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ABSTRACT

Forensic imaging has been facing scalability challenges for some time. As disk capacity
growth continues to outpace storage IO bandwidth, the demands placed on storage and

time are ever increasing. Data reduction and de-duplication technologies are now

commonplace in the Enterprise space, and are potentially applicable to forensic acquisi-

tion. Using the new AFF4 forensic file format we employ a hash based compression scheme
to leverage an existing corpus of images, reducing both acquisition time and storage
requirements. This paper additionally describes some of the recent evolution in the AFF4

file format making the efficient implementation of hash based imaging a reality.
© 2010 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

The field of digital forensic analysis has experienced rapid
growthinrecentyears, as the use of computer forensic analysis
proved invaluable in a wide range of legal proceedings. Com-
pounding with the increased usage and collection of digital
evidence is the rapidly increasing storage capacity of media
such as hard disks (Turner, 2005). The rapid expansion in
storage requirements is not confined to the field of forensics,
with modern data reduction and de-duplication techniques
widely deployed in primary enterprise storage applications
(Lawrence et al., 2005).

Traditional imaging technologies consist of making bit for
bit copies of all data stored on the acquired media (so called
raw or “dd” images). Second generation imaging techniques
improved space efficiency by introducing block based
compression to the data stream (Kloet et al., 2008; Garfinkel
et al.,, 2006). Although space requirements for image storage
was reduced, this came at the cost of increased acquisition
time.

The advanced forensics file format (AFF4) is a third gener-
ation forensic file format integrating multiple image streams,
the expression of arbitrary information and storage virtuali-
sation into the forensic file format itself (Cohen et al., 2009).
The present work addresses the dual goals of space and
acquisition time efficient storage acquisition, built atop the

* Corresponding author.
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AFF4 file format. Our novel acquisition method leverages an
existing corpus of disk images by maintaining a database of
data hashes already existing in the corpus. By avoiding the
acquisition of duplicate byte runs, we are able to reduce both
space requirements and avoid potentially time consuming
compression operations.

While applying the initial AFF4 specification to this advanced
imaging application, a number of limitations were exposed,
prompting an evolution of the AFF4 specification. We begin the
discussion with an evolutionary review of the AFF4 file format
since its initial introduction (Cohen et al., 2009), followed by
a discussion of our implementation.

1. Evolution of AFF4

The AFF4 format was proposed to update previous limitations
in existing forensic formats Cohen et al., 2009. The format
extends the idea of incorporating arbitrary metadata and data
as proposed by earlier implementations (Garfinkel et al., 2006;
Schatz and Clark, 2006).

An important advance in AFF4 is the introduction of arbi-
trary stream types into the container format, allowing for the
naturalimplementation of abstract mapping types, encryption
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and multiple container volume formats. As the AFF4 format
was adopted to work in real world applications, the format
evolved into incorporating more standardized technologies.
Shortcomings were identified in scaling the format for speed
critical applications.

The first part of this paper describes some of these
improvements, while the second part describes a novel
implementation of hash based imaging employing these novel
improvements.

1.1. RDF data model

One of the core tenants of AFF4 is the association of arbitrary
metadata with any entity within the AFF4 universe. Previ-
ously, this metadata was serialised using an ad-hoc serial-
isation protocol, and the attributes stored were all strings.

The current implementation uses the RDF data model for
serialising information in a standard way Brickley and Guha,
2003. This allows us to use a standard library to handle seri-
alisation of attributes (Beckett, 2010), as well as create attri-
butes with standard or proprietary types. This data can be
serialised using an array of serialisation protocols (e.g.
RDFXML, Turtle, Ntriples etc).

An example of a turtle encoded information.turtle segment
is shown in Tables 1. This example demonstrates that entity
attributes can be expressed using distinct data types. For
example, the aff4:createdTime attribute is stored using the
<xsd:dateTime> standard type, allowing the implementation
to use proper time arithmetics with this attribute.

The RDF specification also allows for arbitrary new serial-
isation types to be used. In our example, the bevy index is of
the <aff4:integer_array_inline> type which is defined by our
implementation to be simply a list of integers written inline
(The bevy index is simply a list of offsets into each chunk
stored in the bevy (Cohen et al., 2009)). For larger bevies

Table 1 — An example Turtle serialisation of an AFF4

image object. Note that attributes have their own distinct
types (integers, URLs and xsd:dateTime).

@base <aff4://34c958c0-7955-4a72-bb9b-6b049ce3a7e9>.
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
@prefix aff4: <http://afflib.org/2009/aff4#>.

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.

<aff4://561301aa89c7020254dd3afed37ed7547a93dbc7/00000000>
aff4:index “index””aff4:integer_array_binary.

<aff4://£9351fd873fbbcc76ad121c0a7f06596478ba83c/00000000>
aff4:index “0,13636,”~*aff4:integer_array_inline.

<aff4://829c059dbc2788e985c68e769205d7959938968e/00000000>
aff4:index “0,7624,”~*aff4:integer_array_inline,
“index”"aff4:interger_array_binary.

<aff4://f9351fd873fbbcc76ad121c0a7f06596478bad3c>
aff4:chunk_size 32768;
aff4:chunks_in_segment 2048;
aff4:compression 8;
aff4:size 49522;
aff4:stored <>;
aff4:createdTime “2010-02-11T13:00:25 + 00:00”**xsd:dateTime;
a <aff4:Image>.

however, storing the index inline within the RDF information
file is inefficient. Hence, we also define an alternate binary
serialisation <aff4:integer_array_binary> which stores the
integer array as a list of 32 bit integers encoded in big endian
encoding within another segment.

The implementation defines these alternate serialisation
formats, but they are functionally equivalent - allowing us to
use the most appropriate type. The implementation simply
makes arequestto the AFF4resolver to obtain the <aff4:index>
attribute of the bevy, and it receives an instance of an integer
array. The specific serialisation of the array is opaque to the
application, as long as the received object implements the
array interface. We can further extend the implementation in
future by providing another RDF type with the expected class
interface but a different serialisation or implementation.

This flexibility allows third parties to extend the basic AFF4
types, or introduce new ones in order to deliver proprietary
efficiency and functionality improvements to the AFF4
format. These alternative RDF types can be added to the
standard types, so that implementations which do not
support these proprietary types are able to fall back to stan-
dard types. The example shown in Tables 1 illustrates how the
same object attribute can be serialised using alternate equiv-
alent RDF types.

1.2. Alternative map implementations

One of the core innovations in AFF4 is the integration of
storage virtualisation as a fundamental building block within
the container format. The map stream facilitates zero copy
construction of arbitrary streams of data from other streams.
Conceptually it is a description of how data from a number of
streams can be combined in a piecewise linear fashion to
create a logical representation of a new stream. For example,
Fig. 1 illustrates a traditional map expressed in an AFF4 map
stream. The map stream refers to a number of byte ranges
taken from a linear stream of a hard disk image. There is no
need to store a separate copy of the data within the map, as all
the files data can be reconstructed from the image using the
map.

Previously map definitions were serialised as a text file
containing tuples of stream offset, target offset and target
URL. This representation was chosen due to our design goal of
human readability. However, in practice it was found to scale
poorly when many points exist in the map. The resulting large
maps required significant time to parse, and the duplication of
the target URLs on each line resulted in storage inefficiency.

An alternative binary map serialisation method is depicted
in Tables 2. The map is represented as a sorted array of

A Map of data
segments
taken from the

AN

Bitwise image
of a hard disk

Fig. 1 — A traditional AFF4 map specifying how a file can be
read from an image by combining a number of fragments.



DIGITAL INVESTIGATION 7 (2010) S121—-S128

S123

Table 2 — Binary representation of the map. The example
illustrates a map where bytes 0—299 will be read from

offset 100 in target index 0, while 300 onwards will be
read from offset 5000 from target index 1.

struct {
uint64_t stream_offset;
uint64_t target_offset;
uint32_t target_index;
} map_point[];

Example (Encoded in big endian):
0,100,0
300,5000,1

records, ordered by stream_offset. Since the list is sorted,
a binary search of the map is O(log n). The map is stored in
a special segment named by concatenating the streams URL
with “/map”. Depending on other options (such as encryption,
compression and remote access protocols) it may be possible
to memory map the relevant segment, in which case very
large maps can be managed with small physical memory and
10 overheads.

The target_index is an integer index into the array of
targets. The targets are saved as a null terminated array of
strings into a segment named by concatenating the stream
URL with “/idx”.

1.3. In-memory map implementation

The maps are stored in memory using a treap data structure,
keyed by the stream offset (Aragon and Seidel, 1989). This data
structure is ideal since both insertion and retrieval of points is
O(log N). The treap automatically maintains the points in
sorted order, so serialisation is simply a matter of traversing
the treap, an operation of the order of O(N ).

The most interesting property of the treap is its ability to
search for the highest key below a query key and the lowest
key just above a given query key. When reading from a certain
offset in the map we wish to retrieve the byte range that our
map offset is read from. This essentially means searching for
the next highest point just below our current offset, and the
map point with the lowest map offset just greater than our
current offset.

In these ways the treap data structure is a perfect fit for
implementing an efficient map.

2. Hash based imaging

One of the first applications of partial block based hashing
within a file format was the bit torrent protocol and associated
torrent file specification (Cohen, 2003). The torrent file is
formed by dividing the files sent into piecewise hashes which
are downloaded separately. The hash is not merely used as
a check sum, but is actually used in the torrent protocol to
request and address the specified piece.

Watkins et al (Watkins et al., 2009) proposed a system,
named “Teleporter”, for efficiently transporting forensic images
over networks by avoiding transmission of common and well
known files, such as common operating system binaries.

Instead, they transmitted the location of such a file and a hash
value of the data content of the file, reconstituting at the other
end the actual data from a corpus which maps hashes to files.
While the idea was primarily designed for efficient transmission
of images, they also provided for the construction of “skeleton
images” with some storage saving for archival purposes.

Teleporter uses a specially designed transmission protocol
to communicate between client and server. The skeleton file
format is proprietary and server infrastructure to manage the
data is required. Yet, when the system is primed with a suffi-
ciently large corpus of images, many hashes in newly
acquired images were found to match the corpus leading to
significant bandwidth saving.

Recently a standard corpus of forensic images was devised
(Garfinkel et al., 2009). One purpose of which is to facilitate
independent reproduction of research results. One difficulty
identified with the production and sharing of standard
forensic corpora was that realistic images will by necessity
contain files which are copyright, potentially leading to
license infringement where those files are redistributed. The
solution was to redact the files using a binary scrambling
technique. This solution, however, results in the corpora
failing to behave correctly with regard to forensic techniques
such as hash matching of redacted files. Furthermore, prac-
titioners who do have legitimate copies of the files are unable
to seamlessly plug their legitimate files into the redacted
image in order to “un-redact” it, instead a new version of the
entire image must be produced and redistributed, potentially
resulting in significant IO overheads.

Redaction of data is essential in many other applications,
such as the sharing of images containing known prohibited
multimedia files, or potentially sensitive corporate informa-
tion. Section 2.4 discusses how redaction can be performed in
a seamless manner using hash based imaging.

The remainder of this work is devoted to the development
of a hash based imaging technique using the standard AFF4
file format. We first describe the theoretic overview of
a generic AFF4 hash based imager. The tradeoffs and consid-
erations in implementing such a scheme are then explored,
and finally a comparison of our scheme to other popular
forensic imaging tools is made.

Our novel hash based compression is used to create one or
more standard AFF4 volumes, which can be read by any tool
using the regular AFF4 library (or indeed using the virtualized
raw format image provided by the standard fuse imple-
mentation, as provided by libaff4 (Various file System in
Userspace, 2010)). Our novel algorithm is strictly used in
preparing the image, leveraging AFF4s decentralised archi-
tecture. This application is an example of the power and
flexibility provided by AFF4 in assisting the development of
novel algorithms and solutions.

2.1.  Imaging overview

Hash based imaging relies on dividing the hard disk into
a sequence of byte ranges. The general approach is depicted in
Fig. 2. The hard disk is represented as an image map,
addressing many targets. We refer to each target as a Byte
Stream, since it is merely a stream created by collecting byte
ranges from the disk. The map essentially provides a recipe for
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Block Block
100 200 Image of HDD
| | represented as
a map of
\ / P/ / various targets
Block run
affd://la1b2c3d4.... Block run

aff4://1234567 ...

Fig. 2 — A conceptual diagram depicting the hash based
compression data-flow.

reading each image byte from one of many distinct byte
streams.

The byte streams themselves are stored with a URL that
reflects their hash value (for example aff4://shal_hash). Each
of those streams is stored within some AFF4 volume acces-
sible to the local AFF4 implementation.

In the example shown in Fig. 2, a read request issued for
block 100, results in the stream aff4://alb2c3d4 being fetched
and opened. A read request for block 200 is fetched from
aff4://1234567. The specific streams fetched may reside on
the same or different AFF4 volumes, since AFF4s distributed
architecture allows any stream to be stored in any valid
accessible volume as long as the local resolver is aware of its
location.

Our goal in imaging is to divide the disk into many byte
ranges and store each run separately in an AFF4 volume. The
image map is then created in such a way that the disk image
can be faithfully reconstituted from the logical map at a later
stage. The byte ranges themselves can be divided arbitrarily
using a segmenting algorithm.

The end result is one or more AFF4 volumes containing
a large number of byte streams with a URL of the form aff4://
encoded_hash and a single AFF4 map object representing the
hard disk image.

For disk images which contain filesystems, an effective
segmenting algorithm uses filesystem allocation information
to select byte ranges which approximate the actual allocation
of files. This maximises the probability that byte streams
derived from the same files contain the same data for many
disks within the corpus.

It is important to emphasise that our algorithm works on
the block level, and each byte stream does not actually
contain the same data as the file it represents within the
filesystem. Most modern filesystems present files as a logical
abstraction independent from their actual block level storage.
In general, files are linearly mapped to the block level storage,
however, in a significant number of cases they are not. For
example, a compressed NTFS files data does not correspond
to the data stored in its byte stream. In this case it is not
useful for our algorithm to store the files data in a separate
stream because we can not map the disk back to it (it is not
a linear transformation). However, if we store the byte
stream itself using its hash, it would be likely to contain the
same data as another instance of this compressed file on
another image (but may not match the same file in an
uncompressed state).

For these reasons byte stream hashes do not correspond to
file hashes in the general case, and therefore are not

a substitute to forensic file based hashing analysis. Our goal is
merely to recreate a forensically valid image of the source
drive rather than perform forensic analysis.

Once byte ranges are generated from allocated files, the
space between the allocated blocks can be used to form
residual byte range streams. The residual byte streams do not
necessarily only reflect unallocated files, simply those bytes
which do not belong to previous byte streams.

Section 2.3 discusses the tradeoffs and design of the seg-
menting algorithm.

2.2.  Imaging efficiency

In modern acquisition tasks, acquisition schemes must be
compared by both storage efficiency and acquisition time.
Although available processing power increases rapidly, it is
usually divided between several cores. This trend encourages
multithreaded acquisition tasks, where processor intensive
tasks are performed by different cores.

An obvious benefit to our scheme is the advantage that
possessing a large corpus of images brings. Clearly the larger
the corpus, the more likely we are to already posses the copied
byte stream in one of the images within it. For example,
assume our corpus contains an image a WinXP SP2 system.
When imaging another such system, many of the system files
will already exist within the corpus and will not need to be
acquired.

Similarly, if data is duplicated within the same image (e.g.
through multiple copies of the same file), multiple references
are made to the same AFF4 hash stream in the image map.
This is especially interesting when considering that most
modern drives are very large, and will typically have many
runs of zeros or another constant value. Since the hash
calculated on unallocated byte ranges will be the same, we
will only create a single compressed data stream of the
constant residual stream.

Another benefit with our scheme is the ability to differen-
tially compress different parts of the image. Traditionally, the
full hard disk image can either be compressed or non-
compressed. However, in our scheme, the byte stream is
stores in the AFF4 volume as an independent stream, allowing
us to choose in advance if it should be compressed. For
example a fast entropy estimator can be used to decide if the
sequence is likely to be compressible at all and only attempt
compression if the entropy is deemed low enough. Alterna-
tively we can make this choice based on filesystem filename or
another quickly attainable property of the stream. This flexi-
bility effectively allows us to adapt our compression dynam-
ically — optimising both acquisition speed and storage
requirements.

2.3.  Segmenting algorithm

The segmenting algorithm divides the disk into byte range

streams. The algorithm must Dbalance competing
requirements:
2.3.1. Maximal size of byte streams

Since each byte stream must be hashed first, and then
potentially compressed it is inefficient to re-read the byte
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stream from disk in two passes. It is better to read the byte
range data into memory at once, then hash it and compress it
from memory. This inherently limits the maximum size of the
byte stream. If block runs are derived from large files allocated
on the filesystem, they must be subdivided to prevent byte
streams from being too long. This maximum size imposed on
byte streams helps to increase the probability of some part of
the file matching an existing hash, even if the entire file does
not — for example, if the file contains large runs of zeros.

2.3.2. Minimal size of byte streams

In a multithreaded implementation the goal is to keep cores
busy at all time, minimising context switches. The AFF4
resolver is used by all threads and can become a source of
contention in a heavily multithreaded program. It is more
efficient therefore, to amortize resolver access by tasking each
core with processing a larger byte stream. Using larger
streams also reduces seek times, thread context switches and
increases compressibility.

2.3.3.  Selective compressibility

When segmenting the disk based on filesystem allocation
information we can make an educated guess of the potential
compressibility of the data before attempting to compress it.
For example when segmenting a file with a file extension such
as .mp3 or .avi, it is extremely unlikely to be compressible and
we can avoid spending time compressing it by dumping it as
an uncompressed AFF4 byte stream. Thus we have the ability
to compress selected parts of the image — a capability which is
not presentin current imaging formats which must attempt to
compress all parts of the image.

2.3.4. Byte stream reuse

Maximum efficiency is achieved when byte stream containing
the same data are collected within the same corpus. The
algorithm aims to maximise the probability that a particular
byte stream exists within the corpus by using the filesystem to
extract byte ranges corresponding to block allocation of stored
files. If the same file is present in multiple images in the
corpus, the byte stream corresponding to each appearance is
likely to contain the same data, regardless of the specific fil-
esystem layout within each image.*

2.3.5. Sequential disk access optimization

A common optimisation for IO intensive tasks is to minimise
disk head seeks by ordering disk reads in consecutive order.
This ensures that the disk readahead cache is full, and
maximises the probability of byte ranges read from cache.
A good optimisation for the segmentation function is there-
fore to emit the byte streams in order of their appearance
within the disk. This ensures that the disk is read sequentially
and minimises overall seek time provided the byte streams
are not too fragmented.

1 An exception to that is the case where the same file is trans-
formed by the filesystem in some way — for example NTFS
compressed files, EFS encrypted files, and small files resident in
MFT entries.

2.3.6. Redaction considerations

An exception to the above is the case where files must be
redacted from the image. As described in Section 2.4, redacted
files must be contained within their own byte stream,
regardless of their size, so that they may be conditionally
included in the redacted volume. The segmentation algorithm
might check candidate files for redaction at this stage, and
include them within a block run, even if they are smaller than
the minimum block run.

Our segmenting algorithm operates in two passes. On the
first pass the filesystem is analysed and block allocation
information for all allocated files is extracted. This allocation
information is converted to byte ranges by splitting sequential
file allocations such that they do not exceed the maximum
byte segment length. Short byte streams (for example small
NTFS MFT resident files) are also discarded at this stage as
they will be merged into Residual Byte Streams in the second
pass. Any necessary redaction is also performed at this stage.

The second pass then creates Residual Byte Streams by
collating the byte ranges not present in the byte streams
generated in the first pass into new byte ranges of the
constant maximal length. This effective combines smaller
“holes” in the allocated blocks into larger byte streams
increasing the probability of a hash match. Finally, All byte
streams are read in order of their appearance on the disk and
are farmed off to multiple threads to hash and compress as
needed.

An example of our segmentation algorithm is seen in Fig. 3.
In this example, an allocated file is found to be fragmented.
We create a byte stream corresponding to the allocated file by
merging the two fragments byte ranges. In the second pass,
the unallocated blocks before the first fragment, between the
two fragments, and some unallocated data after the allocated
file are merged to form a single residual byte stream. This
stream is of constant length, sufficiently long to reduce
context switching related overheads.

One might be tempted to conclude that the extra level of
processing is bound to result in a time penalty during acqui-
sition. The amount of time taken during acquisition however,
is a balance of competing effects — some increase acquisition
time, while others reduce it. In the case that a file on the
acquired hard disk already exists in our corpus, we still need
to read it in order to calculate its hash, but we avoid com-
pressing it and writing it to the output media. On the other
hand if the file does not exist in the corpus we are penalised by
having to calculate its hash in addition to compressing and

| I | Residual Byte

Stream

| Unalloc | Frag 1 Unallocl Frag 2 |

Byte Stream

Corresponding
to file

Unalloc l | | Dk
Image

Fig. 3 — An example of our segmentation algorithm.
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writing it onto the output media. Anecdotally it was found
that hashing is an order of magnitude faster than compres-
sion in the typical case, leading to a significant saving when
we are able to avoid compression.

Acquisition time will be minimised when the acquired
image contains mostly zero blocks or standard operating
system files, and a similar OS build exists in our corpus. In
this case imaging simply boils down to a filesystem
traversal, followed by a hashing operation of each file and
unallocated data, an operation potentially faster than
compression. In this case a significant saving in storage
space is expected.

On the other hand if the image contains unique data (e.g.
pseudo random data as in an encrypted or an already
compressed hard disk) our imaging technique will suffer the
additional penalty of hashing beyond the need to compress
the acquired files. In addition, a slight penalty in storage space
will result due to the extra space required to store the map
itself.

Most hard disks fall somewhere between these two
extremes. In our experience, most real hard disks contain
a great deal of similar or repetitive data. Our technique has the
potential to provide significant savings to acquisition time and
storage requirements.

Clearly the segmentation algorithm must balance many
competing needs in order to efficiently de-duplicate the image
data. It is important to emphasise however, that ultimately
the compression and speed efficiency of the compressor are
independent of the end user decompressor. The user simply
uses the standard AFF4 library to read the image. Third party
optimisations and more sophisticated segmentation algo-
rithms may be devised in future to produce even better
imagers, but backwards compatibility is assured since the
basic building blocks of this scheme exist within the AFF4 file
format.

2.4.  Redaction of byte ranges within images

Garfinkel et al (Garfinkel et al., 2009) have argued the impor-
tance of a standard corpora of forensic images in advancing
the field. Building and sharing such a corpora, in a manner
that the images within the corpora are sufficiently represen-
tative of real world images, is significantly complicated by
redaction oriented concerns. Sharing of forensic images, in
both civil and criminal matters, is similarly complicated.
Forensic images will typically contain files which, should they
be copied or possessed, may breach confidentiality concerns,
violate licensing terms, or break laws.

Redaction (selective censoring) of files within images
might appear deceptively straight forward at first. However,
a number of non-trivial challenges appear when one
attempts to redact specific files from the filesystem. These
primarily stem from the complex mapping between the
logical file presented by the filesystem, and its block level
representation. For example in the case of versioned fil-
esystems (such as the volume snapshots used by windows
2003 and above), the blocks underlying a single file instance
may be shared by multiple versions of the same file, and the
same file may have redundant copies on disk. Modern fil-
esystems also perform block level de-duplication (e.g. ZFS

(Sun Microsystems, 2010)) causing a single block to be
shared by multiple unrelated files. In addition, files may be
arbitrarily located or backed up in other storage containers,
such as PST files or archives.

Due to the significant challenges with file based redaction,
we have in the context of the work described in this paper,
focused exclusively on redaction of blocks of data, rather than
files within an image. We consider block level redaction an
essential (but insufficient) building block for implementing
complex, filesystem aware, redaction algorithms.

Current generation forensic container formats provide no
means to describe which byte ranges are redacted and thus
invalid. For example, Garfinkel et als images simply replaced
the redacted files with corrupt versions of these files. There is
no way to tell that these are redacted within the confines of
the forensic container. Similarly, currently there is no way to
automatically “un-redact” the image by providing just the
redacted blocks — an entirely new image must be created and
distributed.

On the other hand, the hash based imaging approach
described in this paper seamlessly supports redaction of byte
runs. Our redaction aware imager operates with a segmenting
algorithm as described above, however the bytes to be
redacted are stored in a stream within a separate redaction
evidence container. The final product is therefore an AFF4
volume containing the map representing the hard disk and
most of the byte streams, and a separate redacted volume
representing the redacted files. These volumes can be
distributed separately or protected using the fine grained
encryption policy already inherent in the AFF4 file format
Cohen et al., 2009.

In addition to storing the byte streams in a different
container, a fact would be asserted within the AFF4 resolver —
and the RDF serialisation, of the reason to the redacted
streams absence. Should an attempt be made to read the
blocks corresponding to the redacted byte ranges, without
access to the redacted volume, this operation will fail
A compliant tool can obtain the reason for the redaction and
report it to the user by querying the AFF4 resolver. Simply
obtaining the redacted volume and adding it to the local AFF4
resolver at any time, will allow these reads to succeed
seamlessly.

2.5.  Remote transmission of images

Many digital forensic laboratories operate in a distributed
environment. Acknowledging the need to collaborate with
images stored in remote locations, a number of advanced
techniques have been developed. For example, the Teleporter
tool uses a database of hashes on the acquisition tool to
selectively transmit images to a remote server (Watkins et al.,
2009). Teleporter is focused on the problem of image trans-
mission from a remote location rather than persistent access.
Once the image skeleton is delivered it must be recreated on
the server in order to be used, but the image skeleton may be
kept for archival purposes.

AFF4 is a forensic storage format with a focus on distrib-
uted storage. For example, suppose examiners work in two
locations A and B which are geographically remote. The
examiners in location A used their corpus of hashes to acquire



DIGITAL INVESTIGATION 7 (2010) S121—-S128

S127

a new hard disk. Those files not present in the corpus were
copied and appended to the corpus.

An examiner in location B wishes to examine the disk
image acquired at A. They download the hash map repre-
senting the new disk image, and open the hash map using
their local AFF4 stack. The resulting AFF4 map handle can be
wrapped using the following pseudo code listed in Table 3

In this example, the AFF4 objects read() method is wrapped
such that if the map attempts to open a hash stream not
available to the local implementation, we attempt to fetch it
from the remote server by other means, and add the new hash
data stream to our local corpus. A single read request may
require many hash data streams to be fetched. In effect,
unique files from the image will be fetched on demand and
cached locally.

On the other hand, if the examiner in location B does not
need to fetch the entire image, the interaction can be very
quick and bandwidth efficient — only fetching the required
data. Fetching the entire image from location A to location B
involves transferring only those files which are not present in
the corpus in location B. This should be contrasted with Tel-
eporter technology where the client needs to know in advance
what hashes are present on the server in order to prepare
a transmission package to the server omitting those file
already present on the server.

2.6. Potential risks

Hashing is inherently susceptible to collisions simply due to
the reduced entropy. Although cryptographic algorithms are
specifically designed to make it difficult to engineer a collision,
random collisions can occur with a probability of 27" where n
is the bit length of the hash. Widely identified weaknesses in
hash algorithms such as MD5 and SHA1 further increase the
odds of a collision.

While the possibility of a hash colliding can not be dis-
counted, but it can be reduced by increasing the effective bit
length. This can be achieved by combining several hash
algorithms or using more complex algorithms.

Using more complex hashing algorithms can increase the
cost of calculating a hash. On modern multicore systems
however, this increased cost is unlikely to impact acquisition
speed since calculating the hash is purely a processor inten-
sive task. In our implementation, hashing occurs by other
threads while the main thread is waiting on I0. We did not

Table 3 — An example of how the AFF4 map object can be
wrapped to fetch missing hash data streams on demand.

class WrappedMap(Map):
def read(self, length):
while 1:
try:
return Map.read(self, length)
except IOError,e:
if not self.fetch_from_remote_server(e):
raise e

find significant performance differences between using MD5,
SHA1 or SHA256.

Ultimately, for a forensically valid imaging application, the
reproduced image must pass the Ultimate Test (Turner, 2006),
and produce exactly the same behaviour which a raw image
produces.

3. Method

Our implementation was written in Python using the standard
AFF4 library python bindings. We used the pytnon bindings
for Sleuthkit (Carrier, 2003) as provided by the PyFlag project
(Cohen, 2008).

To gain comparative insight of our technique we converted
a dd image of a 4 Gb Windows XP SP2 system. The system
imaged was a typical workstation with applications such as
Visual Studio, OpenOffice and FireFox. The imaging machine
was a Dell Inspiron 6400, dual core Intel T2250 with 2 Gb of
RAM, running Ubuntu 9.04. Timing was measured using the
time command.

The image was first converted to the legacy AFF format
using AFFLIB 3.3.3, and to the EWF format using libewf Version
20091224. In both these cases we chose the fastest compres-
sion setting available by the tool (ewfacquirestream -c fast
and afconvert -x1).

We then applied our tool to the same image without
a corpus loaded. This produced a worst case scenario where
none of the byte streams could be skipped. Some byte streams
naturally appeared in the image more than once and were de-
duplicated.

To estimate an upper bound on our tools performance we
repeated the acquisition, this time with the same image
already added to the corpus. This test ensures that all byte
stream hashes will always be present in the corpus —hence no
byte streams will actually be saved to the AFF4 volume.

Realistic images will perform somewhere between the best
case and worst case. This allows us to measure upper and
lower bounds on performance of our tool.

4, Results

Both CPU time and wall clock time taken for imaging are
recorded in Table 4. Total resulting image size is also
reported. Note that for multithreaded applications CPU time
can exceed wall clock time since there are two cores in this
system. The standard AFF4 imager is multithreaded and
therefore already has a much higher throughput than the
standard AFFLIB or EWF imagers. Since this system has two
cores we expect it to be approximately twice as fast as
similar implementations.

5. Discussion

Our prototype implementation was found to perform well
against other imaging tools. At worst our performance is
similar to the popular ewflib acquisition tool in both resulting
image and acquisition time. However, when a significant
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Table 4 — Comparison of imaging times and resulting
volume size for a variety of imaging tools.

Acquisition Method Total Image  Elapsed User CPU

Size (Bytes) Time time
Hash based Imaging 1,586,315,782  7m12s 5m42s
(No corpus)
Hash based Imaging 108,573  4m4ls Om51s
(Full corpus)
EWF — fast setting 1,622,220,104 7mills 5m23s
AFFLIB Compression 1,590,285,671 9m55s 7m7s
level 1 (fastest)
AFF4 imager 1,621,922,977 4m37s 5m43s

portion of the corpus matches the acquired image we are able
to improve our acquisition speed significantly. The size of the
resulting volume is reduced significantly. Indeed in this
pathological case, the resulting volume contains only the map
object. Real world images are likely to range in size between
the two extremes — on both acquisition time and storage
space.

Another interesting observation is the performance
enhancement that a multithreaded implementation such as
the standard AFF4 imager gains on multicore architectures.
Since the standard AFF4 imager spends most of its CPU
intensive time in the compression loop it is able to parallelise
very well with very little mutex contention. This results in
more CPU time consumed than real time (i.e. performance
scales with extra cores).

On the other hand, our hashing implementation performs
less well in this regard, failing to scale with the number of
cores. When the full corpus is available, our application uses
little CPU time but still takes as long as the AFF4 imager does.
This is possibly due to increased mutex contention arising
from heavy utilisation of the AFF4 resolver by all threads. This
suggests 10 or mutex contention bottlenecks which still need
to be addressed.

Although our implementation can clearly be improved, it
already produces comparable results to existing tools in
performance, while providing significant de-duplication in
storage. Possible improvements can be made to the segmen-
tation algorithm, increasing the probability of de-duplication
in typical images. Other optimizations include balancing
compression with speed by selectively choosing to compress
only compresseable byte runs, and adapting our segmentation
algorithms to the specific type of image acquired.

The real strength of our technique is in producing a flexible
framework for hash based imaging with the advantages of

de-duplication and transparent redaction built into the file
format. This framework can easily be built on to provide more
complex imaging capabilities.
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