
DIGITAL FORENSIC RESEARCH CONFERENCE

The Normalized Compression Distance as a File

Fragment Classifier

By

Stefan Axelsson

From the proceedings of

The Digital Forensic Research Conference

DFRWS 2010 USA

Portland, OR (Aug 2nd - 4th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics

research. Ever since it organized the first open workshop devoted to digital forensics

in 2001, DFRWS continues to bring academics and practitioners together in an

informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,

annual conferences and challenges to help drive the direction of research and

development.

http:/dfrws.org

The Normalised Compression Distance as a file
fragment classifier

Stefan Axelsson

Blekinge Institute of Technology, Blekinge Tekniska Högskola, 371 79 Karlskrona, Sweden

a b s t r a c t

We have applied the generalised and universal distance measure NCDdNormalised

Compression Distancedto the problem of determining the type of file fragments. To enable

later comparison of the results, the algorithm was applied to fragments of a publicly

available corpus of files. The NCD algorithm in conjunction with the k-nearest-neighbour

(k ranging from one to ten) as the classification algorithm was applied to a random

selection of circa 3000 512-byte file fragments from 28 different file types. This procedure

was then repeated ten times. While the overall accuracy of the n-valued classification only

improved the prior probability from approximately 3.5% to circa 32e36%, the classifier

reached accuracies of circa 70% for the most successful file types.

A prototype of a file fragment classifier was then developed and evaluated on new set of

data (from the same corpus). Some circa 3000 fragments were selected at random and the

experiment repeated five times. This prototype classifier remained successful at classifying

individual file types with accuracies ranging from only slightly lower than 70% for the best

class, down to similar accuracies as in the prior experiment.

ª 2010 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

When performing computer forensics the investigator often
finds herself with a collection of file fragments from slack
space on disks, usb-keys etc. Sometimes enough meta data
(file links, headers etc.) survives to make reconstruction easy,
but often enoughwhat the investigator is left with is a random
collection of file fragments, that need to be put together to
form (partially complete) files. Knowing or having an indica-

tion of the types of the file fragments (i.e. picture, executable,
text etc.) greatly aids in the reconstruction process, as the
available resources can be put to use where they best are
needed.

To that end we have investigated applying a fairly recent
distance measurednormalised compression distancedto the
problem of classifying file fragments. This field of research is

not new, but it is unfortunately difficult to compare the results
we obtain with previous results, since the data was not avail-
able for comparison. In order to further research in the fieldwe
have performed our experiment on the publicly available
corpusbyGarfinkeletal. (2009) in thehope that futureworkwill
be performed in a way which makes comparison possible and
to foster a spirit of friendly competition.

2. Normalised Compression Distance (NCD)

Theproblemaswehave framed it is oneof supervisedmachine
learning.Of the several available algorithmswehavechosen to
base our classifier on a fairly recent algorithm that computes
distances between arbitrary data vectors: Normalised Compres-
sion Distance (NCD) (Cilibrasi, 2007) as it is generally applicable

E-mail address: stefan.axelsson@bth.se

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 2 4eS 3 1

1742-2876/$ e see front matter ª 2010 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2010.05.004

(Ferragina et al., 2007), parameter free (Keoghet al., 2004), noise

resistant (Cebrian et al., 2007) and demonstrated theoretically
optimal (Vitanyi et al., 2008). The NCD is an approximation to
theuncomputableNormalised InformationDistance, that is based
on the notion of Kolmogorov Complexity.

NCD is based on the idea that by using a compression
algorithm on data vectors (in whatever shape or form these
may come) both individually and concatenated, we will
receive a measure of how distant they are. The better the
combination of the two vectors compress, compared to how
the individual vectors compress on their own (normalised to
remove differences in length between the set of all vectors),

the more similar they are. More formally, NCD is a metric:

NCDðx; yÞ ¼ Cðx; yÞ $minðCðxÞ;CðyÞÞ
maxðCðxÞ;CðyÞÞ

where C(x) is the compressed length of x and C(x, y) the
compressed length of x concatenated with y.

In order to apply this metric as a supervised learner one
selects features of the input data to train on and then calcu-

lates the distances from the features of the training instances
to the features of the instances under classification. Another
advantage of the NCD is that anything that can be put through
the compression algorithm can in theory be used as a vector
(Cebrian et al., 2005). That means that the NCD is parameter
free and resistant to errors in feature selection (as one does
not have to do any of the latter). Not having to make any
feature selection is a substantial advantage, as there is an
almost infinite number of ways to select features, and these
have then to be identified, selected and evaluated. The latter
in particular is often a substantial task.

When actually using NCD for classification, a classification
algorithm has to be used. We have chosen distance to the
closest examples in the set e.g. a fragment that is closest in
distance to several particular instances in e.g. the exe set is
classified as exe, and so on. Thus the classification algorithm
proper is k-nearest-neighbour for various values of k. The k-
nearest feature vectors are selected and the class is assigned
according to a majority vote. For example, with k ¼ 10 if three
of the closest feature vectors were of type zip and seven were
of type exe, then the feature vector under classification is
assigned to the class exe, even though the closest example
might have been a zip feature vector.

3. The file fragment corpus

Previous research has, with one exception (Axelsson, 2010),
exclusively used private data sets. Using a private data set has
many advantages, the chief reason being that these are
quickly and simply put together e.g. by downloading
“random” files of the Internet. However, this most probably
means that the files cannot be redistributed to other

researchers as that would violate copyright law. To counteract
the resulting problem of the research not being reproducible
by other researchers, and promoting friendly competition
between approaches in the field, we chose instead to base our
research on the freely available corpus of forensics research
data by Garfinkel et al. (2009). The corpus is large and contains

several different parts. We chose to base our research on the

file corpus described in Section 4 of Garfinkel et al. (2009). That
corpus contains 1 million files of different file types. Of the
available file types we chose to concentrate on an easily
identifiable (based on file name endings) large subset con-
sisting of the following 28 file types:, pdf, html, jpg, text, doc, xls,
ppt, xml, gif, ps, csv, gz, eps, png, swf, pps, sql, java, pptx, docx, ttf,
js, pub, bmp, xbm, xlsx, jar, and zip.

4. The experiment

Our experiment follows the example put forth in Axelsson
(2010) closely as we wish to make our results comparable to
that work.

We decided to perform our experiment on 512-byte frag-
ments from the corpus described above. The reason for
choosing 512-byte fragments was that this is currently the
smallest available sector size on magnetic media and hence
onedoesnot typicallyhave todealwith fragmentssmaller than

this. If one has knowledge of the file system that was in use,
then one can profitably chose a larger fragment size. However,
we would argue that using the smaller size when doing
research is a more conservative choice as larger fragments
allows for the machine learning algorithm to be exposed to
more structure per fragment on which to base its decision.

Other research has selected features by doing processing
on the fragments under study (such as calculating byte
frequency distributions etc.) but since an advantage of the
NCD algorithm is that it can process most available data
without preprocessing, instead the entire fragment is fed to

the compression algorithm. The bzip2 (Seward, 2001) algo-
rithm was chosen as it can comfortably handle the lengths of
strings (2 % 512) that we are exposing it to, without much
overhead. For more discussion of what to look for in
a compression algorithm that is to be used in NCD see Cebrian
et al. (2005).

Ideally we would like to have performed one big experi-
ment on several tens of thousands of blocks chosen from the
corpus and then done our evaluation of the results by ten-fold
cross validation (Kohavi, 1995). However, as we have to
calculate the distance between all pairs of blocks, and hence

the runtime of the classification algorithm is quadratic in
nature, that was unfortunately impossible. Instead, a smaller
subset of blocks, ca 3000 per trial, was chosen and the
experiment repeated ten times.

In order to achieve comparable results, during each of the
ten runs, we selected ten files at randomof each type and then
selected 14 blocks randomly (using GNU sorts e R0, random,
argument) from each file, except where the file was not
sufficiently long (i.e. less than 512 % 14 ¼ 7168 bytes).

The selection of files was done in such away that all files in
the corpus were equally likely to be selected in any one run of
the experiment (i.e. the file were placed back in the “urn”).

Once a file set had been selected for an experiment the frag-
ments were selected at random uniquely, hence no fragment
was selected twice. Thus the entire experiment was con-
ducted on ca 32,000 fragments (divided onto ten separate
trials). Table 1 details the types and number of fragments that
were selected.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 2 4eS 3 1 S25

In labelling a file as an actual type of files for the exper-

iment we have relied mostly on the file name endings. This
method is far from fool proof though. While we, for
example, could find only one or two instances of a file with
the ending .eps that was not actually an encapsulated
postscript file, other types, notably the .pub ending, was less
successful with several examples of e.g. addresses for
persons, etc. We have yet to do an actual full classification
by hand which would answer once and for all what the
actual type of the files would be. Until that is done, we
advise some caution in interpreting the results above as
a certain (small) percentage of the files assumed to be e.g.

PostScript files could in fact be of type e.g. html. We decided
to still include the problematic classes, i.e. pub and text as,
even though we may not expect perfect hit rates on these
file types, they still provide a target of opportunity for the
classifier to misclassify other file types as either pub or text,
making the experiment more conservative.

The NCD algorithm was run once for each of the ten trial
sets and the distance between each pair of fragments was
computed (actually since the distance in this case does not
necessarily commute, due to imperfections in the compres-
sion algorithms, both the distances aeb and bea were

computed, when classifying a only the aeb distance was
actually used). Using a dual core Opteron 2214HE with 4 GB of
memory, computing the complete distance matrix took
approximately 40min per trial, for a total of just over six hours
for all trials.

In presenting the results of the classification we will start

with the overall results and then present the data in
increasing detail.

First, the overall average hit rate (accuracy) of the k-nearest-
neighbour classification for different values of k are presented
in Table 2. The average is computed over the ten trials. Note
that we treat the classification as an n-valued problem, i.e. we
do not compare pairs of file types as others have done, but
instead we classify each file fragment into one of the available
28 file type classes. This should realistically affect our hit rate
negatively as there are now many more choices for mis-
classifying a file fragment as opposed to a straight yes/no

classification. In order to not commit the sin of including our
“training” data in the final results, we exclude all file frag-
ments from the same file as the fragment under study from
our classification.

As we can see from Table 2, the results are unremarkable.
However, note that as there are 28 different possible classes,
a 34% hit rate does not mean that a coin toss would have done
just as well. A completely random classification process would
instead result in az3.5% hit rate (1/28 to be precise). It is inter-
esting to note that the value of k has little effect on the result of
the classification. The single nearest neighbour does as well as

any other small k. Too large a value of kwould lead to a drop off
in hit rate as the number of file fragments of the same (correct)
type is limited and less than the total number of file fragments.

However, if we break down the result per class of fragment,
the picture changes. In Table 3 the average hit rate and stan-
dard deviation (in percentage points) per fragment type for
1 & k & 10 is presented. Note that as for the overall results the
specific value of k changes the accuracy little.

We calculated the statistical significance of the above
results when put against the purely random classifier (that in
effect would roll a 28-sided die). This is not entirely correct as

the total number of fragments per file type varies slightly,
a more clever “random” classifier would take that into effect
and adjust the probability ever so slightly for a class, to be the
number of fragments for that class divided by the total
number of fragments. However, as the lion’s share of the
results above are highly statistically significant and the
difference is small, we have decided to ignore this refinement.
In summary, all the above results are statistically significant
at the 1% level (P < 0.01) with the exception of the result for
pptx, that is significant at the 5% level (P< 0.05) and pps, gz, and
png that are not statistically significantly better than the equal

Table 1 e Experimental data.

Ending Type Fragments

bmp Bitmap picture 1131
csv Comma separated values 1055
doc Microsoft Word (various vs) 1319
docx Microsoft Word (xml format) 1302
eps Encapsulated Postscript 1563
gif Graphics interchange format 1281
gz GNU zip compression 1185
html Hypertext markup language 1171
jar Java archive 765
java Java source code 1151
jpg Joint Photographic Experts Group image 1143
js Javascript source code 994
pdf Portable document format 1286
png Portable network graphics 1078
pps Microsoft Powerpoint Show 1317
ppt Microsoft Powerpoint 1276
pptx Microsoft Powerpoint (xml format) 1190
ps PostScript 819
pub ssh public key files 643
sql Sql database scripts and dumps 846
swf Shockwave flash 1297
text Text files (DOS/Windows) 1030
ttf True type font 961
xbm X Bitmap 694
xls Microsoft Excel (various vs) 1290
xlsx Microsoft Excel (xml format) 1379
xml Extensible markup language 1233
zip Data compression and archiving 1142

Total 31,541

Table 2 e k-nearest-neighbour overall results.

k Average hit rate (%)

1 36.43
2 34.95
3 34.96
4 34.31
5 34.17
6 33.65
7 33.50
8 33.06
9 33.00
10 32.86

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 2 4eS 3 1S26

likelihood classifier. However, that e.g. the gif classifier is
statistically better than random chance is not in itself much of

an endorsement, as the accuracy is still quite low (even
though it is twice as good as pure chance). As a comparison
against random chance is setting the bar very low, we will not
mention statistical significance further.

As we can see from Table 3, there is a notable difference
between different types of file fragments when it comes to
how successful we are at classifying them. In order to make
the data in Table 3 more clear we have included a bar chart
that lists the average of the average accuracies overall k-
values in Fig. 1. Unfortunately for the further analysis no clear
groups can be easily identified. However, it becomes clear that

the classifier is most successful for the eps, java, csv, and ttf file
types with accuracies ranging from 68% to 63% averaged
overall values of k. Then the xml, js, bmp, doc, xls, xbm, docx, jar
and zip-classes range until there is a small drop (The zip-class
averaging 46% accuracy). We see the next step at xls (at 30%)
and then surprisingly the text class at 23% and the pdf-class
likewise at 23%. Then we have the low performers; ppt, swf,
jpg, gif, pptx, pps, gz and png, which all score so low as to be
scarcely better than random classification.

However, to not inadvertently lure the reader to accept the
average accuracy (over the ten trials) as the final word on the

matter; for completeness sake we also list the minimum
(worst) accuracies of the ten trials in Table 4. Listing the
minimum as opposed to, for example, the lower quartile, is of
course more conservative. We see from the table that
considering the instances where the classifier performs the
worst, we can hardly rely on it for more than a third or so of

the top scoring file types. If we study the Table 4 more closely
we see that the rough order of success does not change much

though a few classes do worse or better than they do overall.
We have not examined this effect in any detail.

So far we have only discussed accuracy in terms of hits and
misses. A fuller picture develops if we also consider the actual
classes that were predicted by the classifier. As space doesn’t
permit us to present the complete confusion matrix we will
focus on the cases where the classifier did not do well, as that
tells us which types are most likely to be mistaken for other
types of files.Wewill present the data for the k-valuewhere the
classifier did the best to avoid artificially low figures due to pure
chance. Table 5 lists the results with one column per poor

performer. A lack of space precludes us from also listing the
percentages, but as luckwould have it, the column totals are all
fairly similar whichmakes comparison between them easier.

A few interesting patterns emerge in the table. The most
striking is perhaps that as far asmisclassification is concerned,
every file looks like a docx (and to a lesser extent an xlsx) file.
However, the docx (and xlsx) format is basically a zip-file (i.e. it is
compressed). We would tend to think that a compressed file
would look more or less random from the perspective of our
detector, and that is probably why it matches other formats
that are compressed, such as pptx, gif, png etc.

Since k ¼ 1 did so well as a classifier its interesting to see
which single specific fragments best describe their class (i.e.
leads to the most correct classifications). In order to present
this data we have chosen a rather conservative method; we
count the nearest fragments as long as they are of the correct
type. As soon as a fragment is of the wrong type, we stop the

Table 3 e Average accuracy per fragment type (Standard deviation) for different k (both % rounded).

Class 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 s 10 s

eps 69 (8.1) 64 (13) 70 (10) 67 (13) 70 (10) 69 (12) 71 (9.1) 68 (12) 70 (11) 70 (12)
java 68 (12) 62 (12) 66 (12) 67 (12) 68 (12) 67 (13) 66 (13) 67 (13) 67 (13) 67 (13)
csv 67 (12) 61 (14) 63 (14) 64 (12) 65 (13) 65 (13) 66 (13) 67 (12) 66 (13) 67 (12)
ttf 69 (12) 73 (12) 69 (11) 66 (11) 62 (10) 62 (9.0) 59 (10) 60 (8.3) 58 (9.0) 58 (7.5)
xml 58 (15) 56 (16) 58 (15) 58 (15) 59 (15) 58 (14) 58 (14) 58 (15) 58 (15) 57 (15)
js 62 (12) 59 (13) 58 (15) 56 (16) 58 (17) 57 (18) 57 (18) 55 (18) 54 (19) 52 (22)
bmp 51 (12) 39 (12) 48 (9.2) 53 (11) 54 (8.9) 56 (9.0) 57 (10) 56 (11) 57 (10) 58 (10)
doc 48 (10) 56 (13) 54 (11) 53 (12) 50 (10) 52 (11) 49 (11) 50 (13) 48 (14) 52 (15)
xls 51 (13) 46 (10) 48 (10) 47 (12) 50 (13) 49 (13) 51 (14) 50 (13) 51 (14) 50 (13)
xbm 61 (14) 51 (17) 51 (17) 50 (18) 50 (18) 44 (18) 45 (19) 40 (19) 40 (20) 39 (19)
docx 47 (14) 44 (13) 35 (15) 45 (18) 49 (20) 49 (21) 50 (22) 50 (22) 51 (23) 51 (22)
jar 59 (8.9) 55 (9.2) 47 (11) 49 (13) 48 (13) 44 (15) 44 (14) 40 (12) 39 (11) 39 (12)
zip 61 (17) 44 (24) 51 (21) 45 (22) 44 (21) 43 (21) 43 (22) 42 (23) 41 (22) 42 (23)
ps 40 (14) 43 (14) 39 (14) 39 (15) 37 (15) 38 (14) 37 (14) 37 (14) 36 (14) 36 (15)
sql 40 (12) 38 (11) 37 (12) 37 (12) 37 (12) 37 (14) 36 (14) 36 (14) 37 (15) 36 (15)
pub 52 (26) 43 (22) 36 (22) 33 (22) 31 (21) 29 (19) 27 (20) 24 (19) 22 (18) 21 (19)
html 25 (10) 36 (10) 35 (10) 34 (8) 31 (9) 31 (9) 30 (10) 30 (9) 29 (10) 28 (10)
xlsx 43 (13) 20 (11) 30 (14) 31 (17) 32 (16) 31 (18) 29 (17) 29 (19) 30 (20) 29 (20)
text 19 (10) 27 (12) 25 (13) 23 (12) 23 (12) 23 (12) 22 (12) 23 (12) 23 (12) 24 (13)
pdf 23 (9) 26 (10) 25 (10) 24 (10) 24 (11) 23 (10) 22 (11) 21 (11) 21 (10) 21 (10)
ppt 14 (7.7) 14 (9.5) 11 (7.8) 13 (9.2) 13 (8.1) 12 (9.4) 14 (7.8) 15 (8.5) 14 (8.7) 15 (8.6)
swf 11 (16) 11 (15) 11 (14) 10 (15) 10 (16) 12 (15) 12 (14) 12 (13) 10 (12) 10 (11)
jpg 7.2 (6.5) 12 (10) 11 (9.4) 9.2 (7.7) 7.8 (6.8) 6.3 (6.4) 5.4 (6.0) 5.7 (5.7) 5.4 (5.4) 5.2 (4.0)
gif 7.4 (5.7) 14 (10) 12 (7.7) 8.4 (5.2) 6.2 (4.5) 5.3 (4.6) 5.5 (4.4) 5.4 (3.6) 5.0 (3.7) 4.9 (3.8)
pptx 8.9 (8.9) 12 (10) 7.9 (4.3) 5.8 (5.7) 6.0 (7.3) 6.2 (7.5) 5.9 (5.9) 6.1 (6.1) 5.8 (5.3) 4.7 (5.0)
pps 6.8 (4.0) 4.1 (2.9) 5.4 (4.4) 4.7 (3.8) 5.1 (5.0) 5.1 (4.8) 5.7 (5.3) 6.3 (5.2) 7.0 (5.2) 7.8 (5.1)
gz 4.4 (3.8) 8.7 (6.3) 8.2 (6.0) 5.2 (3.8) 4.0 (5.6) 4.8 (6.2) 5.0 (6.0) 5.7 (6.1) 5.8 (4.9) 4.9 (3.8)
png 5.5 (4.0) 11 (8.1) 8.0 (7.3) 4.3 (4.7) 4.2 (3.4) 3.6 (3.1) 3.6 (3.2) 4.2 (4.0) 3.9 (3.6) 3.8 (4.7)

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 2 4eS 3 1 S27

counting and emit the result. To not pollute the result with
files that are self similar, we skip fragments from the same file
and do not count them, instead we keep scanning for the next
closest fragment as stopping would be a rather unreasonable.
Table 6 lists how many fragments the five most successful
fragments per class predicts using the method above (It
should be remembered that the method used here is more
conservative than k-nearest-neighbour that we used in the

beginning of the paper).
Thus, reading the table, we see e.g. that the best csv frag-

ment correctly predicted the class of 54 other csv fragments
using our rather restrictive definition for predicted. A lack of
space precludes us from discuss the results in any detail, but
a few examples suffice to demonstrate the idea. Five unique
csv fragments each classify between 54 and 47 fragments
each. While this is in itself not a great percentage of the total
number of csv fragments, it does serve to give an indication of
how successful a single fragment can be at correctly classi-
fying a file type. Furthermore it is of interest when we develop

a more practical detector in the next section.
Of course, it would be interesting to learn to what extent

two different fragments classify the same or different frag-
ments (in the latter case a better detector could bemade using
combining two or more fragments in the classifier, in the
former this would lead to scant gain). A lack of space

precludes us from taking this line of investigation further. It
would however be interesting to delve further into exactly

why these fragments tend to correctly classify its brethren.

5. A prototype detector

In order to test the method further, we have also developed
a prototype for amore practical detector that can be run on file
fragments. The previous experiment pitted all (already clas-
sified) blocks against each other. This is of course not possible
in a real scenario, as one does not then have access to already

labelled data.
A reasonable amount of “good” fragments, i.e. fragments

that were successful at classifying other fragments were
selected as a reference to be used to classify unknown blocks
against. In order to create this data set, the twenty most
successful fragments (measured in the same way as in Table
6) were selected as this gave a reasonable total of 560 frag-
ments. The distance between these 560 fragments and the
fragments under studywas then calculated and the k-nearest-
neighbour algorithm used for classification. Since the refer-
ence number of fragments was fixed at 560, the runtime of the
NCD algorithm proper is no longer quadratic in nature, but

rather linear in the number of fragments to classify. On
a computer about half as fast as the Opteron detailed above,
classifying approximately 3300 fragments (each against the
560 reference fragments) took on the order of 10 min (No
doubt, there is great room for improvement/optimisation by
writing software specialised for the task).

Table 4 e Minimum accuracy per fragment type
(% rounded).

Class min

java 45.2
ttf 38.3
eps 37.9
csv 33.3
doc 25.3
xml 25.2
xls 23.4
jar 21.3
bmp 16.7
html 14.2
js 12
sql 11.1
xbm 11
pdf 10.7
xlsx 5.7
zip 5.4
docx 5.3
pub 4
text 2.5
ps 2.4
gif 0.7
gz 0.7
jpg 0.7
png 0.7
ppt 0.7
pptx 0.7
swf 0.7
pps 0.6

Fig. 1 e Average of the average accuracy per class (%).

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 2 4eS 3 1S28

Even though the proposed method does not perform well
on all file types, we still include examples of the file types that
perform poorly overall in the reference data set. The reason is
that without these examples the detector could never emit
those classes as a result of the classification procedure. This
wouldmost likely lead to a detector displaying serious signs of
home blindness, i.e. it wouldmisclassify other fragmentswith
great certainty (however misguided). So in order to achieve
more robust detector theywere left in.We cannot quantify the
effect that leaving the low performers out would have as we
have not performed the alternative experiment (other than

the obvious, if no examples at all were left in, that would
render the detector completely blind to those file types).

The detector detailed above was tested on a new data set
from the corpus. Inmuch the sameway as above, ten randomly
selectedfiles of each typewere downloaded and likewise fifteen
blocks were selected at random from each file (where the file
was long enough). This procedure was repeated five times.

The detector was then run on each of the five data sets and
the results are reported in Table 7. The table lists the average
percentage of fragments thatwere correctly detected, with the
standard deviation in parenthesis.

We see that even though we validate the detector on a new
data set the detector does quite well for many file types
(Though we admit that selecting the files from the same
corpus does not ensure that the validating data set is inde-
pendent of the training data set to quite the degree that would
be desirable). The detector performs roughly on par with our

earlier experiments. When reading the accuracy data in Table
7 it should again be kept in mind that the prior probability of
any one class is on the order of 3.5%.

We would like to stress that this is still a prototype, and
much work remains to be done before a similar tool could be
put to practical use.

6. Related work

The work that is most similar to this is no doubt (Axelsson,
2010). That work is unique amongst prior work in that it is
also based on a freely available corpus of experimental data.
The results on that data set, using much the samemethods as
here are somewhat different. For example, the NCD algorithm
applied in that experiment did the very best for svg, xls, html
and text type fragments. It also did well for elf, png, gif and pdf,
while the performance for exe, jpg, dll,mov,mp3 and zip is poor.
This should be contrasted with the results presented here,
where html is on the lower half of the tested file types as is pdf,
gif and png (which is indeed among the worst performers
here). However, the corpus used in Axelsson (2010) is an order

of magnitude smaller than the one used here, and further-
more only one experimental run (as compared to ten in this
experiment) was performed. Hencewe have a higher degree of
confidence in the results reported in the present paper.

Karresand and Shahmehri (2006a,b) introduced the idea of
using the data of the file itself for classifying file fragments. In

Table 5 e Predicted class (rows) for the low performing fragment types (number of fragments), total for all trials.

Class pps gz png swf jpg pptx gif ppt

k-value k ¼ 10 k ¼ 2 k ¼ 2 k ¼ 7 k ¼ 2 k ¼ 2 k ¼ 2 k ¼ 10
bmp 27 3 3 5 5 8 10 35
csv 1
doc 74 2 2 50 5 33 32 117
docx 495 470 470 464 381 400 440 435
eps 8 2 2 9 3 4
gif 44 128 128 63 136 122 23
gz 42 26 97 87 85 40
html 7 12 4
jar 2 2
java 4
jpg 46 90 90 50 107 60 30
js 2 2 4
pdf 20 25 25 9 44 22 26 6
png 36 122 122 66 134 125 111 31
pps 31 31 15 24 24 20 66
ppt 93 10 10 6 15 18 10
pptx 44 138 138 75 117 118 20
ps 1
pub 1 2 1 1
sql 1 1
swf 14 36 36 40 36 22 9
text 3 1 3 2
ttf 7 7 3
xbm 1 1
xls 77 23 23 25 21 24 34 61
xlsx 339 117 117 309 119 147 130 223
xml 1 1 1 1 5
zip 3 3 5 5

Sum 1375 1208 1067 1190 1141 1164 1107 1125

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 2 4eS 3 1 S29

doing so they focused exclusively on developing the Oscar

method for identifying jpg file fragments (that used special
information about the structure of jpg files). They report
a detection rate of 99.2% (and no false positives). As their
approach in practice (though not necessarily in principle) is
limited to only one fragment type it is difficult to compare
their results with ours, as we address the more complex n-
valued problem.

Veenman (2007) also addressed the n-valued problem for
n ¼ 11 to a data set of about 450 Mb of data using statistical
methods (including one based onKolmogorov complexity as is
ours). He uses fragments of size 4096, i.e. eight times as large

as we do. He reports an overall accuracy of 45%, which is only
slightly larger than we do. He then develops a set of two class
(cross type) classifiers that he reports better results with (as
these are reported graphically it is difficult to summarise them
here and also to compare them to our results).

More recently Calhoun and Coles (2008) develop and test
more than twenty different statistical methods for identifying
file fragments. As the simplest methods they report on (ASCII
frequency and entropy measurements) in their words, can
correctly tell apart obviously different file formats such as jpg,
xls and txt. They report results on using pairs of experiments

on jpg, bmp, gif and pdf. Their best methods correctly classify
on the order of 80e90% of fragments in the pairwise
comparison. Again, as we address the n-valued problem
directly a comparison is difficult, but wemanage not toomuch
worse accuracy for our best results; though not for the same
file types, which is noteworthy.

Table 7 e Average accuracy per fragment type (Standard deviation) for different k (both % rounded) for the prototype
detector.

Class 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 s 10 s

pub 67 (6) 59 (11) 50 (8) 57 (9) 48 (7) 48 (8) 47 (7) 51 (8) 46 (7) 49 (8)
eps 61 (6) 61 (9) 61 (8) 63 (9) 63 (9) 63 (10) 61 (8) 61 (9) 59 (7) 58 (9)
csv 59 (10) 55 (8) 59 (11) 59 (10) 61 (11) 62 (10) 62 (9) 63 (10) 63 (9) 63 (9)
java 53 (12) 52 (14) 50 (12) 52 (13) 52 (12) 53 (13) 53 (13) 53 (13) 53 (13) 52 (14)
xml 50 (8) 51 (11) 51 (9) 50 (9) 49 (8) 49 (7) 49 (6) 50 (7) 50 (7) 50 (5)
ttf 48 (16) 49 (16) 49 (16) 49 (16) 49 (16) 49 (16) 49 (16) 49 (16) 49 (16) 49 (16)
bmp 46 (10) 38 (10) 45 (11) 47 (10) 47 (12) 49 (12) 50 (12) 50 (11) 51 (12) 53 (12)
xlsx 43 (5) 22 (7) 33 (7) 28 (9) 24 (9) 20 (9) 15 (10) 13 (10) 12 (9) 12 (9)
sql 36 (20) 35 (20) 32 (20) 35 (21) 33 (20) 35 (21) 36 (20) 35 (20) 35 (18) 36 (18)
zip 35 (2) 26 (3) 35 (2) 39 (4) 34 (4) 36 (5) 36 (5) 39 (6) 45 (5) 47 (6)
js 35 (7) 35 (7) 35 (7) 36 (6) 37 (7) 38 (7) 37 (7) 38 (6) 37 (7) 38 (7)
xls 34 (7) 36 (4) 35 (4) 35 (4) 36 (5) 36 (4) 38 (5) 40 (5) 53 (8) 51 (8)
docx 31 (5) 39 (5) 26 (6) 42 (6) 52 (8) 50 (5) 43 (3) 43 (4) 45 (3) 49 (3)
text 29 (5) 27 (7) 26 (7) 23 (6) 23 (7) 22 (7) 22 (8) 23 (8) 22 (9) 22 (8)
html 28 (7) 39 (9) 36 (8) 33 (8) 31 (9) 31 (8) 30 (9) 30 (8) 29 (8) 29 (9)
jar 23 (13) 23 (13) 24 (12) 24 (12) 24 (12) 24 (12) 30 (15) 30 (15) 30 (15) 30 (15)
doc 21 (3) 27 (3) 30 (3) 29 (2) 30 (2) 32 (2) 34 (2) 34 (2) 35 (2) 36 (2)
pdf 19 (6) 22 (6) 24 (7) 25 (6) 23 (7) 21 (7) 22 (6) 23 (6) 23 (6) 23 (5)
xbm 18 (10) 19 (8) 17 (11) 18 (11) 18 (11) 18 (11) 18 (11) 18 (11) 18 (11) 18 (11)
png 18 (3) 24 (3) 14 (3) 4 (0) 6 (1) 10 (1) 10 (2) 8 (2) 9 (1) 9 (2)
swf 14 (8) 10 (6) 9 (6) 10 (7) 10 (7) 9 (5) 10 (5) 10 (6) 10 (6) 10 (6)
ppt 10 (2) 12 (5) 10 (3) 11 (3) 10 (4) 11 (4) 9 (3) 10 (4) 9 (3) 10 (5)
gz 7 (2) 15 (4) 18 (4) 13 (0) 13 (3) 19 (2) 24 (3) 24 (4) 24 (1) 22 (3)
gif 7 (3) 12 (3) 13 (4) 11 (5) 9 (3) 11 (3) 13 (1) 15 (2) 13 (1) 13 (1)
pps 6 (2) 3 (1) 4 (2) 3 (2) 3 (2) 2 (2) 4 (2) 2 (2) 4 (2) 3 (2)
jpg 6 (2) 10 (2) 14 (3) 13 (2) 9 (1) 6 (1) 7 (2) 9 (2) 10 (3) 9 (2)
ps 5 (3) 7 (5) 8 (5) 6 (4) 5 (4) 4 (3) 2 (2) 8 (0) 7 (0) 5 (0)
pptx 5 (4) 5 (4) 5 (4) 4 (3) 4 (3) 5 (4) 5 (3) 5 (3) 5 (4) 6 (5)

Table 6 e Fragments (class) most successful at
conservatively predicting the type of other fragments.

Class Best 2:nd 3:d 4:th 5:th

csv 54 52 51 48 47
ttf 49 46 46 45 45
js 42 39 38 36 36
java 39 38 38 36 33
eps 37 37 34 34 32
xml 30 26 24 23 23
bmp 30 28 28 27 25
sql 29 29 28 26 24
ps 28 28 25 25 22
xls 24 20 18 17 17
pdf 20 18 18 16 16
jar 20 19 18 18 18
xbm 19 19 18 18 17
doc 19 18 17 14 14
text 18 13 12 11 11
zip 15 14 13 13 13
xlsx 14 14 13 13 12
swf 11 10 9 9 8
pub 11 9 8 7 7
docx 10 9 9 9 8
ppt 9 9 8 7 6
html 9 9 8 8 8
pps 7 7 6 6 5
pptx 5 4 4 4 4
jpg 4 3 2 2 2
png 3 2 2 2 2
gif 3 2 2 2 2
gz 2 1 1 1 1

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 2 4eS 3 1S30

Unfortunately, for all the latter of these results, differ-

ences in methods, fragment size, data sets etc., make a more
useful comparison difficult. Taking that caveat into consid-
eration we see no obvious sign that the method presented
here would not compete successfully against the other
proposed methods, quite the contrary. Since the differences
are as great as they are, however, too much should not be
read into the preceding statement. Further investigation is
necessary.

7. Conclusion and future work

Even though our method is rather straightforward (simplistic
even) and easily implemented, we still manage to correctly
classify quite a few file types with a worthwhile degree of
accuracy. The work as it stands suffers from a few limitations
though; the most notable being the use of files from only one
source (i.e. publicly available files from the US government).
Also one has to ask how realistic the examples of files are
compared to what an investigator would see in the field. A
problem here is that we cannot use files the contents of which

would make possession itself illegal. Also, some types of files
should probably be divided into subclasses, such as execut-
able files one would expect to find on a computer of the same
type as the one under investigation and others that one would
not (e.g. Microsoft office versus viruses, worms etc. though
finding the latter on the average computer would of course not
be very surprising.)

More formally; this paper makes the following contribu-
tions: We have demonstrated that we can correctly classify
file fragments even when they are short and perform an n-
valued classification without any feature selection. The latter

point is valuable in that there is an infinite number of ways to
perform feature selection for such an open ended problem as
this, and the selected ones must be verified before use. We
have also developed a prototype classifier that manages to
correctly classify fragments in an independent experiment in
a reasonable amount of time proportional to the number of
unknown fragments that need to be classified.

We plan towork in the future on the problemofmoving the
research to a realistic setting; studying actual captures of disk
and memory slack space to develop a notion of what an
investigator (or her tools) would meet in the area of prob-

lematic data types.
Regarding future work, we have for now addressed the

problem as an n-valued problemwhere each file fragment is of
equal value, this is probably not realistic. More likely, for
certain types of investigations some types of files are more or
less interesting, e.g. the investigator might be more interested
in images in one investigation and in email in another. The
method should take this into account when classifying frag-
ments in an attempt to reconstruct files. The reconstruction
process itself in conjunction with the identification of frag-
ment types needs more study, given that we have fragments

without sufficient structure to make a more programmatic
reconstruction possible. A prototype classifier would probably
also benefit from amore sophisticated classification algorithm
than k-nearest-neighbour, but this also makes the results of the
experiments harder to interpret. Also, the method and data

sets themselves need further study and, to a lesser extent,

further development.
To foster friendly competition in research in the area, our

specific data (lists of actual fragments and files selected etc.)
will of course be made available on request.

r e f e r e n c e s

Axelsson Stefan. Using normalized compression distance for
classifying file fragments. In: The third international
workshop on digital forensics (WSDF’10). The proceedings of
ARES 2010. Krakow, Poland: IEEE; 15e18 Feb. 2010. p. 641e6.
doi:10.1109/ARES.2010.100. 978-0-7695-3965-2/10.

Cebrian Manuel, Alfonseca Manuel, Ortega Alfonso. Common
pitfalls using normalized compression distance: what to
watch out for in a compressor. Communications in
Information and Systems (CIS) 2005;5(4):367e400.

Cebrian M, Alfonseca M, Ortega A. The normalized compression
distance is resistant to noise. Information Theory, IEEE
Transactions May 2007;53(5):1895e900.

Cilibrasi Rudi. Statistical inference through data compression. Ph.
D. thesis. Institute for Logic, Language and Computation
Universiteit van Amsterdam, http://www.illc.uva.nl/; 2007.
Plantage Muidergracht 24, 1018 TV Amsterdam.

Calhoun William C, Coles Drue. Predicting the types of file
fragments. In: Digital investigation, the proceedings of the
eighth annual DFRWS conference, Philadelphia, PA, USA, vol.
5:1; Aug. 2008. p. S14e20. doi:10.1016/j.diin.2008.05.005.

Ferragina Paolo, Giancarlo Raffaele, Greco Valentina,
Manzini Giovanni, Valiente Gabriel. Compression-based
classification of biological sequences and structures via the
universal similarity metric: experimental assessment. BMC
Bioinformatics 2007;8(1):252.

Garfinkel Simson, Farrell Paul, Roussev Vassil, Dinolt George.
Bringing science to digital forensics with standardized
forensic corpora. In: 9th annual conference of the Digital
Forensics Research Workshop (DFRS’09). Montreal, Canada:
Elsevier; 17e19 Aug. 2009. p. S1e11. doi:10.1016/j.diin.2009.06.
016. DFRWS.

Karresand M, Shahmehri N. File type identification of data
fragments by their binary structure. In: IEEE Information
Assurance Workshop. West Point, NY, USA: IEEE, ISBN 1-4244-
0130-5; 21e23 June 2006. p. 140e7.

Karresand M, Shahmehri N. Oscar d file type identification of
binary data in disk clusters and ram pages. In: Security and
privacy in dynamic environments, vol. 201/2006; ISBN 978-0-
387-33405-9; July 2006. p. 413e424.

Keogh Eamonn, Lonardi Stefano, Ratanamahatana Chotirat Ann.
Towards parameter-free data mining. In: KDD ’04:
proceedings of the tenth ACM SIGKDD international
conference on knowledge discovery and data mining. New
York, NY, USA: ACM; 2004. p. 206e15.

Kohavi Ron. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In: International
joint conference on artificial intelligence (IJCAI). Morgan
Kaufmann; 1995. p. 1137e43.

Seward J. Space-time tradeoffs in the inverse bew transform. In:
DCC ’01: proceedings of the data compression conference.
Washington DC, USA: IEEE Computer Society; 2001. p. 439.

Veenman Cor J. Statistical disk cluster classification for file
carving. In: IAS ’07: proceedings of the third international
symposium on information assurance and security.
Washington DC, USA: IEEE Computer Society; 2007. p. 393e8.

Vitanyi PMB, Balbach FJ, Cilibrasi RL, Li M. Information theory and
statistical learning. Springer-Verlag; 2008 [Chapter 3].

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 2 4eS 3 1 S31

	The Normalised Compression Distance as a file fragment classifier
	Introduction
	Normalised Compression Distance (NCD)
	The file fragment corpus
	The experiment
	A prototype detector
	Related work
	Conclusion and future work
	References

