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Differential analysis determines the differences 
between A and B.

We report these differences as a set of changes (R) that turns A into B.
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A General Strategy for Di↵erential Forensic Analysis

Simson GarÞnkel, Alex Nelson, and Joel Young

Abstract

The dramatic growth of storage capacity and network bandwidth is making it increasingly di�cult for forensic examiners to report
what is present on a piece of subject media. Instead, analysts are focusing on what characteristics of the media havechanged
between two snapshots in time. To date di↵erent algorithms have been implemented for performing di↵erential analysis of computer
media, memory, digital documents, network traces, and other kinds of digital evidence. This paper presents an abstract di↵erencing
strategy and applies it to all of these problem domains. Use of an abstract strategy allows the lessons gleaned in one problem
domain to be directly applied to others.

Keywords: Forensics; Di↵erencing; Forensic Strategies; Feature Extraction; Temporal Analysis

1. Introduction

This paper describesdi! erential forensic analysis, a prac-
tice that is increasingly used by digital forensic examiners but
has not been formalized until now.

Di↵erential forensic analysis compares two di↵erent digital
forensicimages (or, more generally, any pair of digital artifacts)
and reports the di↵erences between them. Focusing on the
changes allows the examiner to reduce the amount of informa-
tion that needs to be examined (by eliminating that which does
not change), while simultaneously focusing on the changes that
are thought to be the result of a subjectÕs activities (for presum-
ably, it was the activity of the subject that somehow transformed
the Þrst digital image into the second).

Di↵erential analysis is widely practiced today. Reverse en-
gineers attempt to infer the behavior of malware by comparing
the contents of a hard drive before the malware is introduced
with the hard drive captured after the malware infection. Sex of-
fenders on many controlled release programs must submit their
computers for regular analysis, so that an examiner can deter-
mine if the o↵ender has visited a banned website. Network
engineers compare month-to-month tra�c summaries in an at-
tempt to learn how demands on their networks evolve, as well
as to identify the presence of malware.

No matter what speciÞc modality is being examined, all
of these use cases involve the collection of at least two digi-
tal objectsÑa baseline and afinal image. Di↵erential analy-
sis reports the di↵erences between the twoÑthat is, what has
changed. But despite the similarity of purpose, to date each dif-
ferential analysis use case has been developed in isolation, with
di↵erent procedures, tools and reporting standards.

We show that these scenarios can all be implemented using
the same strategy. Furthermore, the strategy can cover scenarios
apparently unrelated to computer forensics, such as reporting
on the changes within a document or even Þle synchronization.
The key to this strategy is the extraction offeatures from the
digital artifacts in which each feature has a separately describ-

ablename, location, content, and possibly other metadata.

1.1. Contributions

This paper presents a principled study of di↵erential anal-
ysis and then applies that work to multiple contexts, including
the analysis of Þles on a computerÕs disk drive, the pattern of
data sent across a network, and even reports from other foren-
sic tools. We show that a small set of well-chosen abstractions
allows the same di↵erential analysis strategy to be applied to all
of these cases.

It is important to note that the tools we have written were
createdbefore we formalized our general strategy, not after. Al-
though it would be quite elegant to have a single implementa-
tion of di↵erential analysis and then to specialize that imple-
mentation for each modality, what actually happened is that
we unwittingly wrote multiple implementations of the same ab-
stract strategy each time we wrote another di↵erential analysis
program. Only after writing several di↵erent di↵erential analy-
sis tools were we able to appreciate the commonalities between
the implementations and to realize that the strategy could be
made general by an appropriate choice of abstraction.

2. Definitions, Terminology and Notation

In this section we introduce a consistent terminology for
discussing di↵erential analysis. We apply this terminology to
prior work as well as to our own contributions.

Di! erential Analysis. An analytical process that compares two
objects (images)A and B and reports the di↵erences between
them. Although at Þrst it might seem most sensible to report the
di↵erences as (B! A), experience has shown that it is frequently
more useful to report the di↵erences as the series of operations
R necessary to transformA into B:

A !"
R

B (1)
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B does not necessarily come from A. 

Even if A and B have the same common ancestor, 
we can still calculate the changes R.
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Typically A and B represent snapshots in timeÑA might
be an image of a hard drive recorded before a computer is de-
ployed, andB might be an image of the same drive after it has
been compromised by an attacker. However bothA andB might
be two di↵erent systems that are based on a common object! :

!
"#

A $%
R

B
(2)

Typically the operationsRthat are reported are a function of
both the data formats and the needs of the examiner. IfA andB
are disk images and the examiner is evaluating the installation
footprint of a new application, thenRmight be a list of Þles and
registry entries that are created or changed. But if the examiner
is looking for evidence of a malware infection,Rmight be a list
of opcodes that are changed in existing executables.

Image. A byte stream from any data-carrying device represent-
ing the object under analysis. Practitioners will be familiar with
disk images, memory imagesandcell phone images. Images
may bephysical, which can be thought of as a collection of
sectors, orlogical, which can be thought of as a collection of
Þles.

Note that for the purposes of this abstract strategy the only
real di↵erence between a sector and a Þle is that sectors are
constant-length collections of bytes and are identiÞed by a num-
ber (which can be referred to either as a name or a location,
depending on the context), while Þles are collections of bytes
of variable length that are identiÞed by strings (typically a path
name consisting of one or more directory names and a Þnal Þle
name).

We use the termimageto refer to any kind of digital artifact.
In this article we occasionally use the wordobjectas a synonym
for image when warranted by context.

Baseline Image (A).The image Þrst acquired at timeTA.

Final Image (B). The last acquired image, taken at timeTB.

Intermediary Images (In). Zero or more images recorded be-
tween the Baseline and Final images. ImageIn is thenth image
acquired.

Common Baseline.A single image that is a common ancestor
to multiple Þnal images. For example,! in Equation 2 is a
common baseline forA andB.

Image Delta (B$ A). The di↵erences between two images, typ-
ically between the baseline image and the Þnal image.

Di! erencing Strategy.A strategy for reporting the di↵erences
between two or more images.

Di↵erencing strategies and algorithms that implement those
strategies have long been applied to programs, text, and word
processing Þles (Horwitz, 1990), and are widely available in
tools such as Unixdiff and Microsoft Word. Traditionally

there has been little distinction between the tool that imple-
ments the algorithm and the algorithm itself, and both have been
developed for speciÞc di↵erencing tasks.

This paper presents ageneralstrategy for di↵erential analy-
sis. By general we mean that the strategy can be equally applied
to other articles of forensic interest, such as memory images
and network packet dumps. For example, ifA and B are col-
lections of packets sent over a network on two successive days,
the examiner might be interested in anRthat describes changes
to metadata describing network ßowsÑfor example, that a web
server that was previously listening on one IP address and port
was moved to another location, or that a protocol that was pre-
viously protected with SSL is no longer using encryption. On
the other hand, a di↵erential analysis of a Microsoft Word doc-
ument at two points in time might report that some paragraphs
have been changed while others have been movedÑan analy-
sis performed by WordÕs ÒCompare DocumentsÓ feature, or the
Unix command-linediff utility on text Þles.

Feature ( f ). A piece of data or information that is either ex-
plicitly extracted from the image or otherwise dependent upon
data within the image. For example, an email address from an
address book, a URL from a browser cache, the hash value of
a sector, and a histogram of port frequency use within a set of
packets are all examples of features.

Feature in Image ((A, f )). Features typically are found in im-
ages. In this case, featuref is found in imageA.

Feature Name (NAME(A, f )). Every feature may have zero,
one or multiple names. For example, if a feature is the contents
of a Þle, the feature name might be the Þle name.

Feature Location (LOC( f )). The location in the image in which
the feature is found. If the feature is the contents of a Þle, the
address might be the sectors where the Þle resides. Some fea-
tures can have bothlogical andphysicaladdresses. For exam-
ple, a ÞleÕs location may be either its Þle name (which is the
ÞleÕs logical address in the Þle system), its inode number, or a
set of sector numbers (which are the ÞleÕs physical address on
the media). A feature might thus have multiple locations.

Feature Extraction (F()). The process of deriving one or more
features from bulk data. Di↵erential analysis is rarely applied
on a byte-for-byte basis to bulk data. While it is certainly pos-
sible to compare two objects byte-for-byte and report where the
bytes di↵er, it is more useful to transform the data through some
kind of grouping, data reduction, or feature identiÞcation step.

In order to manage complexity, di↵erencing algorithms ex-
tract features as atomic units of one or more bytes, and report
di↵erences betweenA and B as di↵erences in their extracted
features. For example, the Unixdiff program Þrst extracts
lines from the Þles being compared. Many systems that perform
di↵erencing on Þles in a forensic context use the cryptographic
hash of a long sequence of bytes as a feature.

Extract Feature Set F(A). The set of features extracted from an
image. For example, the Unixdiff program treats each Þle as
an ordered set of extracted lines.
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Differential analysis is widely used in computer forensics

Reverse engineering and malware analysis
¥ A and B — registry entries, DLLs, EXEs
¥ R — changes the malware made

User Monitoring
¥ A and B — disk images
¥ R — residual data from visiting websites (cache, cookies, etc)

Network Capacity Planning
¥ A and B — monthly reports of bandwidth, sites visited, etc.
¥ R — growth from month-to-month
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Our Contribution: Strategy identification and formalization

Strategy identification
¥ We have written numerous differential analysis programs.
¥ We realized they all used roughly the same strategy.
¥ Those that didn’t use the strategy had bugs!
¥ When we implemented the strategy completely, the bugs went away!

Strategy formalization
¥ A consistent terminology
¥ Application of this terminology to several scenarios
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Our terminology for differential analysis

Image Ñ A byte stream from any data-carrying device 
¥ e.g. disk images, memory images, cell phone images; may be physical or logical

Baseline Image (A) 
Ñ The Þrst image acquired at time TA

Final Image (B) 
Ñ The Þrst image acquired at time TB

Intermediary Images (In) 
Ñ Zero or more images recorded between the Baseline and Final Images TA

Common Baseline
Ñ A single image that is a common ancestor

Image Delta (B-A)
Ñ The differences between two images

Differencing Strategy
Ñ A strategy for reporting differences between two or more images
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be an image of a hard drive recorded before a computer is de-
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!
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A $%
R

B
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Our strategy is based on extracted features.

Feature ! ! f
—A piece of data or information that is explicitly extracted from the image...

... or otherwise dependent upon data within the image.

Feature in Image ! (A,f)
—Features typically are found in images.
—(A,f) is feature f in image A

Feature Name !! NAME(A,f)
—Every feature may have zero, one or multiple names
—If the feature is the contents of a file, the feature name might be the file name

Feature Location! LOC(f)
—The location where the feature is found
—For files, could be an inode, or sector #; features can have multiple locations
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Features are extracted from images

Feature Extraction! F(A)
—The set of features extracted from an image

Feature Set Delta ! F(B) - F(A)
—The differences between the feature sets extracted from two images

Transformation Set! R
—The specific set of operations that are applied to A to produce B
—For example, the diff “patch file”
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Prior work: differential analysis goes back 40 years!

Historical:
¥ diff! (Thompson & Ritchie, 1975)
¥ Tripwire! (Kim & Spafford, 1994)

—Can largely be implemented with hashdeep (Kornblum) or fls (Carrier) & diff

Forensics:
¥ EnCase and FTK! Manual differencing
¥ WiReD (NIST, 2009)
¥ Teleporter (Watkins, 2009)

Data Synchronization
¥ rsync — Direct examination of file system
¥ Unison — Examination of file system metadata snapshots

Revision Control Systems
¥ Centralized systems — RCS & Subversion
¥ Uncentralized — git, Darcs

Even timeline analysis is differential analysis
¥ CAT Detect (Marrington 2011) looks for R that is inconsistent with underlying OS.
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and reports the di↵erences between them. Focusing on the
changes allows the examiner to reduce the amount of informa-
tion that needs to be examined (by eliminating that which does
not change), while simultaneously focusing on the changes that
are thought to be the result of a subjectÕs activities (for presum-
ably, it was the activity of the subject that somehow transformed
the Þrst digital image into the second).

Di↵erential analysis is widely practiced today. Reverse en-
gineers attempt to infer the behavior of malware by comparing
the contents of a hard drive before the malware is introduced
with the hard drive captured after the malware infection. Sex of-
fenders on many controlled release programs must submit their
computers for regular analysis, so that an examiner can deter-
mine if the o↵ender has visited a banned website. Network
engineers compare month-to-month tra�c summaries in an at-
tempt to learn how demands on their networks evolve, as well
as to identify the presence of malware.

No matter what speciÞc modality is being examined, all
of these use cases involve the collection of at least two digi-
tal objectsÑa baseline and afinal image. Di↵erential analy-
sis reports the di↵erences between the twoÑthat is, what has
changed. But despite the similarity of purpose, to date each dif-
ferential analysis use case has been developed in isolation, with
di↵erent procedures, tools and reporting standards.

We show that these scenarios can all be implemented using
the same strategy. Furthermore, the strategy can cover scenarios
apparently unrelated to computer forensics, such as reporting
on the changes within a document or even Þle synchronization.
The key to this strategy is the extraction offeatures from the
digital artifacts in which each feature has a separately describ-

ablename, location, content, and possibly other metadata.

1.1. Contributions

This paper presents a principled study of di↵erential anal-
ysis and then applies that work to multiple contexts, including
the analysis of Þles on a computerÕs disk drive, the pattern of
data sent across a network, and even reports from other foren-
sic tools. We show that a small set of well-chosen abstractions
allows the same di↵erential analysis strategy to be applied to all
of these cases.

It is important to note that the tools we have written were
createdbefore we formalized our general strategy, not after. Al-
though it would be quite elegant to have a single implementa-
tion of di↵erential analysis and then to specialize that imple-
mentation for each modality, what actually happened is that
we unwittingly wrote multiple implementations of the same ab-
stract strategy each time we wrote another di↵erential analysis
program. Only after writing several di↵erent di↵erential analy-
sis tools were we able to appreciate the commonalities between
the implementations and to realize that the strategy could be
made general by an appropriate choice of abstraction.

2. Definitions, Terminology and Notation

In this section we introduce a consistent terminology for
discussing di↵erential analysis. We apply this terminology to
prior work as well as to our own contributions.

Di! erential Analysis. An analytical process that compares two
objects (images)A and B and reports the di↵erences between
them. Although at Þrst it might seem most sensible to report the
di↵erences as (B! A), experience has shown that it is frequently
more useful to report the di↵erences as the series of operations
R necessary to transformA into B:

A !"
R

B (1)
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Forensics practitioners use many forms of differential 
analysis.
Differential analysis is a primary tool for addressing data overload.
Feature selection allows the analysis to focus on what’s important.

¥ Malware Discovery and analysis
—Identifies what the malware did

¥ Insider Threat Identification
—Identifies abnormalities in time and space

¥ “Pattern of Life”
—What a user does habitually
—Computer used by multiple individuals
—Multiple accounts used by a single person
—Hijacked accounts
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¥ Summarized reporting of what matters
—Introduction of new features
—Increase in count of an existing feature
—Decrease in count of an existing feature
—Removal of a feature from the image
—Relocation of feature



Every feature has content and metadata.
Change primitives transform A !  B
Feature content — the feature’s byte sequence.

Feature metadata  
¥ Location 
¥ Name  
¥ Timestamp(s) and other metadata

Image “A” and “B” are collections of features
¥ F(A) & F(B)
¥ R is a set of changes that transform F(A) !  F(B)
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A General Strategy for Di↵erential Forensic Analysis

Simson GarÞnkel, Alex Nelson, and Joel Young

Abstract

The dramatic growth of storage capacity and network bandwidth is making it increasingly di�cult for forensic examiners to report
what is present on a piece of subject media. Instead, analysts are focusing on what characteristics of the media havechanged
between two snapshots in time. To date di↵erent algorithms have been implemented for performing di↵erential analysis of computer
media, memory, digital documents, network traces, and other kinds of digital evidence. This paper presents an abstract di↵erencing
strategy and applies it to all of these problem domains. Use of an abstract strategy allows the lessons gleaned in one problem
domain to be directly applied to others.
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data sent across a network, and even reports from other foren-
sic tools. We show that a small set of well-chosen abstractions
allows the same di↵erential analysis strategy to be applied to all
of these cases.

It is important to note that the tools we have written were
createdbefore we formalized our general strategy, not after. Al-
though it would be quite elegant to have a single implementa-
tion of di↵erential analysis and then to specialize that imple-
mentation for each modality, what actually happened is that
we unwittingly wrote multiple implementations of the same ab-
stract strategy each time we wrote another di↵erential analysis
program. Only after writing several di↵erent di↵erential analy-
sis tools were we able to appreciate the commonalities between
the implementations and to realize that the strategy could be
made general by an appropriate choice of abstraction.

2. Definitions, Terminology and Notation

In this section we introduce a consistent terminology for
discussing di↵erential analysis. We apply this terminology to
prior work as well as to our own contributions.
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A simple set of rules allows us to detect changes.
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¥ If something did not exist and now it does, it was created
¥ If it did exist before and now it does not, it was deleted
¥ If it is in a new location, it was moved
¥ If more copies of it exist, it was copied
¥ If less copies of it exist, something got deleted
¥ Aliasing means names can be added or deleted

Table 1: Change detection rules in English.

With respect to any featuref , the change primitive needed
to transform (A, f ) ! (B, f ) can be identiÞed using the rules
described in text in Table 1 and in set notation in Table 2. The
full set of primitives can be e�ciently calculated by enumer-
ating all features, feature names, and feature locations in both
objects, removing the features that are unchanged betweenA
andB, identifying the features created and deleted, and Þnally
identifying features that have moved, been renamed, had names
added, and had names deleted.

5.3. Temporal Inconsistencies
If A and B are from the same system andTB > TA, one

would expect all new features in the feature set deltaF(B) "
F(A) to be timestamped afterTA. If B contains features that
predateTA or postdateTB, then there is an inconsistency. It is
useful for analysts to identify and explain temporal inconsisten-
cies when performing di↵erential analysis:

1. Inconsistencies most obviously arise from tampering of
some typeÑeither evidence tampering (for example, the
planting of new Þles with old Þle stamps), or system tam-
pering (for example, changing the systemÕs clock to a
previous time) (Marrington et al., 2011).

2. Inconsistencies can be a result of unexpected system op-
eration (for example, the Unixcp command will pre-
serve themtime(modiÞcation date) of a Þle that is copied,
but the ÞleÕsctime(inode change time) will necessarily
reßect the time that the copy is made (GarÞnkel et al.,
2010).

3. Inconsistencies may be in inherent in the manner that sys-
tems track time. For example, Nelson (2012) found that
for Microsoft Windows Registry hives, the last-updated
key, the hive header, and the hive Þle could have incon-
sistent mtimes, while GarÞnkel and Rowe (2010) found
Windows rounds many times to the hour.

4. Finally, inconsistencies can result from tool error.

5.4. Reporting
Once the features have been extracted, the change primi-

tives enumerated, and temporal inconsistencies evaluated, the
strategy enters thereportingstage. This stage has two primary
missions: First to suppress irrelevant information and second,
to emphasize the important di↵erences.

As discussed above, source code control systems detect dif-
ferences and propagate them to all clients so that all have iden-
tical copies of the same source code once local modiÞcations
are taken into account. That is, it requires thatR be su�ciently
rich to allowB to be generated fromA.

Forensic examiners rarely have such a stringent requirement
for di↵erential analysis. Being already in possession of bothA
andB, their goal, instead, is to determine what has changed at
the appropriate level of detail to enable their objectives (¤4.1).
Thus forensic di↵erential analysis frequently requires that ex-
traneous information be suppressed.

As previously noted (¤4.2), the most straightforward way
to suppress extraneous information is by simply not extracting
unwanted features. But some kinds of suppression (such as re-
porting increases in feature counts but not decreases) can only
be done in the reporting stage. Some techniques are:

1. Present count statistics rather than the actual features. For
example, a report di↵erencing two network streams may
only present the number of common IP address/port pairs
rather than enumerating all of them.

2. Organize the features in hierarchies and allow the viewer
to drill-down into the level of detail needed

3. Organize the features into timelines.

6. Tools We Have Written

In this section we present tools that implement variants of
the general algorithm.

6.1. idi! erenceÑdi! erences between two di! erent disk images
One of the most basic di↵erential analysis tasks is to com-

pare two disk images and report the Þles that have been added,
deleted, renamed, and altered. This is the basic functionality
that GarÞnkel (2009) introduced in theidi! erence.pyprogram.
However the programÕs initial implementation had subtle bugs
that only became evident when we attempted to explain its be-
havior using the algorithm described in this article.

Our currentidi! erence.pyprogram is based upon GarÞnkel
(2012)Õs DFXML toolset. The program reads a DFXML Þle as-
sociated for each disk image. (If a DFXML Þle is not available,
theÞwalkprogram is run as a subprocess to produce a DFXML
stream which is processed instead.) Each DFXML Þle con-
tains a<fileobject> XML block for each allocated, deleted
or orphaned Þle. These XML blocks are used to create Python
Þleobjectobjects. Each object can be queried for the corre-
sponding ÞleÕs length, contents, the hash of the contents, and
metadata such as Þle modiÞcation time. A SAX-based frame-
work makes it relatively easy to write Python program that in-
gest and process XML Þles that are gigabytes in size.

This basic disk di↵erencing implementation maintains two
data structures for each disk image:

¥ fnames[], a python dictionary that maps complete path
names to Þle objects.

¥ inodes[], a python dictionary that maps the(partition, in-
ode #)pair to a unique Þle object.

These dictionaries reside in an instance of theDiskState
class. When a disk imageB is processed,DiskStateinstance
has thefnames[], andinodes[] dictionaries associated with im-
ageA. Then for each Þle objectÞ, the following operations are
performed:

1. If Þ is not allocated, it is ignored. (This program only
reports di↵erences of allocated Þles.)
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Abstract rules for transforming A !  B
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Rule Change Primitive forA �!
R

B

f 2 F(A) and f 2 F(B) (no change)
f 2 F(A) and f < F(B) DELETE f
f < F(A) and f 2 F(B) CREATE f

|LOC(A, f )| = 1 and|LOC(B, f )| = 1 and
LOC(A, f ) , LOC(B, f ) MOVE LOC(A, f )! LOC(B, f )

|LOC(A, f )| < |LOC(B, f )| COPY LOC(A, f )! (LOC(B, f ) \ LOC(A, f ))

|LOC(A, f )| > |LOC(B, f )| DELETE(LOC(A, f ) \ LOC(B, f ))

|NAME(A, f )| = 1 and|NAME(B, f )| = 1 and
NAME(A, f ) , NAME(B, f ) RENAME NAME(A, f )! NAME(B, f )

(|NAME(A, f )| , 1or |NAME(B, f )| , 1) and
n < NAME(A, f ) andn 2 NAME(B, f ) ADDNAME f , n

(|NAME(A, f )| , 1or |NAME(B, f )| , 1) and
n 2 NAME(A, f ) andn < NAME(B, f ) DELNAME f , n

Table 2: Abstract Rules for transformingA ! B (A into B) based on observed changes to features (f ), feature locations (LOC(A, f )), and feature names
(NAME(A, f )). Although the RENAME primitive is not strictly needed (it can be implemented with a ADDNAME and a DELNAME), it is useful to distinguish
the two operations.

2. The program retrieves the Þle object associated withfi’s
Þle name fromA. This can be calculated with:

ofi = fnames[fi.filename()]

3. If there is no entry in thefnames[] array for the name
fi.filename(), the Þle is new.

4. If ofi.sha1()!=fi.sha1(), then the ÞleÕs contents have
changed.

5. if ofi.mtime()!=fi.mtime(), the ÞleÕs modiÞcation
time has changed.

6. Thefi Þle object is removed fromfnames[].
7. Finally, the Þle object is added to thenew_sha1s[],

new_fnames[], andnew_inodes[] dictionaries, which
will represent the version of the disk image at timeTn

when the disk image associated with timeTn+1 is pro-
cessed. image.

After all of the Þles inB are processed:
1. Thefnames[] array contains a list of the Þle names that

were present inA but not inB. These Þle names are re-
ported as a list of Þles that were deleted.

2. inodes[] is set tonew_inodes[]
3. fnames[] is set tonew_fnames[]
This program views inodes as the features that are extracted

from the disk image. Here the ÒnameÓ of the feature is the path
name. A change of the featureÕs name is a rename event, which
strictly corresponds to a Þle that has been renamed.

6.2. rdi↵erence—di↵erences between two Registry hives
We have also tailored a version ofidi↵erence.py, to describe

the di↵erence between two Windows Registry hive Þles. The

new tool is calledrdi↵erence.py. This is possible because the
Registry behaves much like a simple Þle system. The Registry
as a whole exposes a hierarchical namespace, and each hive is
ÒmountedÓ like a child Þle system at Þxed points. For example,
the system hive Þle mounts atHKEY LOCAL MACHINE\ SYSTEM.
Nelson (2012) designed an XML format, RegXML, to repre-
sent hives, and implemented a RegXML processing interface in
the DFXML toolset. The same SAX model that supportsidif-
ference.py has an interface for hivecells similar to Þle system
inodes.

Several distinctions relevant to di↵erencing exist between
hives and more-complete Þle systems. File system ÒDirecto-
riesÓ and ÒFilesÓ have analogous structures in hives, ÒKeyÓ and
ÒValueÓ cells respectively. Values have one feature Þle meta-
data lack: Content is explicitlytyped, for instance as UTF-16
characters or binary. However, most Þle-system metadata does
not exist in hives:

¥ There are only mtimes; there are no access, creation, or
change times.

¥ Keys and the hive header have mtimes, but values do not.
¥ There is no notion of an ÒinodeÓ as a data structure al-

ways separate from cell content.
The general algorithm ofrdi↵erence.py is a subset ofidif-

ference.py. We presently omit rename detection, as cells have
only their paths as unique identiÞers. (It may be possible to
measure subtree similarity to infer renames, but we leave that
to future work.) The program presently reports:

¥ New and deleted hive cells, including cells that have pre-
cisely matching full paths (i.e., a cell being fully dupli-
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were present inA but not inB. These Þle names are re-
ported as a list of Þles that were deleted.
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data lack: Content is explicitlytyped, for instance as UTF-16
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cisely matching full paths (i.e., a cell being fully dupli-
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These rules can also detect temporal inconsistencies.

If features have timestamps...
! and A and B are from the same system...
! and TB > TA

Then every feature in F(B) - F(A) should have a timestamp after TA.

Sources for temporal inconsistencies:
¥ Tampering of the system clock
¥ Copy programs (cp , copy ) tampering destination mtime  to match source
¥ Inconsistency in the way that time is updated

—Inconsistent updates to Windows Registry hive last-update key
—Windows rounding times to the hour

¥ Tool error
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Forensic examiners must suppress extraneous information

Approaches for suppressing:
¥ Do not extract information that will not be reported
¥ Present counts  rather than the actual features
¥ Organize features in a hierarchy
¥ Organize features in timelines
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Tools we have written

idifference — differences between two disk images
¥ Files added, removed, moved, changed
¥ Timestamp modifications without file content changes

rdifference — differences between two Windows Registry hives
¥ Deleted cells
¥ Values with modified content or type
¥ Keys with changed mtimes

—Note: must handle Registry hives where multiple keys have the same name!

bulk_diff — Differences between two bulk_extractor reports
¥ New email addresses, URLs, search terms, etc.
¥ Allows one to rapidly infer “what happened” without examining files, browser cache, etc.

corpus_sync — uses change detection to sync NPS disk corpus
flow_diff — (under development) reports new services on pcap dumps
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Case study: M57 illicit images

M57-Patents scenario: Þctitious characters, working for Þctitious 
company, committing crimes.

One persona, Jo, is a (simulated) pornographer:
Kitty porn (JPEGs)

How can we use differencing to quickly Þnd suspected illicit pictures?

17



Differencing reduces the amount of information that needs review.

Tools used:
¥ fiwalk, idifference

Difference statistics - M57 illicit image machine (“Jo”)
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Nov. 12 → 20 Nov. 12 → 16 Nov. 16 → 19 Nov. 19 → 20

Files before

Files after

New files

Deleted files

Renamed files

Files w/ changed 

content

Files w/ changed 

metadata

Difference report 

lines with ‘.jpg’

24,131 24,131 28,735 29,678

30,497 28,735 29,678 30,497

8,546 5,140 1,157 2,773

1,900 200 98 1,814

463 449 566 703

1,011 687 981 568

3,581 1,906 4,275 1,784

603 33 146 643



Conclusion:
All differencing tasks are fundamentally identical.
We have written many differencing tools.

¥ File system differencing
¥ Windows Registry differencing
¥ bulk_extractor output differencing
¥ Corpus synchronization

We realized that all of these tools implemented the same strategy.
¥ An “image” is a collection of “features.”
¥ Differencing determines the changes needed to change A !  B
¥ This is the same as F(A) !  F(B)
¥ Dividing the changes into categories eases reporting:

—New features
—Missing features
—Features with changed names
—Features with changed addresses

Questions?
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