
DIGITAL FORENSIC RESEARCH CONFERENCE

Integrity Verification of User Space Code

By

 Andrew White, Bradley Schatz and Ernest Foo

Presented At

The Digital Forensic Research Conference

DFRWS 2013 USA Monterey, CA (Aug 4th - 7th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized

the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners

together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working

groups, annual conferences and challenges to help drive the direction of research and development.

http:/dfrws.org

Integrity Validation of User Space Code

Andrew White, Ernest Foo, Bradley Schatz
Queensland University of Technology

Brisbane Australia

DFRWS

7th August 2013

Goal

Reduce amount of memory requiring manual analysis

Highlight any memory that is potentially suspicious
e.g. malware

Achieved by filtering out known code

Andrew White Integrity Validation of User Space Code 2 / 28

Process Memory

Each process given its own view of memory

User Space
Lower half of virtual memory
0x00000000 - 0x80000000 (2GB) on 32 bit
Where process code and data is stored

User space memory used by the process
described by the VAD Tree

Andrew White Integrity Validation of User Space Code 3 / 28

Code vs Data

Some memory is code, some memory is data

Code must have executable permissions
Otherwise it will not run

Memory permissions can be used to
distinguish code and data

No Execute (NX) bit in Page Table Entry
(PTE)
VAD permissions do not matter

Andrew White Integrity Validation of User Space Code 4 / 28

Code on Windows

Portable Executable (PE)
Format used by Windows for programs and
code
.exe, .dll, .drv etc

Format same in memory and on disk
Layout is di↵erent

Content between memory and disk not quite
the same

Code requires updating to reflect
environment
Relocations and imports
Changes not known till run time

Andrew White Integrity Validation of User Space Code 5 / 28

Malware

Common need to determine if malware is
running on the system

Numerous ways in which that malware could
have been loaded

Locating that malware can be complicated

Andrew White Integrity Validation of User Space Code 6 / 28

Reducing memory requiring analysis

Andrew White Integrity Validation of User Space Code 7 / 28

Example for explorer.exe on Win7

Andrew White Integrity Validation of User Space Code 8 / 28

Every process on a Windows 7 system

Andrew White Integrity Validation of User Space Code 9 / 28

Every process on a Windows 7 system

Andrew White Integrity Validation of User Space Code 10 / 28

Proposed solution

Build hashes of trusted code from on disk
e.g. a default Windows install

Apply hashes to code in user space memory
Apply in a manner that takes into account imports, relocations
etc.

Remove code that passes validation from further analysis

Reduce memory requiring analysis from whole memory image
to only code that was not validated

Andrew White Integrity Validation of User Space Code 11 / 28

Related Work

Malfind [Ligh, 2009]
Uses VAD permissions to detect potentially injected code
Code capable of subverting detection exists [Keong, 2004]

System Virginity Verifier [Rutkowska, 2005]
Compares contents of files on disk to contents of files in
memory on a live system
Requires trusting contents of disk and memory simultaneously

Walters et al. [2008]
Built hashes of code from on disk and applied to a memory
image
Only able to if a page matches or not, not whether it should or
should not

Andrew White Integrity Validation of User Space Code 12 / 28

Building Hashes

Parse PE files on disk
Convert PE to virtual layout
Normalise variable locations

relocations, imports, etc.

Hash normalised page
Output a hash, list of normalised locations and metadata for
each page
Similar to Walters et al. [2008] approach

+HDGHU

�WH[W

�GDWD

�UHORF

+HDGHU

�WH[W

�GDWD

�UHORF

1RUPDOLVH +DVK
)LOHQDPH��2IIVHW��
+DVK��3HUPLVVLRQ��
1RUPDOLVDWLRQV

Andrew White Integrity Validation of User Space Code 13 / 28

Sample Hashes

Filename Offset Normalised Hash Executable To Normalise
--------- ------ -- ---------- ------------
ntdll.dll 0 721652da644c8b8be9c27909f76319ca1e2c6648 0
ntdll.dll 32 0e04ac081fdd61f63a9efbf46154578da56d15cc 1 35d 4df d3a
ntdll.dll 45 d1d6e5357344dbb74957c0eec9c98cd703ab4222 1 0d2 141 190

1bd 1e7 233
24e 268 289
33a 34f 366

...
c7c c81 c88
c92 c97 caf
cb9 cbe fa9
fb4 fde fe8
fed

ntdll.dll 5b e6cc914ef3095a5a7e5f967a92a57c1c5779a806 1 fb5

Andrew White Integrity Validation of User Space Code 14 / 28

Applying hashes

9$'�(QWU\

([HFXWDEOH
$OORFDWLRQ

([HFXWDEOH
3DJH

+DVK�6HW

����������
���������I
�G��������
�F�F������
����������
�I�H������

+DVK

$SSO\
+DVK

�[�����������[��������
(;(&87(B:5,7(&23<
H[SORUHU�H[H

����������
���������I
�G��������
�F�F������
����������
�I�H������

1RUPDOL]HG
3DJH

)LOHQDPH

/RFDWLRQV

1RUPDOL]H

2IIVHW 5HVXOW

Andrew White Integrity Validation of User Space Code 15 / 28

Applying hashes

Apply hashing process to every executable page in the user
space of every process

Use metadata to locate correct hash before hashing

Categorise results
Verified - page matched stored hash
Failed - page did not match stored hash
Unknown - no stored hash available
Unverifiable - known problem Windows behaviour

Andrew White Integrity Validation of User Space Code 16 / 28

Sample Output

PID Verified Failed Unverifiable Unknown Name
------------ -------- ------ ------------ ------- ---
00004 1 0 0 0 System
00268 3 0 0 0 smss.exe
00372 17 0 0 0 csrss.exe

...
00764 85 0 1 0 svchost.exe

01110000 0 0 2 0 ole32.dll executable alloc (Unverifiable)
...

02376 100 0 6 0 wmpnetwk.exe
003a0000 0 0 2 0 ole32.dll executable alloc (Unverifiable)
6cd00000 47 0 11 0 msmpge2enc.dll (Executable Data)
6ced0000 103 0 26 0 blackbox.dll (Unverifiable / Executable Data)
6de80000 165 0 11 0 drmv2clt.dll (Executable Data)
6dfa0000 57 0 11 0 wmdrmdev.dll (Executable Data)

...
Totals

Allocations 2076 0 7 0
Pages 38788 0 73 0

Unverifiable Pages Breakdown
59 Executable Data
14 Default Windows Behaviour

Andrew White Integrity Validation of User Space Code 17 / 28

Complications

Windows exhibits default behaviour that cannot be verified
Executable pages that are not predictable

Windows XP - data marked executable
Read-Only Shared Heap
Desktop Heaps
Win32k.sys Allocation
Winlogon.exe Allocations

Windows 7 - obfuscated and irregular PE loading
blackbox.dll
shell32.dll in searchindexer.exe

Transition pages
Page Table Entries do not have correct permission value
Need to query Page Frame Number database to retrieve
Complicates determining if a page is executable

See paper for more details

Andrew White Integrity Validation of User Space Code 18 / 28

Potential For Subversion

Hashing process normalises part of input
Can these normalised locations be modified to create malware?

Redirect program flow to external code source
External code source would be detected under current
approach

Replace normalised locations with malicious code
Code would be broken into 4 byte chunks and interleaved with
normal execution
Di�cult to create useful behaviour in this manner

Return Orientated Programing (ROP)
Technique used to bypass lack of executable permissions
Code only exists as stack frames (data)
Currently only used for single function calls, not entire
programs

Andrew White Integrity Validation of User Space Code 19 / 28

Implementation

Implemented in two parts

Hashbuild
Python script to parse a filesystem for PE files and build hashes

Hashtest
Volatility plugin to apply the hashes to a memory image

Time taken to build hashes
Clean XP install - 1.5 min
Clean Win7 install - 3.5 min

Time taken to test hashes against an image
XP 256MB image - 30s
Win7 1GB image - 2min

Andrew White Integrity Validation of User Space Code 20 / 28

Experimental Setup

Tested against Windows XP SP3 and Windows 7 SP1

Tested against malware and application dataset for each OS

Images created with virtual machines
Each malware sample examined to ensure it executed correctly

Andrew White Integrity Validation of User Space Code 21 / 28

Malware Results - XP

Malware
Executable

Pages
Pages
Failed

Pages
Verified

Executable
PE Data

Unverifiable
Allocations

Unknown
Allocations

No Sample 18701 0 100.00% 0 25 0

Cridex.B 18808 38 99.80% 0 25 4
Cridex.E 16964 28 99.83% 0 25 3
Dexter 37506 0 100.00% 0 25 2
NGRBot 19700 332 98.31% 0 25 44
Shylock 19583 30 99.85% 0 25 7
Spyeye 18564 107 99.42% 0 25 23
TDL3 19719 14 99.93% 0 25 49
TDL4 19911 14 99.93% 0 25 52
Vobfus 18322 0 100.00% 0 25 3
ZeroAccess 19644 0 100.00% 0 25 10

Andrew White Integrity Validation of User Space Code 22 / 28

Application Results - Win 7

Program
Executable

Pages
Pages
Failed

Pages
Verified

Executable
PE Data

Unverifiable
Allocations

Unknown
Allocations

7zip 583 0 100.00% 0 0 0
Adobe Reader 3478 42 98.79% 0 0 17
Chrome 10867 9 99.92% 32 0 25
Excel 2419 6 99.75% 0 0 2
Firefox 4480 5 99.89% 0 0 5
Google Talk 2951 0 100.00% 0 0 0
Internet Explorer 3794 27 99.29% 0 1 1
iTunes 5991 0 100.00% 11 0 0
Notepad++ 1651 0 100.00% 0 0 0
Outlook 6981 11 99.84% 1 0 4
Pidgin 2720 0 100.00% 0 0 0
Powerpoint 3558 2023 43.14% 972 0 10
Skype 7320 4216 42.40% 262 0 2
Thunderbird 4247 5 99.88% 0 0 5
VLC 2073 0 100.00% 0 0 0
Winamp 3810 0 100.00% 0 0 18
Windows Media Player 3160 1 99.97% 0 0 1
Winrar 1457 0 100.00% 11 0 11
Wordpad 1545 0 100.00% 0 0 1
Word 3403 9 99.74% 0 0 2

Andrew White Integrity Validation of User Space Code 23 / 28

Results

Introduction of malware detected in all samples
Each introduced unknown allocations
Some changed existing pages

Detected unknown code not found using Malfind
Executable pages in non-executable allocations

Significant reduction in memory requiring analysis
⇠39,000 pages down to ⇠75 on default Windows 7 system

Andrew White Integrity Validation of User Space Code 24 / 28

Limitations

Many applications introduced noise into this process
Some applications introduced unknown allocations
Packed application performance poor

Does not take into account interpreted / JIT code

Andrew White Integrity Validation of User Space Code 25 / 28

Conclusion

Approach for validating the integrity of code in user space
memory

Allows the reduction of memory requiring manual analysis

Analysis of default Windows behaviour

Implementation as a Volatility plugin

Andrew White Integrity Validation of User Space Code 26 / 28

Future Work

Other Windows versions
x64 / ARM
Vista and 8

Kernel memory
Conversion of techniques for kernel memory

Alternative hash building methods
Memory based or virtual machine based approaches

Andrew White Integrity Validation of User Space Code 27 / 28

Questions

Code
https://github.com/a-white/

Questions?

Andrew White Integrity Validation of User Space Code 28 / 28

References I

Keong, T. C. (2004). Dynamic Forking of Win32 EXE. Available
http://www.security.org.sg/code/loadexe.html. Last
Accessed 14/06/12.

Ligh, M. H. (2009). Malfind Volatility Plugin. Available
http://mnin.blogspot.com.au/2009/01/

malfind-volatility-plug-in.html. Last Accessed
19/04/11.

Rutkowska, J. (2005). System virginity verifier. In Proceedings of
the Hack In The Box Security Conference.

Walters, A., Matheny, B., and White, D. (2008). Using Hashing to
Improve Volatile Memory Forensic Analysis. In Proceedings of
the American Acadaemy of Forensic Sciences Annual Meeting.

Andrew White Integrity Validation of User Space Code 1 / 1

http://www.security.org.sg/code/loadexe.html
http://mnin.blogspot.com.au/2009/01/malfind-volatility-plug-in.html
http://mnin.blogspot.com.au/2009/01/malfind-volatility-plug-in.html

	Introduction
	Approach
	Evaluation
	Conclusion
	Appendix

