72DFRWS

DIGITAL FORENSIC RESEARCH CONFERENCE

Dynamic Recreation of Kernel
Data Structures for Live Forensics

By
Golden Richard, Andrew Case and Lodovico Marziale

Presented At

The Digital Forensic Research Conference
DFRWS 2010 USA Portland, OR (Aug 2™ - 4t)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized
the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners
together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working
groups, annual conferences and challenges to help drive the direction of research and development.

http:/dfrws.org

Dynamic Recreation of Kernel
Data Structures for Live Forensics

Andrew Case, Lodovico Marziale,
Golden G. Richard Il

DFRWS 2010

Memory Forensics

* Acquire a bitwise copy of physical RAM

— Snapshot of live (volatile) state of machine
— Running processes
— Live network connections
— Open files

— Jumble of pages

— Lost once plug is pulled

e Perform analysis for:

— General forensics

— Memory resident malware detection

— Passwords, crypto keys

* Focus for today: Linux

Existing Analysis Techniques

* Strings, grep
— Baseline
— Not user friendly

* Crash kernel debugger
— Tons of info
— Only specific distros / kernels (Red Hat)

 RAMPARSER
— From DFRWS 2008

— More broad range of kernels but still very limited
* No adaptation to unseen kernels

— 32-bit x86 only

Kernel Basics

Written in C and assembly
Open source
Constantly distributed updates

Customized: patches, conditional compilation
— Different distros (Ubuntu, Red Hat, ...)

— Architectures (x86, x86-64, ...)

— Functionality (Bluetooth, SATA, filesystems, ...)

— Performance requirements

Forensic Targets

* |Interested in C structures in kernel
— task_struct (processes - Windows EPROCESS)
— inet_sock (network connections)
— file (file path, owner, open permissions)
— dentry (filename, inode)
—vm_area_struct (mapped memory)
— mm_struct (mapped memory)
— Many, many others ...

Why is Coverage Difficult?

Many kernel versions

— Constant updates

— 2.6.35-rc6 (374 2.6.x.x kernels)
Many distros

— Different for Debian / Ubuntu, Red Hat, SuSe ...
— For potentially each above kernels
Many architectures

* x86, x86-64

 PPC, ARM
Custom user-compiled kernels
Result:

— Freely available source = Good

— Combinatoric explosion = Bad

Effects of Contfig Options

e task struct (2.6.27.9)
— 150+ members
— 50+ conditional members
— 20+ #ifdef constructs

* Changes structure definition

— Don’t always have config used

* Changes in-memory layout!

struct task_struct {

volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
void *stack;

atomic_t usage;

unsigned int flags; [* per process flags, defined below */
unsigned int ptrace;

int lock_depth; /* BKL lock depth */

#ifdef CONFIG_SMP

#ifdef _ ARCH_WANT_UNLOCKED CTXSW
int oncpu;

#endif

#endif
Int prio, static_prio, normal_prio;
unsigned int rt_priority;
const struct sched_class *sched_ class;
struct sched_entity se;
struct sched_rt_entity rt;

#ifdef CONFIG_PREEMPT_NOTIFIERS/* list of struct preempt_notifier: */
struct hlist_head preempt_notifiers;

#endif
unsigned char fpu_counter;

Goal

* Build on RAMPARSER

* Wide coverage
— Kernel versions

— Distros, custom configs
— Architectures (x86, x86-64, PPC)

* Minimal requirements
— Some arch specific knowledge
— System.map, but ...

— Do not require
* Version
* Distro
* Config

Goal

* Provide information on machine state
— Running processes
* Name, owner uid and gid, pid
— Open files
e Path, name, owner, permissions
— Live network connections

* Source and destination ip address and port

— Current memory mappings
* Per process libraries, stack, heap, code

Process Listing

NAME UID GID PID
swapper 0 0) 0)
Init 0 0 1
Kthreadd 0 0 2
migration/0 0 0 3
ksoftirqd/0 0 0 4
evolution-alarm 1000 1000 6010
update-notifier 1000 1000 6016
tracker-applet 1000 1000 6018
nm-applet 1000 1000 6019
python 1000 1000 6020

trackerd 1000 1000 6021

System.map

Created at kernel compile time
— For each exported kernel symbol

* Name, type, address
Used by klogd for debugging oopses

— Maps kernel addresses to names

Used by us
— Links source code with location of kernel code

Included in all tested distros /archs

Address
c041bc90
c041bc94
c041bc94
c041bc98
c041bc98
c041c000
ffffe400
ffffe410
ffffe420
ffffe440

System.map

Type Name

packet sklist
packet_sklist lock
packet_socks nr
__bss_stop

end

pgl
__kernel_vsyscall

SYSENTER_RETURN
__kernel_sigreturn

> » » » X» >» » T T T

__kernel _rt_sigreturn

Architecture Specific Info

* Minimal
— Word size (size of integer, pointer ...)
— Endianness
— Kernel load address
— PAGE_OFFSET (for virt -> phys)
— Methods for member offsets encoding

— Opcodes used in above
* Load, store, compare

Approach

* Want to parse structures
— Regardless of arch, distro, kernel version

* Members accessed by
— binary (compiled) code

— Using one of a handful of formats of
* Structure-base address
* Plus offset of specific member

e Use known formats for parsing offsets

— Some assembly composed of load, store, compare

Algorithm

* Less algorithm, more ad-hoc static analysis
— For functions in System.map
— Which access member of interesting structure
* Want many short functions

— Locate function in memory dumps
e Across distros, kernel versions

— Determine method for member access

e Tons of commonality

— Code RAMAPRSER to snharf member offset

Compilation Across Architectures

Fragment from sys remap_file pages() :
struct mm_struct *mm = current->mm;

Ubuntu 2.6.28 PPC64:
e9 2d 01 b0 |d r9,432(r13)

Ubuntu 2.6.27-7 x86_64:
4C8BA040020000 mov rl2,[rax+0x240]

Debian 2.6.18-6 x86:
8B A8 84 00 00 00 mov ebp,[eax+0x84]

Compilation Across Kernels

From insert vm_struct() function. This function was used to help
find the offset of the vm_file member of struct vm_area_struct.

if (lvma->vm_file)

Ubuntu 2.6.27-11:
8b 5a 48 mov ebx,DWORD PTR [edx+0x48]
85 db test ebx,ebx

Debian 2.6.18-6:
83 7a 48 00 cmp DWORD PTR [edx+0x48],0x0

Putting It Together

System.map contains:

c01e8cO0 T insert_vm_struct

File mm/mmap.c contains:

int insert_vm_struct(struct mm_struct * mm, struct
vm_area_struct * vma) {

if ('vma->vm_file) {

Putting It Together

Analyze how access is compiled (previous
slide) using memory address in System.map

Code to extract offset

Do this for useful members of interesting
structures to build dynamically

Repeat
That’s it

Results

* Duplicates (some) functionality of
— ps
— netstat
— /proc/<pid>/maps
— |sof
* Tested on

— x86, x86-64, and PPC64
— Kernels 2.6.9to 2.6.27

e Extensible to new architectures

— Just need new arch module

Moving Target

* Continuous changes
— Starting with 2.6.28

* Minor changes

—In 2.6.29

* uid, gid, euid, egid removed from task_struct
* Entirely new user accounting system

* Can we cope?
— Yes, but requires continuing effort

What’s Next?

* Memory forensics panel later today ©

Questions?

Vico Marziale
Senior Forensic Investigator
Digital Forensics Solutions
vico@digdeeply.com

