72DFRWS

DIGITAL FORENSIC RESEARCH CONFERENCE

Surveying The User Space Through User Allocations

By
Andrew White, Bradley Schatz and Ernest Foo

From the proceedings of
The Digital Forensic Research Conference
DFRWS 2012 USA
Washington, DC (Aug 6™ - 8™)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics
research. Ever since it organized the first open workshop devoted to digital forensics
in 2001, DFRWS continues to bring academics and practitioners together in an
informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,
annual conferences and challenges to help drive the direction of research and
development.

http:/dfrws.org

Digital Investigation 9 (2012) S3-S12

Contents lists available at SciVerse ScienceDirect igital
Investigation

Digital Investigation

ELSEVIER

journal homepage: www.elsevier.com/locate/diin

Surveying the user space through user allocations

Andrew White*, Bradley Schatz, Ernest Foo

Queensland University of Technology, Brisbane, Australia

ABSTRACT

Keywords: Previous research into memory forensics has focused on understanding the structure and
Memory forensics contents of the kernel space portions of physical memory, and mostly ignored the contents
User space of the user space. This paper describes the results of a survey of user space virtual address
wiggngvz)7(p allocations in the Windows XP and Windows 7 operating systems, comprehensively

identifying the kernel and user space metadata required to identify such allocations. New
techniques for determining the role and content of those allocations are identified,
significantly increasing the proportion of allocations for which the role and function is
understood. The validity of this approach is evaluated and a detailed analysis of the data
structures involved provided. An implementation of this approach is presented which is
capable of identifying all user space allocations, and for those allocations identifying for

Malware analysis

a high percentage, the role of those allocations, even for complex applications.
© 2012 A. White, B. Schatz & E. Foo. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Memory forensics provides a valuable way of analysing
the contents of physical memory, in order to obtain tran-
sient information that would not necessarily be present on
disk. Previous research in this area has focused on under-
standing and interpreting the layout and contents of the
kernel portion of memory, in order to facilitate the devel-
opment of memory analysis tools that recreate the capa-
bilities of previously used live response tools. While this
work has been invaluable, allowing the examination of
processes, drivers, network sockets and other useful arte-
facts, it has not been taking into account the full picture.

Previous research has focused almost exclusively on the
data the operating system itself is using, not the data of the
user applications running on that operating system. As
a result, the data and data structures used by these appli-
cations have not been examined, resulting in a lack of
methodologies for understanding and interpreting this
application data. Without such methods, it is not possible

* Corresponding author.
E-mail addresses: a13.white@qut.edu.au (A. White), b.schatz@qut.edu.
au (B. Schatz), e.foo@qut.edu.au (E. Foo).

to extract useful information from the memory of an
application, such as user credentials and chat logs, without
first undertaking significant reverse engineering of the
application itself.

In order to explain the data being used by an application,
this paper presents an approach for describing the purpose
of all memory allocations in the user space. This approach
uses the Virtual Address Descriptors (VADs) proposed by
previous research (Dolan-Gavitt, 2007) to identify all of
these allocations, and then determines the purpose of these
allocations using numerous sources of kernel and user
space metadata. A sample implementation of this approach
is then provided as a plugin for the Volatility framework
(Volatile Systems, 2011), with an evaluation of both its
validity and effectiveness. All of this research is based on
extensive analysis of both the Windows XP SP3 32-bit and
Windows 7 SP1 32-bit operating systems and their inner
workings. Unless otherwise stated, all findings apply to both
of the operating systems being studied.

The contributions of this paper are the detailed analyses
of metadata sources that can be used to describe the
purpose of user space allocations, and a plugin that
implements this approach. The structure of this paper is as
follows. Section 2 introduces the concept of user alloca-
tions, and Section 3 describes the ways in which metadata

1742-2876/$ - see front matter © 2012 A. White, B. Schatz & E. Foo. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.diin.2012.05.005

S4 A. White et al. / Digital Investigation 9 (2012) S3-S12

that describes these allocations can be located. Section 4
outlines the implementation of this approach as a Vola-
tility plugin. Section 5 demonstrates the validity of this
approach and its effectiveness, and these results are further
discussed in Section 6. The related work is then presented
in Section 7, before the paper is concluded in Section 8.

2. User allocations

Each process within Windows has its own virtual address
space, and this virtual address space is divided into two parts,
the user space, and the kernel space (Russinovich and
Solomon, 2005). As the names suggest, the user space is
where user application code and data is stored, and the kernel
space is where code and data used by the kernel is stored.

Windows manages the use of user space memory by
allocating memory in chunks of contiguous virtual address
space ranges, which we term user allocations. The memory
ranges which these user allocations occupy are described
within a process by Virtual Address Descriptors (VADs).
These VADs are stored in a self balancing binary tree, and
each time a new user allocation is made, a new VAD is
added to the tree to describe the memory ranges used by
that allocation (Russinovich and Solomon, 2005). These
user allocations are the highest level of abstraction possible
within the user space of a process, and serve as a suitable
framework within which to further explore the user space.
An experiment to verify the suitability of VADs for locating
these user allocations is described in Section 5.1.

While previous work has shown how these user allo-
cations can be identified, techniques to determine the
purpose of these allocations have been limited. Knowing
the roles of these user allocations makes it possible to
determine which allocations are relevant in a particular
line of enquiry. For example, if the value of a user variable is
the search, knowledge of where the application data is
stored would significantly reduce the number of allocations
requiring analysis. Without such knowledge, all the allo-
cations used by the application would require analysis,
including allocations which are not even relevant to the
execution of the program.

Fig. 1 provides a comparison of which contents and roles
of user allocations have been determined by previous
research, and those newly determined by our research. The

Existing Research Our Research

Files Sections
Process Parameters (XP) | Environment (XP)
Stacks Heaps
PEB Heap Segments
TEB Heap Virtual Allocs
Shared Heaps
Code Page

Activation Contexts

GDI Shared Handle Table
User Shared Data

Private Shim Data

Error Reporting (Win7)

Fig. 1. Contents and roles capable of being determined.

next section is dedicated to describing how each of these
new roles can be determined.

3. User allocation metadata

To describe the contents and roles of these user alloca-
tions within the user space, sources of metadata which
describe these allocations must be consulted. These sources
of metadata can be divided based on whether they exist in
the kernel space, or in the user space. Generally speaking,
the sources of metadata in the kernel focus on the role of
the user allocation, while the sources of metadata in the
user space focus on the content of the user allocation.
Unless otherwise stated, all of the following information
has been determined through our own analyses of
Windows XP SP3 and Windows 7 SP1 systems.

3.1. Kernel space metadata sources

The first source of metadata for a user allocation is of
course the VAD that describes that allocation. In addition to
providing the location of the user allocation, the VAD also
provides two other pieces of information. The first is the
permissions with which that memory was allocated, which
are enforced in software by the Windows Memory
Manager. These permissions can take on a variety of values,
and are defined in WinNT.h.

The second piece of useful information is the type of the
user allocation, which can either be private or mapped. A
private allocation only exists within the one user address
space, whereas a mapped allocation exists in more than
one address space. For example, these multiple address
spaces could be the user and kernel portions of the one
virtual address space, or multiple virtual address spaces.
The type of an allocation is determined by the presence of
a pointer in the ControlArea field, if a pointer exists, the
allocation is mapped, otherwise it is private.

Aside from a VAD, a user allocation can potentially have
two different types of objects that provide metadata about
the allocation, a _FILE_OBJECT and a _SECTION_OBJECT. As
the names suggest, a file object describes an allocation
backed by a file on disk, while a section object describes
a section, which is the term Windows uses to describe an
allocation that is shared between multiple processes. Both
of these objects are used to identify when physical memory
pages are shared between multiple address spaces, which
means they only ever apply to mapped allocations. In order
to locate these objects, an understanding of the data
structures involved in shared memory, the control area and
the segment, are first required.

A control area, described by a _CONTROL_AREA data
structure, is responsible for keeping track of how many
address spaces an allocation has been mapped to. A
segment, described by a _SEGMENT data structure, keeps
track of the page table entries used by an allocation that is
shared, such that for each address space it exists in, it
always points to the same physical pages.

These two data structures are highly related, to the
extent that a control area has a pointer to its corresponding
segment in the Segment field, and a segment has a pointer
its corresponding control area in the ControlArea field.

A. White et al. / Digital Investigation 9 (2012) S3-S12 S5

Control areas and segments always point to each other,
essentially forming a pair of data structures.

As previously mentioned, a mapped allocation is one
that has a valid pointer in the ControlArea field. This field, as
the name suggests, points to a control area, making it easy
to find the control area and corresponding segment that
describe an allocation.

If a mapped allocation represents a file object, the
control area will have a pointer to a valid file object in the
FilePointer field, as noted by Dolan-Gavitt (2007). This file
object will reveal several pieces of information about the
file, including its address on disk, which allows more
traditional techniques from disk forensics to be used.

If the FilePointer field of the control area is null, then the
mapped allocation represents a section. Unlike with file
objects, the control area does not have a field pointing to
the section object, and neither does the segment. Instead,
to locate relevant section objects, the object manager needs
to be parsed.

The object manager is responsible for the creation and
deletion of kernel objects, and allowing the retrieval of
specific objects by their handle (Russinovich and Solomon,
2005). Handles are designed to be passed on to user code,
as a method of allowing access to specific system resources,
such as the file object for an open file. Each process has
a link to its process handle table, which contains the
handles that are in use by that process.

By parsing through the handle table of each process,
section objects can be found. Section objects take the form
of a _SECTION_OBJECT, which contains a variety of fields.
However, in our experiments, the only field which is always
used is the Segment field, which although the Windows
symbol files indicate should point to a _SEGMENT_OBJECT,
in fact points to a _SEGMENT.

This makes it possible to determine which shared
memory sections are in use by a process, by relating the
segments found by parsing the VAD to those found by
interpreting the sections in the object manager. An example
of this relationship is shown in Fig. 2. One key point to note is
that in parsing the object manager, the handle table of all
processes must be parsed, not just the process that owns the
virtual address space in question. This is required as when
one process maps shared memory into another, only one of
these processes requires access to the handle.

Unlike the file object, the section object by itself
provides limited information about the allocation, however
it does facilitate the retrieval of two useful pieces of

[VAD @ 81a722a0 |

information. The first is the name of the section object,
which is recorded in the object manager and can be
determined while finding the section object. While the
name of the section may reveal some information about its
contents, in our observations it often contained a blank
string or a string filled with non-printable characters. These
types of section names are quite common, which could
indicate that these non-printable characters are being used
to store some other sort of information.

The second piece of useful information is the process
that created the section. When a segment is pointed to by
a section object, the u1 field represents the CreatingProcess
field. The value of this field is a pointer to an _EPROCESS
structure, and as the name suggests, this allows the process
that created the section to be determined. Since such
sections are generally used for inter-process communica-
tion, it is often the case that the creating process is
a different process to the process being examined. When
the creating process is the same process, this could indicate
that this section is being shared with other processes, or
that the process is sharing information with part of the
kernel.

One point to note is that it is possible for a VAD to have
an associated file object and section object at the same
time. Such an occurrence is commonly the case with the
natural language support (.nls) files which are mapped as
read-only into every process. The significance of this is that
the same view of the file is being shared between multiple
processes, not a unique view of the file as is typically ach-
ieved with the copy-on-write style permissions used for
DLL files.

While a VAD entry describes which part of the virtual
address space a user allocation occupies, it is the metadata
of this entry obtained from file and section objects that
allows the role of the allocation to be determined. Even
though the description of these allocations is at a high level,
with no explicit knowledge of the underlying data struc-
tures, the information can still be used in a variety of ways.

An example would be inferring the behaviour of
a process based on the file and section objects present
within its user space. If a process loads a DLL named
WINHTTPAIIl from the system root into the address space,
one may hypothesise that the process is using the HTTP
protocol. Likewise, if a section named ShimSharedMemory is
being loaded, this would indicate that the Windows Shim
Engine is being used, a part of Windows responsible for
providing compatibility to older programs.

Object Handle Table

I VAD @ 8186dee8 |

Section @ e18fb708 |

[ControlArea: 81a7bee0 |

[Segment: 1755008 |

\4
[Control Area @ 81a7bee0 |

Segment @ e1755008 |

[Segment: 1755008

ControlArea: 81a7beel |

Fig. 2. Finding shared memory.

S6 A. White et al. / Digital Investigation 9 (2012) S3-S12

3.2. User space metadata sources

Although the role of numerous user allocations can be
described using kernel sources of metadata, it is not
possible to describe all user allocations in this way.
However, additional sources of metadata exist in the user
space, which can be located from known structures in the
kernel space. For the most part, these user space metadata
sources describe the content of the user allocations, in
particular those that are created when a process is loaded.
These default user allocations are often required for the
application to function, or are used by some Windows
component to provide helpful functionality.

The two main sources of metadata with which the
content of all other user allocations can be described are
the Process Environment Block, _PEB, and the Thread
Environment Block, _TEB. While previous work has
described how these can be used to list the modules loaded
by a process, find the process parameters (Betz, 2005), and
locate the stacks of a process (Arasteh and Debbabi, 2007),
the PEB contains numerous more fields that, prior to this
work, have not been identified in the literature.

The useful fields of the PEB are summarised in Fig. 3.
This information has been taken from the Windows XP SP3
symbol files, and updated with some type specific infor-
mation for some of the fields.

The ImageBaseAddress, Ldr and ProcessParameters fields
were all fields first used by the Memparser tool (Betz, 2005).
These fields can be used to find the virtual address of the
process executable, list the loaded modules and retrieve
the process parameters respectively. Although the list of
loaded modules could potentially be identified using file
objects from the VAD, this provides an alternative method
with which to verify that information.

There are two key pieces of information which have not
been noted by previous work about the process parame-
ters. The first is that the data structure it uses, _RTL_U-
SER_PROCESS_PARAMETERS, always resides within its own

ntdll!_PEB

: Ptr32 Void
* Ptr32 _PEB_LDR_DATA

+0x008 ImageBaseAddress
+0x00c Ldr

+0x010 ProcessParameters : Ptr32
_RTL_USER_PROCESS_PARAMETERS

+0x018 ProcessHeap : Ptr32 _HEAP

+0x04c ReadOnlySharedMemoryBase : Ptr32 _HEAP

+0x050 ReadOnlySharedMemoryHeap : Ptr32 _HEAP

+0x058 AnsiCodePageData : Ptr32 Void

+0x05c OemCodePageData : Ptr32 Void
+0x060 UnicodeCaseTableData : Ptr32 Void

+0x088 NumberOfHeaps : Uint4B

+0x090 ProcessHeaps : Ptr32 Ptr32 _HEAP

+0x094 GdiSharedHandleTable : Ptr32 Void
+0x1e8 pShimData : Ptr32 Void
+0x1£8 ActivationContextData : Ptr32 Void

+0x200 SystemDefaultActivationContextData : Ptr32 Void

Fig. 3. Relevant fields of the PEB (XP).

user allocation. The second is that the Environment field of
this data structure can be used to find another user allo-
cation, which contains a series of strings relating to envi-
ronment variables. While this allows two additional
allocations to be explained on Windows XP, the same does
not apply to Window 7. Although Windows 7 continues to
use the same data structures to store this information,
these data structures are stored in the default heap rather
than in their own allocations.

The ProcessHeap, NumberOfHeaps and ProcessHeaps allow
the location of the heaps used by the process, each of which
reside in their own allocation. These heaps are found from
the ProcessHeaps field, which is a pointer to a list of pointers
to heaps, the size of which is given by NumberOfHeaps. The
first heap of this list is also referenced by the ProcessHeap
field, which is considered to be the default heap. There is also
one heap that does not appear in this list, which is the read-
only shared heap, pointed to by the values of ReadOnly-
SharedMemoryBase and ReadOnlySharedMemoryHeap.

Each of these heaps begin with a _HEAP object, which
contains two fields that can be used to describe further user
allocations. The first is the field which gives the heap
segments. On Windows XP, this is the Segments field, which
is an array of pointers to _HEAP_SEGMENT data structures
on Windows XP, whereas on Windows 7, this is the Seg-
mentListEntry field, which is a double linked list of the same
data structure. A heap segment describes the heap within
its current allocation, and as such, every heap always has at
least one segment. If a heap extends to a separate user
allocation however, that allocation will have its own heap
segment. The second is the VirtualAllocdBlocks field, which
is a double linked list of _HEAP_VIRTUAL_ALLOC_ENTRY data
structures. A heap virtual alloc entry is used when a heap
receives a request for memory exceeding a threshold size,
at which point rather than the data being stored in the
existing heap allocation it is stored within its own separate
user allocation. As can be seen, the location and parsing of
these heaps potentially allows the content of even more
user allocations to be determined.

Returning to the PEB, the next significant fields are the
AnsiCodePageData, OemCodePageData and UnicodeCase-
TableData fields. These fields all point to different locations
within the same user allocation, which is the code page.
This code page is present in every process, and contains
a series of tables containing information relating to ANSI,
OEM and Unicode character encoding information. While
the specific data structure used to store this information is
not known, it is likely to be a simple array.

If a process has a GUI element, it will have a GDI shared
handle table, which is pointed to by the GdiSharedHand-
leTable field of the PEB. This user allocation is a simple
array of GDITableEntry data structures (Nasarre, 2003), and
as the name suggests, is shared between all processes with
a GUI element. Since these entries give both a virtual
memory address and an owning process for each GDI
object, it is possible to parse these entries to determine
which allocations of the process contain local GDI
information.

When a process uses the Windows Shim Engine, the PEB
will potentially contain a valid pointer in the pShimData
field. This field will point to a private allocation containing

A. White et al. / Digital Investigation 9 (2012) S3-S12 S7

a small amount of data relating to the Shim Engine in an
unknown data format.

Towards the end of the PEB are the Activa-
tionContextData and SystemDefaultActivationContextData
fields. These fields store an activation context, which is
a mechanism used by Windows to redirect an application
to load specific versions of resources, such as DLL files. An
application can potentially have two user allocations as
a result of this functionality, one for the system default
activation context, and one for the activation context
specified by the process. Although the data structure used
for this purpose is not known, it begins with a distinct
magic value of Actx.

While Windows 7 adds numerous new fields to the PEB,
only two commonly provide useful metadata. These are the
pContextData and WerRegistrationData fields. Although the
name of the first field would suggest it is related to acti-
vation contexts, this does not seem to be the case, as it does
not start with the magic value of Actx. As such, the purpose
of this allocation is not known. The second field relates to
data used for Windows Error Reporting functionality, and
while the data structure used for this purpose is unknown,
it is commonly paged out or for the most part unpopulated.

As demonstrated by the vast amount of metadata the
PEB provides, it is invaluable source for determining the
content of user allocations. Although a portion of these
allocations relate to default data structures located in every
process, this knowledge allows the exclusion of these
allocations when their information is not required. Many of
the allocations identified however are directly related to
application data, such as the heap, allowing these alloca-
tions to be searched for key pieces of user information, such
as login credentials.

4. Implementation

The interpretation techniques discussed in the previous
sections have been implemented as a plugin for the Vola-
tility Framework (Volatile Systems, 2011). Volatility was
chosen for the implementation as it not only provides the
base functionality required for memory analysis, such as
memory address translation, but also provides numerous
plugins covering functionality described in previous
research. This allowed the development to focus only on
implementing new functionality, rather than spending
time reimplementing previous research.

Our plugin, Userspace.py, uses all of the aforementioned
metadata sources to describe the contents of allocations
within user space memory. This is achieved by following
three main steps. Firstly, the specified process is located
and its VAD Tree is parsed, using previous Volatility func-
tionality. Secondly, the PEB and TEBs of the process are
located, and the metadata within them is used to describe
the relevant allocations. Finally, the control areas of each
VAD are parsed to locate file objects, and then the handle
table parsed to link the remaining undescribed user allo-
cations to relevant section objects.

The development of this tool was conducted in parallel
with the research, in order to provide an easy way of testing
and validating hypotheses formed about the contents of
various data structures. Small, custom programs with

known functionality were created for the purposes of
analysis, before moving onto more complex, existing
applications. Windows XP SP3 and Windows 7 SP1 were
the versions of Windows on which this research was based,
and as such numerous memory dumps of this operating
system were made to facilitate development. These
memory dumps were all created using multiple virtual
machines, with a variety of different memory sizes.

An example of the output from this implementation is
shown in Fig. 4. This demonstrates the plugin running
against malloc.exe, a simple C application that allocates
a few KBs of memory, fills it with data and then sleeps. A
more complex example using the Windows 7 version of
notepad.exe is shown in Fig. 5.

The plugin is available at http://github.com/a-white/.

5. Tool evaluation

The evaluation of the aforementioned implementation
was undertaken in three ways. Firstly, the assumption that
a VAD tree completely describes a user space was tested, as
the plugin relies on the VADs when identifying the user
allocations. Secondly, the correctness of the plugin was
validated through the extensive comparison of the results
obtained against manual analysis of the involved data
structures using existing tools. Lastly, once the results were
known to be accurate, the plugin was then compared
against existing approaches in order to investigate the
benefit obtained from the use of the plugin.

All evaluations took place using Windows XP SP3 and
Windows 7 SP1 virtual machines and the memory dumps
made using these virtual machines. A variety of different
virtual machine software was employed for this purpose.

5.1. VAD tree completeness

The outlined approach and subsequent plugin rely on
the assumption that the VADs can be used to identify all
user allocations within a virtual address space. If this were
not the case, the VAD tree would not provide a suitable
framework within which to analyse user space memory, as
it would not allow the complete identification of user
allocations. Without first identifying these user allocations,
their purpose cannot be determined, affecting the
completeness of the results from the plugin.

In order to validate this assumption, a simple experi-
ment to test the inverse was devised. A simple Volatility
plugin, VadCompleteness.py was created, which checks
every process to see if a virtual address not described by
a VAD maps to a physical memory page. This plugin was
then used to analyse a series of Windows XP SP3 and
Windows 7 SP1 memory images.

The surprising result of this analysis was that the VADs
never completely described the user space of a process. All
processes running on a Windows XP SP3 or Windows 7 SP1
system were found to have a single page mapped at the
address 0x7FFE0000 which was not described by a VAD. In
addition to being mapped at the same virtual address in
every process, this virtual address always corresponded to
the same physical page, meaning it was identical in each
process.

S8

. White et al. / Digital Investigation 9 (2012) S3-S12

Start End Used Size Permission Type Description
00010000 00010fff 00001000 00001000 READWRITE Private Environment
00020000 00020fff 00001000 00001000 READWRITE Private Parameters *
00030000 0012ffff 00002000 00100000 READWRITE Private Stack (Thread 1) *
00130000 00132fff 00002000 00003000 READONLY Mapped SystemDefaultActivationContextData
Section - PID 00584, Name ¢’
00140000 0023ffff 00004000 00100000 READWRITE Private Heap O
00240000 0024ffff 00003000 00010000 READWRITE Private Heap 1
00250000 0025ffff 00002000 00010000 READWRITE Mapped Heap 2
00260000 00275fff 00005000 00016000 READONLY Mapped \WINDOWS\system32\unicode.nls *
Section - PID 00584, Name ‘NlsSectionUnicode’
00280000 002cO0fff 00001000 00041000 READONLY Mapped \WINDOWS\system32\locale.nls *
Section - PID 00584, Name ‘NlsSectionLocale’
002d0000 00310fff 00000000 00041000 READONLY Mapped \WINDOWS\system32\sortkey.nls *
Section - PID 00584, Name ‘NlsSectionSortkey’
00320000 00325fff 00004000 00006000 READONLY Mapped \WINDOWS\system32\sorttbls.nls *
Section - PID 00584, Name ‘NlsSectionSortTbls’
00330000 0033ffff 00005000 00010000 READWRITE Private Heap 3
00340000 00342fff 00002000 00003000 READONLY Mapped \WINDOWS\system32\ctype.nls *
Section - PID 00584, Name ‘NlsSectionCType’
00350000 003d0fff 00081000 00081000 READWRITE Private Virtual Alloc of Heap 3
00400000 0040efff 0000e000 0000£f000 EXECUTE_WRITECOPY Mapped \Documents and Settings\xp\malloc.exe *
7c800000 7c8f5fff 0002b000 000£6000 EXECUTE_WRITECOPY Mapped \WINDOWS\system32\kernel32.dll *
7c900000 7c9bifff 0002000 000b2000 EXECUTE_WRITECOPY Mapped \WINDOWS\system32\ntdll.dll *
7£6£0000 7f7effff 00002000 00100000 EXECUTE_READ Mapped Shared Heap
Section - PID 00584, Name ©’
7££b0000 7ffd3fff 00005000 00024000 READONLY Mapped Code Page
7££d7000 7££fd7fff 00001000 00001000 READWRITE Private PEB *
7££df000 7ffdffff 00001000 00001000 READWRITE Private TEB (Thread 1) *
7£f£e0000 7ffe0Offf 00001000 00001000 N/A N/A User Shared Data

Unreferenced Pages
Start Size

Fig. 4. Userspace.py running against malloc.exe on Windows XP. Asterisks indicate allocations described by Existing.py.

This page is in fact the _KUSER_SHARED_DATA data
structure, which is shared between all virtual memory
address spaces. Numerous system wide variables are stored
within this structure, such as the system time, the time-
zone, and the location of the system root.

Aside from this one page however, the VADs correctly
described which virtual memory ranges mapped to phys-
ical memory pages for every process. While this demon-
strates that the VAD tree provides a suitable framework for
the analysis of user space memory, special care must be
taken to first ensure that no additional addresses outside
the memory ranges described by the VADs map to physical
memory pages. For this reason, Userspace.py checks to see if
any virtual addresses that are not described by a VAD map
to a physical address, and outputs any such addresses.

5.2. Plugin validation

Once the accuracy of the VAD based approach had been
verified, the validation process then turned to the plugin
itself. Validating the results of the plugin required the in
depth analysis of the data structures involved, and some
existing tools were employed to achieve this.

The main tool employed was WinDbg (Microsoft, 2010),
a Microsoft debugging program, which was used to analyse
the data structures contained within Windows memory.
This tool was used as it provides a way to access the
numerous operating system data structures described by
the Windows symbol files, and use these data structures to

dump the specified address in memory. All validation of the
results obtained from the plugin was performed by using
WinDbg in this way to manually analyse specific data
structures, and ensure that the resulting output from the
plugin accurately represented these data structures. One
limitation of WinDbg is that it only operates on crash
dumps, a Windows specific memory image format, which
prevented the use of other memory capture methods.

A selection of tools from the Sysinternals Suite
(Russinovich, 2012) were also used in validating the
results of the plugin. Since each of the tools were designed
for live response, not memory analysis, this required that
they be run on the virtual machine while simultaneously
experimenting with test applications. Of these tools,
VMMap, WinOBj and NotMyFault were the most heavily
used. The VMMap tool provided a high-level view of the
contents of each user allocation, which served as a useful
starting point for analysis. The WinObj tool provided
a method of exploring the object manager, allowing the
validation of the information retrieved from the object
manager through Volatility. Finally, the NotMyFault tool,
which can cause a variety of system errors, was essential
for creating the memory dumps in crash dump format for
WinDbg.

5.3. Plugin comparison

In order to compare the Userspace.py to the existing
approaches, this required a tool that implemented all of

A. White et al. / Digital Investigation 9 (2012) S3-S12 S9

Start End Used Size Permission Type Description
00010000 0001ffff 00001000 00010000 READWRITE Mapped Heap 1
00020000 00022fff 00003000 00003000 WRITECOPY Mapped \Windows\System32\en-US\notepad.exe.mui
00030000 00033fff 00004000 00004000 READONLY Mapped SystemDefaultActivationContextData
Section - PID 00356, Name ¢’
00040000 00041fff 00002000 00002000 READONLY Mapped ActivationContextData
Section - PID 00356, Name ¢’
00050000 00050fff 00001000 00001000 READWRITE Private pContextData
00060000 00060fff 00001000 00001000 READWRITE Private (GDI Data)
00070000 00070fff 00001000 00001000 READWRITE Private (GDI Data)
00080000 00080fff 00001000 00001000 READWRITE Mapped Section - PID 00308, Name ‘windows_shell_global_counters’
00090000 00091fff 00002000 00002000 READONLY Mapped Section - PID 00356, Name °°
000c0000 001bffff 00027000 00100000 READWRITE Private Heap O (GDI Data)
00140000 0020ffff 00003000 00040000 READWRITE Private Stack of Thread 0
00210000 00276fff 00030000 00067000 READONLY Mapped \Windows\System32\locale.nls
00280000 00347fff 00005000 000c8000 READONLY Mapped
00390000 0039ffff 00001000 00010000 READWRITE Private Heap 3
00320000 0041ffff 00001000 00080000 READWRITE Private
00440000 0044ffff 00003000 00010000 READWRITE Private Heap 2
00450000 00550fff 0000bO00 00101000 READONLY Private GdiSharedHandleTable
00560000 0063efff 00053000 000df000 READONLY Mapped Section - PID 00308, Name °’
00700000 0073ffff 00010000 00040000 READWRITE Private Heap 4
00830000 0086ffff 00014000 00040000 READWRITE Private Heap 5
00870000 00b3efff 0001£f000 002c£f000 READONLY Mapped \Windows\Globalization\Sorting\SortDefault.nls
00c00000 00c2ffff 0000£000 00030000 EXECUTE_WRITECOPY Mapped \Windows\System32\notepad.exe
00c30000 0182ffff 0000e000 00cO0000 READONLY Mapped
01830000 0215ffff 0003e000 00930000 READONLY Mapped \Windows\Fonts\StaticCache.dat
Section - PID 00308, Name ¢’
72e00000 72e50fff 00013000 00051000 EXECUTE_WRITECOPY Mapped \Windows\System32\winspool.drv
73a00000 73a12fff 00009000 00013000 EXECUTE_WRITECOPY Mapped \Windows\System32\dwmapi.dll
73d30000 73d6ffff 0001c000 00040000 EXECUTE_WRITECOPY Mapped \Windows\System32\uxtheme.d1ll
73eb0000 7404dfff 0003c000 0019e000 EXECUTE_WRITECOPY Mapped \Windows\winsxs\x86_microsoft.windows.common-[...]\comct132.d11
74420000 74428fff 00007000 00009000 EXECUTE_WRITECOPY Mapped \Windows\System32\version.dll
74e70000 74e7bfff 00008000 0000c000 EXECUTE_WRITECOPY Mapped \Windows\System32\cryptbase.dll
74£d0000 75019fff 00014000 00042000 EXECUTE_WRITECOPY Mapped \Windows\System32\KernelBase.dll
75220000 752bcfff 00043000 0009d000 EXECUTE_WRITECOPY Mapped \Windows\System32\usp10.d11
752c0000 7536bfff 0001c000 000ac000 EXECUTE_WRITECOPY Mapped \Windows\System32\msvcrt.dll
75370000 754cbfff 00019000 0015c000 EXECUTE_WRITECOPY Mapped \Windows\System32\ole32.d11
754d0000 7551dfff 00015000 0004e000 EXECUTE_WRITECOPY Mapped \Windows\System32\gdi32.d11l
75520000 75576fff 00010000 00057000 EXECUTE_WRITECOPY Mapped \Windows\System32\shlwapi.dll
758£0000 75990fff 00013000 000a1000 EXECUTE_WRITECOPY Mapped \Windows\System32\rpcrt4.dll
75200000 75ad3fff 00029000 00044000 EXECUTE_WRITECOPY Mapped \Windows\System32\kernel32.d11l
75ae0000 75b6efff 0000b000 0008£f000 EXECUTE_WRITECOPY Mapped \Windows\System32\oleaut32.d1l
75b70000 767b9fff 00017000 00c4a000 EXECUTE_WRITECOPY Mapped \Windows\System32\shell32.d11
767c0000 76888fff 00028000 000c9000 EXECUTE_WRITECOPY Mapped \Windows\System32\user32.dll
76290000 76bOafff 00008000 0007b000 EXECUTE_WRITECOPY Mapped \Windows\System32\comdlg32.d1ll
76cb0000 76d4ffff 00011000 000a0000 EXECUTE_WRITECOPY Mapped \Windows\System32\advapi32.dll
76d50000 76d59fff 00007000 00002000 EXECUTE_WRITECOPY Mapped \Windows\System32\1pk.d1ll
76d60000 76d7efff 0000a000 0001f000 EXECUTE_WRITECOPY Mapped \Windows\System32\imm32.d11
76dd0000 76f0bfff 0005d000 0013c000 EXECUTE_WRITECOPY Mapped \Windows\System32\ntdll.d1ll
76£10000 76f28fff 00008000 00019000 EXECUTE_WRITECOPY Mapped \Windows\System32\sechost.dll
76£30000 76ffbfff 00025000 000cc000 EXECUTE_WRITECOPY Mapped \Windows\System32\msctf.dll
77010000 77010fff 00001000 00001000 EXECUTE_WRITECOPY Mapped \Windows\System32\apisetschema.dll
7£6£0000 7f7effff 00005000 00100000 READONLY Mapped Heap 6 (Shared)
Section - PID 00356, Name ‘SharedSection’
7££b0000 7ffd2fff 00013000 00023000 READONLY Mapped Code Page
7££d4000 7ffd4fff 00001000 00001000 READWRITE Private PEB
7££df000 7ffdffff 00001000 00001000 READWRITE Private TEB (Thread 0)
7£f£e0000 7ffeOfff 00001000 00001000 N/A N/A KSHARED_USER_DATA

Unreferenced Pages
Start Size

Fig. 5. Userspace.py running against notepad.exe on Windows 7. OS.

these approaches. Unfortunately, no such tool existed,
although the majority of the functionality required for
these approaches had been implemented in Volatility. This
meant a plugin to easily replicate this behaviour could be
created. For the purposes of this section, we created Exist-
ing.py. This plugin identifies all user allocations using the
VAD tree, checks each of these VADs for control areas with
file objects, locates the process parameters from the PEB,
and locates the stacks from the TEBs.

Since the plugins describe the contents of user space
memory for a particular process, a set of processes were
required for analysis. Four processes of increasing
complexity were chosen for this purpose. The first, mallo-
c.exe, was a simple C program created during development
of the plugin. The behaviour of this program is very simple,
it allocates a few KBs of memory, fills it with constant
values, then sleeps for 20 s. The second, calc.exe, is the
default calculator program for Windows. For each memory

S10 A. White et al. / Digital Investigation 9 (2012) S3-S12

image, the calculator was opened, and a simple calculation
performed. The third, notepad.exe, is the simple text editing
program that comes preinstalled with Windows. In each
captured memory image, notepad was used to open a new
document, enter a paragraph of text, and then save the file.
The final and most complex program chosen was iexplor-
e.exe, the preinstalled web browser on Windows, which
was was opened and allowed to completely load the default
home page for each memory image. For the programs
included by default on Windows, the default version after
installation was used, no updates were applied.

The results of comparing Existing.py and Userspace.py
over a series of memory images on both Windows XP and
Windows 7 can be seen in Fig. 6. For each analysed
program, the average number of user allocations for this
program across the memory images is shown, followed by
on average how many of those entries were able to be
described by the Existing.py and Userspace.py plugins.

6. Discussion

As can be seen from Fig. 6, our plugin provides a signif-
icant improvement on the existing approaches in terms of
determining the contents and roles of user allocations.
Since our plugin implements a superset of the existing
approaches, there is no scenario in which the existing
approaches could outperform our plugin.

Comparing the results across the two operating systems
provides some interesting results. Since the default
versions of each Windows program were used in the
experiments, this meant that the custom malloc.exe
program was the only program to remain identical for both
operating systems. For this simple program, the number of
memory allocations decreased, partially due to the lack of
dedicated allocations for the environment and process
parameters data structures and partially due to reduction
in loaded .nls files.

For the default Windows applications however, the
number of allocations doubled for calc.exe and note-
pad.exe, and increased by 80% for iexplorer.exe. As is quite
obvious from running both versions of Internet Explorer on
the two operating systems, iexplorer.exe has changed
dramatically between the two versions of Windows, and
can almost be treated as a different program. Despite the
differences in code between these versions however, the
results for both versions of Internet Explorer remained
almost the same.

Unlike Internet Explorer, Notepad seemed identical
between Windows versions save for the updated visual
theme on Windows 7, making the increase in allocations
seem as purely the result of additional operating system
complexity introduced by Windows 7. Even with this
additional complexity however, the results favoured the
Windows 7 version of notepad with a 10% increase in
identified allocations for userspace.py over the Windows
XP version. Given the similar increase in the results for
existing.py however, this is likely due to an increase in the
DLL files required for the Windows 7 version.

While for Internet Explorer and Notepad the identified
allocations both improved across versions of Windows, the
Windows 7 version of Calculator demonstrated a signifi-
cant drop. While like Notepad, the visual theme of
Calculator was updated for Windows 7, unlike Notepad it
also introduced new functionality. Since none of this new
functionality was used when taking the memory images
however, it is unlikely that this is the cause of the increase
in unexplained allocations. Instead, this would suggest
that some alternate method is being used to allocate or
manage memory, for which no metadata has yet been
identified.

Being able to accurately describe the contents and roles
of user allocations allows the significant reduction of the
search space when looking for specific information. Instead
of analysing the whole user space, only a small subset now
requires analysis. Depending on the information being
searched for, this subset could range from a few allocations
right down to a specific data structure.

In addition, it facilitates the analysis of data not previ-
ously possible. For example, some newly identified data
structure could be used to identify some artefact previously
overlooked, or the shared memory sections could reveal
information about process or driver communication that
could prove useful in investigations.

6.1. Limitations

While the tool is capable of providing information about
the contents of a high percentage of user allocations, it can
not explain every possible allocation. With the increase in
the complexity of the application, it can be seen that the
completeness of the descriptions offered by the plugin
decreases. Since it was not clear how the increased
complexity of the program was affecting the results, a small
experiment focussing on notepad.exe was performed.

‘ Program ‘ (ON] H User Allocations ‘ Existing.py ‘ Userspace.py ‘ Percentage
malloc.exe XP 22.0 11.0 22.0 100%
calc.exe XP 52.0 28.0 46.4 89.2%
notepad.exe | XP 94.8 52.0 78.6 82.9%
iexplorer.exe | XP 149.4 79.6 111.0 74.3%
malloc.exe Win7 19.0 9.0 19.0 100%
calc.exe Win7 118.4 42.4 67.4 56.9%
notepad.exe | Win7 187.0 134.8 173.8 92.9%
iexplorer.exe | Win7 267.8 146.4 201.6 75.3%

Fig. 6. Allocations identified by existing.py and userspace.py.

A. White et al. / Digital Investigation 9 (2012) S3-S12 S11

For each memory image, as before, notepad was opened
and a paragraph of text was entered. This time however,
a memory capture was taken prior to saving the file, then
another memory capture taken after the file had been
saved. The results of this experiment can be seen in Fig. 7.
As can be seen from the results, saving the file caused
significantly more user allocations to be made, particularly
on Windows 7. After saving the file, in terms of known user
allocations, more files were mapped, more threads created
and one additional section was allocated when compared
to before saving. Numerous more unknown user allocations
were also created. In terms of functionality, saving required
significantly more GUI activity, such as selecting where on
disk to save the file, and device driver interaction, in order
to save the file to the disk.

When comparing these results to malloc.exe, which as
a terminal application has no GUI component, it can be
seen that increased GUI activity is one reason for the
decrease in completeness of the results. Manual analysis of
unknown allocations also confirms this, as GUI related
terms such as Combobox appear in many of them.

Aside from concerns about the location of GUI related
information, there were also other potential causes of
unexplained user allocations.

As with any sort of memory analysis, paging is an issue.
Since Volatility does not support accessing an accompying
page file, this means that any data that has been paged to disk
is inaccessible. While the majority of the metadata sources
will always remain in memory, there are some sources, such
as TEBs and heaps, that can be paged to disk, preventing the
extraction of their related metadata. Combining the page file
with the memory image would allow this problem to be
overcome, but would likely introduce new inconsistency
issues between the state of the two data sources.

One potential issue could the fact that data structures
are being captured while they are being modified. Although
virtual machines were being used, which are capable of
taking a snapshot of memory at an instantaneous point in
time, it is likely that at this point, some part of memory was
in the process of being freed. Since there are potentially
many data structures that require modification to remove
a single user allocation, the lack of information could
potentially be the result of a lack of consistency between
these data structures. For example, although rare, instances
of control areas were found where the segment pointer did
not point to a segment but pointed to some other unknown
data structure. The same kind of inconsistency could
potentially occur with the virtual to physical address
translation process. While these sorts of inconsistencies
can be detected through sanity checks of the object refer-
ences, there is not enough redundancy in the metadata to
allow their correction.

A more likely cause of these unexplained user alloca-
tions however is the use of some undocumented Windows
API that has not accurately been accounted for. This could
mean that metadata about these allocations exist, but they
simply reside in a data structure that has yet to be under-
stood, or the link to the data structure that provides the
metadata has not been found.

One example whereby the metadata exists but is refer-
enced by an unknown data structure is with mapped
allocations. Although the vast majority of these mapped
allocations can be explained through the use of a file object
or section object as described in Section 3.1, there exist VAD
structures, which point to a valid pair of control area and
segment objects, for which no file or section objects exist.
This could potentially be caused by two factors, either
a type of object that has not been accounted for is refer-
encing the segment, or an unknown source of section
objects has not been examined. More research into the
internals of the Windows memory manager would be
required to overcome this issue.

7. Related work

The majority of previous research in memory forensics
has focused on describing the kernel, and few contributions
have been made that further the ability to describe the
contents of user space.

Memparser (Betz, 2005) was one of the first memory
analysis tools, and was capable of retrieving some user
space information, such as the modules loaded and process
parameters by using the PEB. Although the tool was capable
of dumping this information, it provided no further user
space analysis except for dumping the accessible pages.

Dolan-Gavitt (2007) was the first to allow the explora-
tion of the user space by retrieving the VADs from
a memory image. Aside from describing the VAD data
structures and how to determine if a VAD represented
a file, the analysis of these VADs was taken no further.

Arasteh and Debbabi (2007) used the user and kernel
stacks to recreate the execution history of a process.
Although they provide a method of locating the user stack
of a thread, the location of other user space data structures
was not in the scope of their research. However, they do
present an alternative method of finding the executable of
a process, locating the executable file through the use of
a section object.

Other research, while not expanding on the ability to
describe the user space, has focused on analysing the user
space without explicit knowledge of the data structures
involved.

Hejazi et al. (2009) analysed API call traces on the stack
to locate useful data structures, such as those dealing with

Program ‘ 0S H User Allocations | Existing.py ‘ Userspace.py | Percentage ‘
Notepad.exe pre-save | XP 54.0 29.0 48.6 90.0%
Notepad.exe post-save | XP 93.8 52.0 77.6 82.9%
Notepad.exe pre-save | Win7 54.0 33.0 51.6 95.6%
Notepad.exe post-save | Win7 187.0 134.8 173.8 92.9%

Fig. 7. Analysis of the effect of saving on the results.

S12 A. White et al. / Digital Investigation 9 (2012) S3-S12

encryption. This however was performed without any
knowledge of how data was stored in the user space,
limiting their ability to retrieve user data without signifi-
cant reverse engineering of the API call.

Specific applications have also been analysed, such as
Skype (Simon and Slay, 2010) and Pidgin (Simon and Slay,
2011) for data of interest, such as chat logs. One key
process in the analysis of Pidgin was the comparison of how
individual pages within an address space changed over
time. The use of VAD allocations could have significantly
improved this process, allowing the removal of irrelevant
pages such as those related to known DLL files. Given the
time required to analyse individual applications however,
this approach does not scale to the huge range of potential
applications that a target computer could be running.

To foster the development of memory analysis, numerous
toolkits have been developed over the years (Okolica and
Peterson, 2010; Petroni et al., 2006; Walters and Petroni,
2007). The Volatility Framework (Volatile Systems, 2011)
however, has become the de facto standard for memory
analysis, with its extensive plugin support allowing the
simple creation of new analysis tools. Numerous of the
previously mentioned techniques have already been reim-
plemented as plugins for Volatility, and it is for this reason
that we chose to implement our work as a Volatility plugin.

8. Conclusion

This paper has presented an approach to determine the
contents and roles of user allocations. The user allocations
described by the VAD tree have been shown to be a reliable
framework upon which to describe the user space, and
a detailed analysis of how various sources of metadata can
be used to further describe these user allocations has been
shown. A sample implementation of this approach was
then provided, the results of which were validated and then
demonstrated to be able to consistently describe the
contents and roles of a high percentage of user allocations
even when dealing with complex applications.

8.1. Future work

While the provided plugin is capable of describing the
majority of the user allocations of a process, it is not capable
of describing all of them. More research is required to
locate the reasons for these unexplained user allocations,
and update the plugin accordingly. Analysis of the
susceptibility of these techniques to malicious modification
is also required.

In addition, the presented work needs to be extended to
support Windows Vista and the soon to be released
Windows 8, as well as the 64-bit versions of the currently
supported operating systems. This will involve the location

of any new artefacts, as well as the verification that the
existing artefacts have remained the same. The plugin can
then be updated to account for these additional versions of
Windows and validated against them.

References

Arasteh AR, Debbabi M. Forensic memory analysis: from stack and code to
execution history. Digital Investigation 2007;4(S1):114-25.

Betz C. MemParser, http://[www.dfrws.org/2005/challenge/memparser.
shtml; 2005.

Dolan-Gavitt B. The VAD tree: a process-eye view of physical memory.
Digital Investigation 2007;4(S1):62-4.

Hejazi SM, Talhi C, Debbabi M. Extraction of forensically sensitive infor-
mation from windows physical memory. Digital Investigation 2009;
6(S1):121-31.

Microsoft. Debugging tools for Windows 32-bit version, http://msdn.
microsoft.com/en-us/windows/hardware/gg463016; 2010.

Nasarre C. Detect and Plug GDI Leaks in your code with two powerful
tools for Windows XP, http://msdn.microsoft.com/en-au/magazine/
cc188782.aspx; 2003.

Okolica], Peterson GL. Windows operating systems agnostic memory
analysis. Digital Investigation 2010;7:48-56.

Petroni NL, Walters A, Fraser T, Arbaugh WA. FATKit: a framework for the
extraction and analysis of digital forensic data from volatile system
memory. Digital Investigation 2006;3(4):197-210.

Russinovich M. Windows sysinterals, http://technet.microsoft.com/en-us/
sysinternals; 2012.

Russinovich ME, Solomon DA. Microsoft Windows internals. 4th ed.
Redmond, Washington: Microsoft Press; 2005.

Simon M, Slay J. Recovery of Skype application activity data from physical
memory. In: Proceedings of the 5th International Conference on
Availability, Reliability, and Security; 2010. p. 283-8.

Simon MP, Slay J. Recovery of pidgin chat communication artefacts from
physical memory: a pilot test to determine feasibility. In: Proceedings
of the Sixth International Conference on Availability, Reliability and
Security. IEEE; 2011. p. 183-8.

Volatile Systems. The volatility framework: volatile memory artifact
extraction utility framework, https://www.volatilesystems.com/
default/volatility; 2011.

Walters A, Petroni N. Volatools: integrating volatile memory forensics
into the digital investigation process. Black Hat DC; 2007.

Andrew White is currently a full-time PhD Student at the Information
Security Institute within the Queensland University of Technology, located
in Brisbane, Australia. His research primarily focuses on memory analysis
techniques, and how they can be utilised to find evidence of malware.

Dr. Bradley Schatz is the director of the independent digital forensics
consultancy Schatz Forensic, and an adjunct Associate Professor at the
Queensland University of Technology (QUT). Dr. Schatz’ forensic practice
provides forensic services primarily to the legal sector, where his advice is
sought in relation to matters ranging from intellectual property theft to
computer intrusions. Bradley's research currently focuses on digital
evidence in control systems, enterprise environments, and volatile
memory.

Dr. Ernest Foo is an active researcher in the area of information and
network security. Dr. Foo has worked extensively in the field of electronic
commerce protocols investigating secure protocols for electronic
tendering and electronic contracting in the Australian construction
industry. Dr. Foo has broad interests having published in the area of formal
analysis of privacy and identity management protocols as well as
proposing secure reputation systems for wireless sensor networks.
Recently Dr. Foo has been looking into research in the area of secure
SCADA systems and memory forensics.

