at the FSB-level. If one sector within
a file is modified, the respective FSB for that file will be copied
on write. If the file consists of several FSBs, it appears that ZFS
trades future increased seek time associated with possible file
fragmentation for reduced disk IOPs associated with the COW
transaction. The implication of FSB-level COW is that the

duplicate metadata and content will likely be whole files
(if smaller than FSB record size), or significant chunks of files
(if larger than FSB record size).

Additional unallocated copies of metadata and content
may exist due to the transaction object model ZFS uses and its
resultant ZFS intent log (ZIL) objects. ‘‘The ZFS intent log (ZIL)

saves transaction records of system calls that change the file
system in memory with enough information to be able to
replay them . There is one ZIL per file system’’. (Anonymous,
2006) (pg 51) (Note: Same text remains in the current zil.c
source code (OpenSolaris 2008.11 release) located at: http://
cvs.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/uts/
common/fs/zfs/zil.c).

Transactions are recorded in ZIL log records in memory.
When the ZFS Data Management Unit commits a transaction
group, the data are written to permanent storage (the writes
are committed, e.g. new content is written to disk for a file and

metadata are updated), and the respective ZIL records are
discarded. When files and processes require synchronicity
(e.g. fsync or O_DSYNC call), the ZIL records are flushed to the
stable, on-disk ZIL, to facilitate replay and roll-back, and then
the data are written to permanent storage. In either case, ZIL
records must be committed in order of TXG number. If
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a commit/sync is forced for a higher TXG than the lowest one

in the ZIL, then all previous records will be committed, in
order, before the requested TXG is committed.

Research is needed to verify what happens to the data
contained in log blocks and log records representing
successful commits. It seems reasonable to assume, based on
how ZFS uses TXG numbering to maintain state awareness,
that committed records and blocks in the stable, on-disk log
will remain until overwritten. An important question is
whether ZFS allocates new ZIL blocks, or reuses old ones.

The issue of the ZIL, both the in-memory and on-disk
versions, requires further research. They have forensic

implications for live response, collection, and acquisition, as
well as for ‘dead’/static device analysis. With respect to live
response, in-memory ZIL records might provide useful infor-
mation regarding very recent processes and user actions. With
respect to collection and acquisition, ‘‘pulling the plug’’ will
represent a power failure, and the stable ZIL blocks/records
may help investigators paint a more accurate picture of the
current state of the system upon seizure. Finally, depending
on how ZFS allocates new, or reuses old ZIL blocks, there may
be numerous, unallocated ZIL blocks that can provide a much
longer chronology of key file and process actions.

3.1.2. Copies in allocated space
In addition to the multiple copies of content and metadata
category data that likely exists in unallocated space due to the
COW transactional object model, multiple allocated copies of
metadata and/or content will likely exist via ZFS’s ‘‘ditto
block’’ functionality. For redundancy purposes, ZFS replicates
metadata – one, two, or three times, depending on the criti-
cality of the metadata. ZFS also permits automatic copies of
user data blocks upon request (administrative tuning of the
file system).

The number of ditto blocks created for a given object is
determinate based on the number of Data Virtual Addresses
(DVAs) populated within the object’s dnode’s 128B block
pointer. Three DVAs are permissible. The number used
equates to the number of ditto blocks for the object, and
corresponds to the block pointer’s ‘‘wideness’’. By default:

# Three copies of global metadata (zpool level metadata) are
maintained (one original and two ditto blocks); a ‘‘triple-
wide’’ block pointer is stored.
# Two copies of dataset-level (e.g. file system objects, such as

files and directories) metadata are maintained (one original

and one ditto block); a ‘‘double-wide’’ block pointer is
stored.
# One copy of user data (i.e. content) is maintained (Ditto

blocks, 2006); a ‘‘single-wide’’ block pointer is stored.

When the zpool is tuned to increase the number of ditto
blocks for a specific type of data (e.g. user content), this only
affects future writes. Also, ZFS automatically increments the
number of ditto blocks maintained for higher-level data (e.g.
that content’s metadata). For example, two copies of user data
content would result in three copies of file system metadata

pertaining to that content (Elling, 2007).
The location of ditto blocks is easily determined using the

DVAs located in the object’s dnode’s block pointers. It is

important to understand the structure of block pointers and

their constituent DVAs, however. Each DVA consists of a 32b
vdev ID and a 63b sector offset. The offset is relative to the first
two copies of the vdev label (L0 and L1; 256 KB each) and the
boot block (3.5 MB). Thus, the sector offsets listed are 4096B, or
eight sectors, from absolute sector zero on the vdev (physical
disk, slice, etc.) (see Fig. 1). The byte offset of the object within
the vdev thus equals the DVA offset value times 512, plus 4096.

Each block pointer also includes asize (allocated size in
blocks; asize minus one), indicating the length of the block to
which the DVA points, and a ‘‘G’’ bit value. When set, the block
pointer’s ‘‘G’’ bit value indicates that the pointer points to

a gang blockda block of block pointers. This occurs when files
become fragmented. It is important to note, though, that
fragmentation is arguably less frequent in ZFS than in
commonly used file systems, which frequently use a ‘next
available’ allocation strategy (e.g. NTFS). This is because ZFS
utilizes a ‘first-fit block allocation’ strategy (per metaslab.c
source code). This is a bit of a hybrid approach between ‘next
available’ and ‘best fit’, and results in less object (i.e. file)
fragmentation. This may make traditional carving techniques
even more successful.

The digital forensic implication of the ditto block func-

tionality is clear: multiple allocated copies of metadata and/or
content will likely exist. Proper understanding of block pointer
and DVA data structures is important when examining DVAs
in both the ditto block context, as well as in the more basic
‘on-disk data walk’ context.

Native support for instantaneous snapshots and clones is
also important in this context, but warrants little discussion. It
is presumed that readers understand that instances of snap-
shots and clones will intuitively result in additional allocated
copies of metadata and content. In fact, ZFS’s implementation
of snapshots and clones mean that the previously discussed

implications of the COW modeldleaving copies of metadata
and content in unallocated spacedwill result in the same data
now being allocated, and thus persistent.

3.2. Artifact: increased state awareness

Multiple copies of data in allocated and unallocated space
results in increased state awareness. Typically, when forensic

investigators seize computers, they only gain insight into the
current state of data. Investigators are sometimes able to cull
limited temporal, or state, information from application
created temp files, crash files, file system journals, and log
files, but such information is limited at best. As a result,
investigators eagerly seek logical level file system backups
(e.g. tape backups, restore points, etc.). Such backups provide
‘snapshots’ of the file system at various points in time.
Analyzing those backups chronologically provides investiga-
tors insight into the progression of intrusions and changes to
user-level data over time. This type of temporal information
and knowledge is often critical to investigations.

Digital forensics investigators will benefit from the
increasingly frequent inclusion of snapshotting capabilities
now built-in to operating and file systems, such as ZFS. While
snapshotting is certainly not new and dates back ten or more
years (e.g. Veritas’s VxFS, AIX’s JFS/JFS2, and UFS as far back as
Solaris 8), its implementation and use are becoming
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increasingly mainstream. For example, Windows Vista! now

stores ‘‘point-in-time copies’’ of user-level data by default in
its Ultimate, Business, and Enterprise editions via its ‘‘Shadow
Copy’’ service. This service has been available since 2005 for
Windows XP! users via the ‘‘Volume Shadow Copy’’ service in
SDK 7.2, but it was not installed or running by defaultdnow it
is. Similar functionality exists by default in the current
Windows 7! release candidate. Apple’s ‘‘Time Machine’’,
implemented in MAC OS X 10.5, creates automated, on-disk
snapshots on via user configured incremental backup sched-
uling. ZFS implements snapshotting via the zfs snapshot
command.

The benefit of such file systems’ snapshotting capabilities
is that copies of data are now stored on-disk in allocated
space. The snapshots include both metadata and content.
They are often created automatically and transparent to the
user. They represent a treasure trove of temporal, state
information for the investigator (as do clones, of course).

Now, combine ZFS’s native support for snapshotting and
cloning, with its COW transactional object model, de-refer-
enced ditto blocks, and the potential for ZIL blocks to be
scattered all over the pool. The digital forensic investigator
will have unprecedented temporal, state information avail-

able. This data is both allocated and unallocated (or de-
referenced, if you will). We contend that the digital forensic
investigator will be able to trace system and user activity
chronologically much more successfully than in the past.

3.3. Challenge: compression

Compression has always been a challenge for traditional

digital forensic indexing and searching techniques, resulting
in additional preprocessing burden due to decompression
activity. As such, it is important to note that compression
plays a major role in ZFS’s static, on-disk data storage. Anal-
ysis of ZFS systems will not be as simple as decompressing
known compressed file types, or decompressing entire
volumes during the preprocessing stage. ZFS implements
compression on a massive scale, but does so at the object, and
sometimes even data structure level. Prevailing digital
forensic techniques are currently unable to deal with such
pervasive metadata compression and datasets with such

a significant mix of data in various compression statesdnot
compressed, compressed, and compressed with a variety of
algorithms.

Metadata compression is enabled by default. It can be
disabled at any time, although it only appears to disable
compression on indirect block pointers; direct pointers
remain compressed (ZFS evil tuning guide). Additionally, ZAP
objects do not appear to be compressed, even when metadata
compression is turned on. Content category data is not
compressed by default, but this setting can easily be tuned
(PrincetonUniversity, 2007). These settings are globally set on
a zpool basis, but tuning only affects new data storage. The

compression state of currently saved metadata and content
remains as is upon tuning. Thus, a forensic analyst will not be
able to treat all objects of the same type, or even different
instances of the same object the same analytically with
respect to compression. Object compression states will have
to be determined at the individual object level, as each object’s

metadata indicates the object’s compression state in its

respective block pointer. Digital forensic tools developed to
analyze ZFS evidence will have to analyze data structures for
compression settings and subsequently decompress the
objects accordingly, prior to search, extraction, and analysis
processes.

3.4. Challenge: dynamically sized extents

As stated earlier, ZFS uses neither block-based allocation, nor
extent-based allocation in the traditional sense. While block-
based allocation results in maximum space utilization, it
suffers from expensive disk I/O (unless augmented with
supplemental read/write and grouping algorithms, as UFS
did). Extent-based allocation improves disk I/O, but can result
in wasted disk space. The solution to this problem has typi-
cally been ‘variably sized block’ functionality, where the
extent (AKA cluster, logical allocation unit, data unit) size is
defined upon file system creation and is optimally set based
on intended use. In other words, the file system creator selects

a small extent size if she knows the file system will be used to
store many small files. Regardless of what extent size is
selected during file system install, this extent size remains
fixed for the entire file system and all subsequent files will be
allocated to these equally sized extents.

ZFS uses a bit of a hybrid between block-based and extent-
based allocation. It is more aptly described as extent-based,
but the extents will be dynamically sized according to indi-
vidual file requirements.

The record size of an FSB has a consistent maximum size
(default¼ 128 KB), but upon file allocation, ZFS dynamically

sizes the FSB to just fit the data allocated. In other words,
a 700B file would be allocated to a two-sector FSB (presuming
512B sector), or 1024B. A 4000B file would be allocated to an
eight-sector FSB, or 4096B. A 4097B file would be allocated to
a nine-sector FSB, or 4608B. Files larger than the FSB record
size (i.e. greater than 128 KB if record size remains set to the
default 128 KB) will be allocated to multiple FSBs.

On the surface, this might appear to be block-based allo-
cation, but it is not. The metadata stored is still stored at the
extent-level similar to data runs in NTFS or extent records in
HFSþ (e.g. first fragment starts at cluster 140 for a length of 10

clusters, second fragment starts at cluster 800 for a length of 5
clusters), rather than lists of allocated blocks (e.g. listing all 15
cluster numbers). Two key differences exist between ZFS and
traditional extent-level allocation implementations, however.
First, ZFS extents vary in size between files, within a file
system. Second, the metadata that specify the location and
length of the file fragments refer to the fragments’ sector
offsets within vdev labels and fragment length (in sectors).

Additionally, the FSB record size can be repeatedly tuned
after install (though, not advised). Thus, new files and copies
of old files may exhibit very different FSB sizes from each
other and from old files. (Bourbonnais, 2006) The FSB size for

a specific object (e.g. file) is stored in the object’s dnode, within
the 16b dn_datablkszsec data structure (size in sectors).

Dynamically sized extents negatively impact the ease with
which analytical inferences can be made. With file systems
that used traditional extent-based allocation (i.e. fixed size
extents, variably determined during file system install),
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forensic examiners can map extents from the start of volume,

data area, etc. as appropriate, and know that all data in
a specific block consists of that file’s content and its file slack.
Since the file system will be full of differently sized FSBs, the
investigator cannot use simple arithmetic to identify extent
boundaries. The investigator will have to consult ZFS meta-
data pertaining to individual files, as well as the space maps
for each metaslab.

3.5. Artifact: dynamically sized extents

In addition to the analytical challenge that dynamically sized
extents presents, such variability also greatly impacts a crit-
ical digital forensics concept – file slack. Many investigators
have benefited from finding old file content in file slack. Since
extents are variably and dynamically sized to best fit the file
content, less file slack should exist. Files smaller than the FSB
record size should exhibit no useful file slack, presuming the
sector slack is zeroed out as with many other file systems.

Files larger than the FSB record size, on the other hand, will
exhibit a significant amount of file slack in many cases. This
amount will be unusually large relative to many commonly

used file systems, since the default maximum FSB record size
is 128 KB. In NTFS, HFSþ, and EXT2/3, the extent size is typi-
cally set to 512, 1024, 2048, 4096, or 8192 bytes, with 4096B
being the norm. So, when files are not exact increments of the
fixed extent size (e.g. 4 KB) additional extents are allocated,
and the last extent may contain useful file slack. If the last
extent is larger than 4 KB, as is the case with ZFS and its
default maximum extent size of 128 KB, much more file slack
will likely exist. JFS is one file system that is capable of even
larger extent sizes (up to 16 GB), but it is designed to right-size
the last extent to minimize file slack (Ray, 2004). ZFS is not

currently designed to right-size the last extent, although
conversations with ZFS developers suggest this may change
this in future releases.

4. Concluding remarks

4.1. Contribution

To the best of our knowledge, this is the first article that
examines and discusses ZFS in the digital forensic context. We
identified digital forensic artifacts that exist, due to ZFS
functionality and design – specifically, the increased advent of
copies of metadata and content in both allocated and unal-
located space, due to ditto blocks, COW, the ZIL, etc. We
further discussed the implication of harvesting and analyzing
such data to provide a greater chronological sight picture than
has been previously possible. We outlined key data structures
and how to locate them, which is important for forensic tool

development and manual data-walking by forensic investi-
gators. Finally, we alerted the community to the unique
challenges that compression and dynamically sized extents
represent for the forensic investigator. Though not discussed
explicitly, the challenge of finding data through massive
amounts of indirection and in the absence of statically located

metadata and/or file system category files should also be

noted.
Although the forensic implication discussions summa-

rized above represents the primary research contribution of
this article, we also hope readers find the background infor-
mative and instructive. So, to a lesser extent, the ‘ZFS primer’
is also a contribution of this article.

4.2. Limitations and future research

The primary limitation of this article is that we have yet to
verify all statements through our own direct observation and
reverse engineering of on-disk behavior. We worked very hard
to leverage authoritative sources of information and corrob-
orate statements regarding ZFS functionality, architecture,
and disk layout. We analyzed ZFS source code to some extent,

although not exhaustively. We acknowledge that our impli-
cations and challenges discussions are ‘academic’ and need
empirical verification.

Aside from the overarching need for empirical verification
stated above, there are a few specific areas where future
research is needed in particular. One such area is the ZIL.
Documentation for the ZIL is limited. Experimentation and
more thorough source code analyses are needed to fully
understand its in-memory and on-disk formats, its similari-
ties and differences with existing journaling file systems, and
the digital forensic implications thereof.

Another area ripe for future research regards the increased
state awareness of system and user level activity provided by
the greater incidence of both allocated and unallocated
snapshot data. Without a doubt, more state data will be
available on-disk. Several unknowns remain, however. We do
not fully understand what the scope of such data will be in
practice. Research is needed respecting the recovery and
analysis of such data, particularly as it relates to relating the
data, transforming it into chronological information, and
deriving investigative knowledge thereof.

5. Conclusion

ZFS is different. Its data structures are unique. Its on-disk

behavior and artifacts are not what digital forensic investi-
gators are used to seeing. Very little is statically located in
devices managed by ZFS. A great deal of data is compressed,
and soon (rumor has it) much will be encrypted. File slack is
arguably non-existent in small files and unusually abundant
in large files. Numerous, extra copies of metadata and content
will be literally scattered about devices. Such data can be used
to increase temporal, state information in support of investi-
gations. The list goes on.

Mac forensics used to be just a niche area of forensics,
reflective of the user market. It is no more. We predict that ZFS
will follow a similar adoption curve amongst consumers, and

perhaps more importantly, a much greater share in enterprise
systems where end-to-end data integrity and large scale
storage is necessary. We predict that next-generation file
systems will adopt and integrate many of the solutions
offered by ZFS to combat today’s IT challenges. As such, it is
important for researchers and practitioners to understand ZFS
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and its forensic implications. We hope this article has made

strides in both areas.
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