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a b s t r a c t

The increasing popularity of cryptography poses a great challenge in the field of digital

forensics. Digital evidence protected by strong encryption may be impossible to decrypt

without the correct key. We propose novel methods for cryptographic key identification

and present a new proof of concept tool named Interrogate that searches through volatile

memory and recovers cryptographic keys used by the ciphers AES, Serpent and Twofish.

By using the tool in a virtual digital crime scene, we simulate and examine the different

states of systems where well known and popular cryptosystems are installed. Our

experiments show that the chances of uncovering cryptographic keys are high when

the digital crime scene are in certain well-defined states. Finally, we argue that the

consequence of this and other recent results regarding memory acquisition require that

the current practices of digital forensics should be guided towards a more forensically

sound way of handling live analysis in a digital crime scene.

ª 2009 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Cryptography has grown to become one of the most important
contributors to privacy and data security in an increasingly
interconnected world. The use of cryptography also repre-
sents a challenge for digital forensics investigators, as it may

be used to hide data that may shed light on the chain of events
that constitutes an incident or crime. Since the nature of
cryptography makes it attractive for hiding incriminating
data, encrypted material encountered often contain exactly
the evidence sought by investigators.

In this paper, we aim to study new methods for the iden-
tification and extraction of cryptographic keys from the

volatile memory of computing devices as part of the digital
forensics process. In this context, the keys and any encrypted
contents may be considered to be digital evidence (i.e., digital
data that contains reliable information that supports or
refutes a hypothesis about an incident (Carrier and Spafford,
2004)) that is part of a digital crime scene. Note also that the

main property of cryptographic keys in the context of digital
forensics is that they may be a necessary prerequisite for the
successful decryption of encrypted digital evidence.

Digital investigators are often forced to attempt brute-force
and dictionary attacks to gain access to encrypted digital
evidence, but these methods cannot circumvent strong cryp-
tography and strong passwords. A paradox is that
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cryptographic keys may be present in computer memory at

the time of the evidence acquisition. However, memory is not
always acquired, and there are no standard tools for memory
analysis and key extraction based on memory dumps.

The main contributions of this paper is the novel approach
to Serpent and Twofish key structure identification and
analysis, a method for virtual memory reconstruction, as well
as the proposed introduction of cryptographic key searches in
memory as part of the digital forensics process. Our results are
validated through the implementation of a proof of concept
tool and a series of experiments covering three cryptographic
algorithms and ten software tools in a virtualized testbed.

The paper is structured as follows. Section 2 contains an
overview of related research, Section 3 describes techniques
for identifying keys in memory, and Section 4 discusses how
to use Windows memory structure to optimize searches. Our
experiments and results are presented in Sections 5 and 6, and
the implications for the field of digital forensics is discussed in
Section 7. Finally, future work and conclusions are provided in
Section 8.

2. Related work

The acquisition and analysis of volatile memory for forensics
purposes is a relatively immature procedure, even though the
concept has been known for a long time (Crescenzo et al.,
1999). The memory acquisition process is especially unstan-
dardized, and there exists a large number of different
approaches. A good comparison of the available methods for
Microsoft Windows operating systems can be found in the

paper Windows Memory Forensics (Ruff, 2007). The methods for
extracting volatile memory ranges from DMA access via
FireWire (Dornseif, 2005; Martin, 2007) to simply copying of
memory from /dev/mem on Unix-flavor platforms.

Research on the age of freed user process data in physical
memory has shown that large segments of pages are unlikely
to survive more than 5 min, even on a lightly loaded system
(Solomona et al., 2007). However, smaller segments and single
pages may be found up to 2 h after initial memory commit.
These results may limit the timeframe for successful recovery
of cryptographic keys that are left in memory. To counter

these issues, Chow et al. have proposed several methods for
secure deallocation of sensitive data from memory (Chow
et al., 2005). It is nevertheless clear that these results do not
mitigate the fact that cryptographic keys need to be present in
memory during encryption when using standard computer
hardware.

The first approach on cryptographic key search and iden-
tification were proposed by Shamir and van Someren in 1998,
suggesting the prospect of attacks against mainframes in their
article Playing Hide and Seek with Stored Keys (Shamir and van
Someren, 1998). They propose to use simple statistical and
visual methods to locate memory regions that are likely to

contain encryption keys. In a more recent article, Pettersson
discusses searches for structural properties of the code that is
holding the key, by analyzing and ‘‘guesstimating’’ the values
of surrounding variables (Pettersson, 2007). Ptacek (2008)
outlines how to extract and verify RSA keys from memory,
using a simple mathematical analysis of the parameters

found. On identifying RSA keys, Klein suggests searching for

ASN standard prefixes of the DER-encoding, both identifying
certificates and private keys in memory (Klein, 2006).

The authors of Volatility describe a hypothetical attack
against TrueCrypt (Foundation, 2008), by studying its internal
structures and behavior (Walters and Nick, 2007). They do,
however, not describe how to locate the different structures in
memory, and neither do they discuss the fact that some of
these may be paged out, thereby breaking the chain of data
structures that leads to the master key if only the memory
dump is available for analysis.

Halderman et al. presented a recent breakthrough in

their paper Lest We Remember: Cold Boot Attacks on Encryption
Keys (Halderman et al., 2008). They demonstrate that it is
possible to leverage remanence effects3 in DRAM modules
to coldboot the target computer, load a custom OS that
extracts the memory to an external drive, locate the key
material and finally decrypt the hard drives automatically.
We owe the idea to utilize key schedules as a means for
identification of cryptographic keys to this paper, and lately
considerable effort has been directed at creating usable
software for decryption of closed-source systems like
BitLocker (Kaplan, 2007; Kornblum, 2008).

Most of these methods treat the memory as a large blob of
bytes, although in fact memory is quite structured. Some of
the methods suggest skipping duplicate regions and reserved
address space, but do not consider to reduce the ‘‘haystack’’
by only looking at the probable regions of the memory. In
other fields of memory analysis, analysts have dumped the
memory address space of a specific process by fetching pages
from RAM and swap space. The dumps are sometimes suffi-
cient to verify4 and even completely reconstruct executable
files (Kornblum, 2006). According to several articles
(for example, see Schuster, 2006 and Carvey, 2007), these

techniques are able to identify trojans, rootkits and viruses
that are stealthy and/or armored in Windows memory dumps.

Despite all these contemporary studies, there exist little
empirical research on whether cryptographic keys are present
in memory at the time of acquisition. In this paper we will
demonstrate how to utilize several search strategies in combi-
nation with cryptographic knowledge to extract key material
from volatile memory. We perform controlled experiments that
will indicate the probability of a successful key extraction.

3. Cryptographic key identification

For the average end user, a cryptographic key is an abstract
notation, hidden by obfuscation layers consisting of password
churning and key hierarchies. In reality, symmetric crypto-
graphic keys are just short sequences of random-looking

bytes, often 16–32 bytes long. Even so, recent studies suggest

3 Remanence effects is the effect that all Dynamic Random
Access Memory (DRAM) modules keep their state for a period of
time (typically a few seconds) before it needs to be refreshed by
the memory controller, first mentioned as a security risk in
a articles by Anderson (2001) and Gutmann (2001, 1996). The
process of utilizing this effect to extract cryptographic keys is
known as the ‘‘coldboot technique’’.

4 By using tools like SSDeep by J. Kornblum.
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that the representation of the keys in memory is far more

structured than previously believed. Several properties and
search strategies that may be used to locate such keys in
a memory image have been suggested:

1. Brute-force with the memory image as dictionary (Kaplan,
2007). This is the ultimate naı̈ve approach, and we did not
experiment with this method.

2. Search for high-entropy regions. Using entropy to locate RSA
keys were first proposed by Shamir and van Someren (1998).

3. Search for structural properties of the RSA encoding as first
proposed by Klein (2006) and Ptacek (2008).

4. Search for the code structures (e.g., C structs) that contain
the key. Previously suggested by Pettersson (2007), and later
by Walters and Petroni.

5. Search for the key schedule, as suggested by Halderman
et al. (2008)

3.1. Proof of concept tool: Interrogate

In our proof of concept tool Interrogate we implemented
several of the above search methods. The last two methods
are discussed cipher by cipher in the following sections
together with a description of their representation of cipher
keys in memory. In addition, we suggest to combine several of
these methods to perform searches for Serpent and Twofish
keys. These novel methods are implemented in Interrogate,
together with a method for the reconstruction of virtual
memory for processes as described in Section 4.

Interrogate is provided under the GNU Public License on
http://sourceforge.net/projects/interrogate/ and features search

strategies for RSA, AES, Serpent and Twofish keys. RSA and
Serpent keys are found independent of their length, while
Twofish keys are required to be 256 bits. For AES, a specification
of 128, 192 or 256 bits is required. The tool is not limited to
memory dumps; swap space and decoded hibernation-files may
also be interesting targets.

3.2. AES key representation in memory

The Rijndael cipher was selected as the Advanced
Encryption Standard (AES) in 2001 (NIST, 2001), formed
from a proposal by Joan Daemen and Vincent Rijmen. It is
a Substitution-Permutation (SP)-network based cipher that
works on 128-bit blocks, and can use either 128, 198 or 256
bit keys. AES is widely in use, fast in both software and
hardware and is regarded as the de-facto standard in most
new cryptographic applications. AES encryption is present
in a vast range of applications, among others TrueCrypt,
Vista BitLocker, OS X FileVault, BestCrypt, PGP, Protect-
Drive and Pointsec.

In Halderman et al. (2008), the researchers use the

properties of the AES key schedule to search for AES keys in
memory. The key schedule (sometimes called round key or
key expansion) is an array of keys derived from the master
key, each key used in the separate rounds of the cipher.
This key schedule is often computed ahead of time, in
what appears to be a security-performance tradeoff, and

kept in the memory while encryption/decryption is

performed.
The AES key schedule computation generally uses the

same approach for 128, 192 and 256 bit keys, albeit with slight
variations. The generation procedure for all key sizes can be
found in (NIST, 2001).

3.2.1. AES keys
The 128-bit empty key (all zeroes) generates the following AES
key schedule:

Notably, the key schedule is represented as a flat array

of bytes in memory, where the first 16 bytes (or 128 bits)
constitutes the original key. The remaining 112 bytes are
the round keys derived from this key. As Halderman et al.
noted, this makes it possible to generate key schedules for
all offsets in memory and check whether the next
112 bytes matches the generated schedule. If it does, it is
probably an AES key. This method holds for 192 and
256-bit keys as well. Furthermore, the key schedule acts as
an error-correcting code, so that we may output all key
schedules that have small Hamming distances from the
generated schedule, and thereby compensate for an

eventual bit decay due to the memory acquisition method
(e.g., coldboot).

Since the code from Halderman et al. (2008) was not
available at the time of research, we designed and imple-
mented the algorithm in Interrogate to test the presence of
keys in volatile memory based on the description in the
paper. Additionally, we added support for 128 and 192-bit
keys.

3.3. Serpent key representation in memory

Serpent came second in the AES selection process, based on
a submission from Ross Anderson, Eli Biham and Lars
Knudsen (Anderson et al., 2000). It is a 128-bit block cipher
based on a SP-network. To provide reliable and scrutinized
security properties, it reuses the S-boxes from DES, perhaps
the world’s most analyzed cipher. While primarily intended
for use with 256-bit keys, all keys are padded up to 256 bits

if needed, and the cipher therefore accept shorter keys.
Because of this design, we can treat all Serpent keys as
256-bit keys as far as this paper is concerned. Although not
as widely adopted as AES, Serpent is featured in several
cryptographic applications, among others TrueCrypt and
BestCrypt.

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
62 63 63 63 62 63 63 63 62 63 63 63 62 63 63 63
9b 98 98 c9 f9 fb fb aa 9b 98 98 c9 f9 fb fb aa
90 97 34 50 69 6c cf fa f2 f4 57 33 0b 0f ac 99
ee 06 da 7b 87 6a 15 81 75 9e 42 b2 7e 91 ee 2b
7f 2e 2b 88 f8 44 3e 09 8d da 7c bb f3 4b 92 90
ec 61 4b 85 14 25 75 8c 99 ff 09 37 6a b4 9b a7
21 75 17 87 35 50 62 0b ac af 6b 3c c6 1b f0 9b
0e f9 03 33 3b a9 61 38 97 06 0a 04 51 1d fa 9f
b1 d4 d8 e2 8a 7d b9 da 1d 7b b3 de 4c 66 49 41
b4 ef 5b cb 3e 92 e2 11 23 e9 51 cf 6f 8f 18 8e
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Like AES, the Serpent cipher also generates its key schedule

ahead of time. In addition, the key schedule is similar to that
of AES (Anderson et al., 2000); it uses the user-supplied key as
the first round key, with the following round keys are derived
from this master key.

If the master key supplied is smaller than 256 bits, the key
is padded by appending a ‘1’ bit to the Most Significant Byte
(MSB) end, followed by as many ‘0’ bits as necessary to make up
256 bits. The cipher needs 132 32-bit words of key material, and
utilizes a pre-key transformation of the user-supplied master
key and its S-boxes to compute its key schedule. The result is
a 560-byte array of the master key together with the 33 derived

round keys; the two first 16-byte vectors are the 256-bit master
key, and the 33 remaining rows the 128-bit sub (or round) keys.

3.3.1. Identifying serpent keys
We discovered that the error-correcting code properties of the
AES key schedule also holds for Serpent, and we can conse-
quently utilize a similar search strategy to identify Serpent
keys. We designed and implemented this novel algorithm in
the proof of concept tool Interrogate used to gather statistics
for this paper.

3.4. Twofish key representation in memory

Twofish came in third at the last AES conference, submitted by
Bruce Schneier et al. (2000). It is a 128-bit cipher that accepts
variable-length keys with size N¼ {128, 192, 256} bits. The
cipher is based on a 16-round Feistel structure with a bijective
encryption function F made up by key-dependent S-boxes,
matrix multiplication over a Galois Field (GF(28)) and several

other transformations. These transformations include addi-
tional input and output whitening where the keyed S-boxes
are combined with a Maximum Distance Separable (MDS)
matrix and a Pseudo-Hadamard Transform (PHT) to form the
core of each round. Over 50 applications feature Twofish
encryption, among others TrueCrypt, BestCrypt and PGP.

Twofish uses a slightly different approach than AES and
Serpent, by utilizing key-dependent S-boxes together with
the round keys in the encryption process (Schneier et al.,
2000). If the algorithm is compiled for a modern-day com-
puting device with sufficient amounts of memory, it also

combines several of the operations and represents them as a
4 KB table (we will use the term MK table throughout the paper)
in memory. This is mainly done for performance, and the
resulting encryption operation reduces itself to only four table
lookups and three XORs.

The complex key schedule generation procedure gener-
ates a large amount of keying material. The full key schedule
consists of 40 32-bit words of expanded key K0, ., K39 where
the first eight words K0, .K3 and K4, .K7 are the input and
output whitening keys, respectively. Furthermore, it consists
of the keys for the S-boxes, Sk"1, ., S0 where k¼N/64, and the
optional MK table of 4 KB.

The MK table makes an excellent search signature, but
because the size of the whole key schedule data structure
exceeds 4096 bytes (which is the usual size of a page in
memory), the key schedule may be scattered over several
pages at different locations in the physical memory. Worse, for
the sake of our research, Twofish does not use its master key

as part of its keying material. Thus we cannot use a similar

procedure as for AES and Serpent to search for Twofish keys.

3.4.1. Notes on the Twofish key schedule
Early in the AES selection process, certain notes were made on
the Twofish key schedule both by the authors of the algorithm
(Schneier, 1998) and others (Mirza and Murphy, 1999). The
Twofish team quickly researched the matter, and later proved
that the properties did not affect the security of the cipher
(Schneier et al., 1999). However, it is possible to leverage these
properties to locate Twofish keys in volatile memory.

We have performed a quantitative analysis of some related

statistical properties of the key schedule structure in order to
generate a search signature for Twofish keys. For a large
number of random Twofish key schedules, we see that the
entropy value of the S-box keys (Fig. 1a) does not take on
a uniformly distributed high-entropy value. We generated 1012

key schedules based on random master keys, and found that
the entropy of the S key vector rather falls within distinct
values.

Furthermore, we measured the entropy of the sub keys Kj,
discovering that the they have entropy values in the relaxed
range [6.1, 7.4], as seen in Fig. 1b. If we look at the MK table, we

see that it can only take on one distinct entropy value, namely
the maximum possible 8 bits per byte.

3.4.2. Identifying TrueCrypt Twofish keys
The TrueCrypt source code uses the following C structure to
store the key schedule:

By searching for this structure and verifying the above
entropic measurements, we are able to locate TrueCrypt
Twofish keys.

3.4.3. A less implementation-dependent search
To counter the drawback of only being able to search for keys
specific to TrueCrypt, we propose another method of locating
Twofish key schedules5 by means of counting runs. In addition
to being highly entropic, the MK table also has a quite constant
number of byte runs.6 By evaluating a large number of key
schedules, we have set a heuristic threshold for such runs of
length from one to six, as seen in Table 1. By counting runs in
a sliding 4 KB window, we can locate probable MK tables. To
verify these tables, we perform the same checkups as with the
TrueCrypt Twofish key schedule on the surrounding data, using

typedef struct {

unsigned int l_key[40];

unsigned int s_key[4];

unsigned int mk_tab[4 * 256];

unsigned int k_len;

} twofish_tc;

5 It should also be noted that this method does not output the
master key, but rather the key schedule. Nevertheless, that is
enough to decrypt content encrypted under the related master
key.

6 A byte run is a sequence of bytes with the same value, e.g.,
a run of three with the byte 0x0f is 0x0f0f0f.
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data structures taken from five publicly available implementa-
tions of Twofish. This novel search facilitates finding more than
one type of key schedule data structures.7

By keeping track of the runs that fall out and enter the
searching window, we can optimize our algorithm and thus

reduce the runtime significantly. This implementation can be
found in the source code of Interrogate.

4. Leveraging memory structure

As previously discussed, a digital investigator may face keys
that are distributed over several non-contiguous pages in
memory. In order to counter this situation and illustrate how
to use Windows memory structures to optimize searches, we
wrote a simple virtual address reconstructor. Memory

reserved with an instance of a system call (e.g., malloc or any
equivalent) are generally given contiguous virtual memory.
Therefore, if we could fetch pages from the physical memory
via virtual addresses and address translation, we could rebuild
the virtual address space of a process and search the recon-
structed data for keys as opposed of the original memory
dump. This facilitates a significant reduction of search data
given a normal amount of memory.

To reconstruct the virtual address space of a process, we
only need to know the location of its Page Directory Base (PDB)
(Russinovich and Solomon, 2005). Using this, the reconstruc-

tion procedure iterates through all virtual addresses, one page
at a time, and looks them up in the process page directory and
page tables. To locate the page directory base for the target
process, a tool like PTFinder or Volatility can be used. This
search method requires knowledge about the cryptographic
application (i.e., which process handles the cryptographic
keys). For whole- and virtual disk cryptosystems on Windows,
we have found that these threads usually operates in the

System process, which has its PDB at 0x00039000 (assuming
/NOPAE and no /3 GB boot switches set).

This reconstruction method is not complete, as we do not
fetch pages that are paged out to the pagefile. It is also prone to
fetch pages that are not a part of the process, since we iterate

through the entire address space of the process (0x00000000 –
0xffffffff), and many addresses may not be in use. Our
implementation does however permit specification of
a memory range to reconstruct, to facilitate selection of only
interesting memory regions like the NonPaged Pool or kernel-
space memory.

The reconstruction method can be used as a preprocessing
step to reduce the search space for all the above search
strategies, and hence significantly improve the performance
of the search. It also enables the use of reconstructed memory
in a dictionary attack to identify keys. Using preprocessing

makes the average AES and Serpent key search on a 1 GB
memory dump around 100 times faster, decreasing the
running time from circa 2 h to 75 s on a 2 GHz processor.

5. Experiments

In our experiments, we search for the cryptographic keys of
applications running in simulated digital crime scenes with
a set of predefined system states. We perform a set of tests
were all cryptographic applications run in all the relevant
system states. The proof of concept tool Interrogate is then
used to search for the cryptographic keys.

In this section, we describe our testbed setup, the type
of cryptographic applications to be targeted and the
procedure used for case generation. A set of generic
system states is defined, and finally we describe the
actual implementation of the cryptographic key search
strategies.

Fig. 1 – Plots of entropy from the Twofish S-box and K key vectors of 256-bit keys.

Table 1 – Intervals of measured runs of different lengths
in the Twofish key schedule.

Run 2 3 4 5 #6
Interval [485, 520] [0, 0] [1, 12] [0, 0] [0, 1]

7 This method does not work with BestCrypt Twofish keys, most
likely because BestCrypt uses a slightly different data structure to
hold the key or does not utilize the optional MK table. Also please
note that neither the AES nor Serpent searches produce any false
positives/negatives, but this Twofish method does; we experi-
enced on average 10 false positives/duplicates per search.
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5.1. Simulation of digital crime scenes

We choose to utilize the virtualization software VMware
Server version 1.0.5 to simulate the digital crime scenes.
Through virtualization, a virtual machine runs on top of the
host hardware and operating system, and it is possible to run
several instances of various guest operating systems. An
essential property for the purpose of our research is that the
virtual hard drive and physical memory of a VMware machine
can be accessed atomically through files on the host hard

drive. For a VMware virtual machine, the raw binary contents
of the RAM are written to a file named VMname-Snap-
shotXX.vmem on the host computer in an atomic operation
when the snapshot function is triggered.8 During our experi-
ments, all networking and shared folder support were turned
off to isolate the experiments.

5.2. Classes of cryptographic software

Leading practice suggests that cryptographic applications
should shred keys and plaintexts from memory as soon as
they are no longer needed (Code, 1995). Keys that must reside

in memory while the application is running should be purged
the moment it terminates. Cryptographic software also need
to make sure that keys never are written to disk as a result of
virtual memory management. To a forensic investigator,
these potential weaknesses of software encryption provides
an opportunity to break cryptographically secure ciphers by
uncovering their keys.

For the sake of clarity and simplicity, we define three
main classes of cryptographic software that each of the
cryptographic applications tested fall into. The classification
of the applications are done according to the expected

presence and lifetime of their keys in memory. The three
main classes are:

5.2.1. Whole-disk encryption
Applications that provide full disk encryption and other
cryptosystems that need to keep their keys in memory while
a system is powered on falls within this class. Such applica-
tions should feature pre-boot authentication, and should
never load cryptographic keys into memory until after the
authentication is successfully completed. TrueCrypt 5.1a (AES-
256, Serpent, Twofish), BitLocker (AES-128), FileVault (AES-128),

PGP 9.6 (AES-256, Twofish) and Protectdrive 8.2 (AES-256) were
tested as a part of this class.

5.2.2. Virtual disk encryption
Applications that provide file disk encryption as standalone
file containers. These applications need to keep keys in
memory while mounted, but should immediately upon
dismounting or closing wipe its keys. TrueCrypt 5.1a (AES-256,
Serpent, Twofish), FileVault (AES-128),9 BestCrypt 8.04.4
(AES-256, Serpent, Twofish), PGP 9.6 (AES-256, Twofish) and
Protectdrive 8.2 (AES-256) were tested as a part of this class.

5.2.3. Session-based encryption
Applications that generate session or short-lived keys to
encrypt session-based information. Some applications may
indeed generate a new key for each cryptogram. These appli-
cations should wipe keys from memory as soon as a session is
closed or the one-time key is used. Typical cryptosystems that
falls within this category includes e-mail and instant
messaging encryption. WinZip 11.2 (AES-256 and AES-128),
WinRAR 3.71 (AES-256), Skype 3.8.0.115 (AES-256) and Simp Lite
MSN 2.2.11 (AES-128) were tested as a part of this class.

Good cryptographic practice suggests that applications in

the Whole-Disk and Virtual Disk encryption classes should
detect shutdown, screensaver activation and hibernation in
time to wipe the keys from memory.

5.3. Definition of system states

A digital forensics investigator may face several different system
states in a digital crime scene. By categorizing and merging the

infinite number of possible states of the modern computer, we
define eight states that are decipherable and clarifying to any
person encountering a system where cryptography is or has
been in use. This is not an exhaustive list of states, but we
consider these states to be sufficientlycommonandgeneric to be
meaningful in the context of estimating the likelihood of
successfully finding keys in volatile memory:

The Live State has a logged in user and running crypto-
systems. Virtual disks are mounted and session-based cryp-
tography are in progress.

The Screensaver State is a live state with the default

Windows screensaver activated due to a 1 min timeout. The
screensaver is password protected. The virtual system is imme-
diately suspended using VMware after screensaver activation.

The Dismounted State is a live state with dismounted
virtual disks. The virtual system is suspended using VMware
immediately after dismounting. Only applicable to Virtual
Disk cryptosystems.

The Hibernation State is a state where the system has been
put into hibernation mode. The hibernation file is extracted
from the system to the host. Not applicable for Whole-disk
cryptosystems.

The Terminated State is a terminated state for crypto-
graphic applications. After termination, the virtualized
system is immediately suspended using VMware. Not appli-
cable for Whole-disk cryptosystems.

The Logged out State is a live state where the user has
logged off after recent activity on the system using the target
cryptographic application. Note that this is not identical to
a freshly booted system.

The Reboot State is a state where the system is rebooted,
but no user actions have yet been performed. This may leave
the system in several different sub states as boot prompt,
cryptographic pre-boot authentication mechanism or

Windows logon screen.
The Boot State is state of freshly booted systems which has

been powered off for an extended period of time to ensure that
any DRAM remanence effects are ineffectual. VMware auto-
matically wipes the virtual RAM at shutdown, so in our case
the virtual machine was restarted immediately.

8 Note that VMware automatically clears the virtual RAM at
virtual machine shutdown.

9 FileVault falls within both classes as it only encrypts the home
folder of the user.
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5.4. Virtualized case generation procedure

The following procedure was utilized to generate data
memory dumps for cryptographic key searches:

1) Windows XP SP2 was installed and updated with all secu-
rity patches, a snapshot of the clean OS was taken and
stored at an external drive.

2) Cryptographic applications were installed and keys were
generated.

3) Another snapshot was taken. This snapshot is the basis of
our analysis of each cryptographic application.

4) One of the cryptographic applications were utilized
together with other software to create a simulated normal
operating state.

5) A snapshot was taken, the resulting .vmem memory image
was seized, hashed using SHA-256 and analyzed using
Interrogate.

6) The .vmem memory image was after analysis verified
towards the image pre-analysis by hashing it with SHA-256
again and comparing the hashes. This ensures the integrity
of the target file.

7) The system was reverted to the snapshot taken in step 5,
and the procedure continued with another snapshot being
taken to conserve the new state. We iterated this loop until
all system states had been tested.

8) Finally we restored the snapshot from the external hard drive,
and repeated from step 3 for each cryptographic application.

5.5. Real-world testing

We also setup a testbed for testing on real hardware. The
target was a laptop running Windows XP SP3 with TrueCrypt
utilizing Serpent in XTS-mode, encrypting the entire disk. To
simulate real usage and paging, we instantiated a small
application filling up the RAM with random strings, thereby
putting the machine under enough stress to commence
paging. The memory was then acquired at different points in
time using the coldboot method with booting over PXE and
analyzed for cryptographic keys. Similarly, we tested OS X
FileVault using an Apple MacBook and EFI coldboot.

6. Results

We performed 10 tests per cryptographic application in each
available state for the software class. In total, we tested 10
different cryptosystems as listed and categorized in Section
5.2, where several of them were tested with different types of
ciphers and modes (whole-disk, virtual disk). The results are
summarized10 in Table 2, where the percentage of keys found
are arranged per software class and system state.

To further verify our results, we also performed the tests
described in Section 5.5. Memory was then seized after

1, 5 and 10 h (under heavy load) using the coldboot technique,

and analyzed for cryptographic keys. We iterated the whole
process five times, and in all the 15 cases we were able to
recover the keys from the resulting memory image.

Generally we observe that the Whole-disk cryptosystems
are vulnerable in all states after authentication except Reboot.
In the states Live, Screensaver and Logged out we were always
able to locate both header and master keys. Combined, this
creates a large window of opportunity for an adversary to
dump and analyze memory. Two of the cryptosystems, PGP
and Protectdrive does not purge their keys at reboot, resulting
in the possibility of recovering keys from the previous

successfully authenticated user even after rebooting
(and a 29% hit rate in the Reboot state).

For the Virtual Disk software class, we found keys in the
expected Live and Screensaver states when the containers are
mounted.

A smaller window of opportunity seems to be present when
dealing with Session-based cryptographic software. We were
unable to locate any keys in this software class, and we suspect
that the small window of opportunity combined with proprie-
tary key structures and key obfuscation techniques is to blame.

We found the key management procedures around hiber-

nation dismounting of virtual disks inadequate, where we
found 44% of the expected keys. This may lead to the possi-
bility of uncovering keys from the hibernation file. Protect-
drive also fails to purge its keys when the user dismounts,
terminates the encryption application or logs out with the disk
mounted, resulting in vulnerable Dismounted, Terminated
and Logged out states.

Our results indicate that most cryptographic applications
feature strong key management. With some exceptions,
namely PGP and ProtectDrive, keys were rarely encountered
in unexpected states. Especially ProtectDrive seems to

practice sloppy key management where up to 14 duplicate
keys were found even after uninstallation of the software.
Both PGP11 and SafeNet Inc. has been notified of these
findings.

7. Towards forensically sound cryptographic
memory forensics

The results clearly indicate that the state of a system at the
point of acquisition plays a vital role for an investigator. It is
therefore increasingly important to know what to do if
a digital crime scene contains a live system using
cryptography.

First, upon arriving at a digital crime scene, it is desirable to
be able to identify whether cryptography is in use. On-the-fly
applications or any of the other Whole-disk and Virtual Disk
encryption systems can be transparent to users and hard to
detect. If an investigator fails to detect mounted encrypted
volumes on the target computer, potentially crucial digital
evidence become unaccessible without the appropriate pass-
words or cryptographic keys.

10 Because of the combined number of states, cryptosystems,
ciphers, key lengths and software classes, the full results are not
printed here. Instead, please be referred to Maartmann-Moe
(2008), chapter 7 for details.

11 PGP reported this finding during our research, and has since
the released a new version of PGP (9.9.0, shipped on 25 August
2008) that claims to have fixed this issue.
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When approaching live systems with cryptographic soft-
ware, an investigator may choose to copy all data on encryp-

ted drives instead of dumping memory. This may, just as
software memory dumping, effect the state of both volatile
memory and the hard drives, and thereby compromise data
integrity. The risk of evidence tampering should be assessed
and compared against the risk of loosing data because of
encryption, and this assessment can often be difficult.

We experienced several other challenges that need to be
handled by the digital investigator at a case-by-case basis. For
example, to dump memory with the coldboot method, the
investigator needs to be able to control the boot sequence to
load the custom OS. Other acquisition methods have their

own challenges as described in (Ruff, 2007). Even though we
never experienced bit decay or other difficulties when
utilizing the coldboot method, we cannot exclude the possi-
bility of this being owed to the characteristics of the hardware
used in the tests.

For an adversary, there are several ways to minimize the
risk of memory dumping. The low-hanging fruit is to mini-
mize the time window where an attack is possible by power-
ing off the machine when not used. Other measures that could
thwart an investigator could be to restrict boot options and
enable BIOS password protection. Physically disabling hard-

ware like FireWire-ports will also restrict the options for
memory dumping.

It is important to note that memory analysis and crypto-
graphic key searches are not alternatives to classical digital
forensics, but rather additions to the existing methods that
enable us to acquire as much data as possible. Even though
memory acquisition and analysis methods are immature,
there are many tools and methods available.

We believe that at the present time, the investigator is
faced with a core choice: To dump memory or not. Furthermore,
we believe that memory dumping should be performed as

routinely as disk imaging in any digital forensics investiga-
tion, assuming proper tools and training. Failing to dump
memory effectively means disregarding a large portion of the
digital crime scene, and hereby potential evidence. If cryp-
tography is in use, large amounts of digital evidence may be
rendered useless.

8. Conclusions and future work

This paper has attempted to unify memory analysis, cryp-
tography and digital forensics in a way that will allow a higher
success rate for law enforcement when encountering

cryptographic applications at live digital crime scenes. We

find the chances of locating encryption keys surprisingly high.
Based on the results of this paper, we believe that there’s
a substantial upside to memory dumping combined with
classical digital forensics. The advantages of acquiring
memory dumps in an investigation will also likely rise, as the
maturity and availability of analysis software increases.

Our research strongly suggests that finding cryptographic
keys through a memory disclosure attack is an opportunistic
approach, its success being dependent on the overall state of
the target OS and cryptosystem. Particularly, the Live,
Screensaver and Logged out states have high success rates,

although our findings indicate that other states may be
vulnerable as well. Cryptographic systems that pre-compute
key schedule have all been found to be vulnerable to key
schedule searches, adding up to a strong incentive to include
memory dumping as part of digital forensics procedures. The
outlook for successfully retrieving cryptographic key material
is far more dismal when a computing device is turned off, so
significant resources should be directed towards the educa-
tion of digital forensics in the areas of live memory
acquisitions.

From a security perspective, the main conclusion is to never

leave a computing device powered on unless it is in use or
physically protected. The memorydisclosure attacks described
represent a big threat against both laptops and handheld
devices, and the industry will need to shift its focus towards
tamper-resistant hardware devices to mitigate the risk of
compromising keys. Using the memory analysis techniques
described in this paper, a skilled attacker can mount attacks
against even the strongest software encryption systems.

All acquisitions were performed during or immediately
following the execution of cryptographic software. Thus, we
have not addressed how long data survives in volatile

memory. Furthermore, research is needed on software and
hardware based memory dumping and analysis of their
impact on system state, including files like pagefile.sys.
Finally, where legislation and EULAs allow, efforts on reverse
engineering closed-source cryptographic applications are
needed to put uncovered keys to good use.
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