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a b s t r a c t

Software based Memory acquisition on modern systems typically requires the insertion of
a kernel module into the running kernel. On Linux, kernel modules must be compiled
against the exact version of kernel headers and the exact kernel configuration used to
build the currently executing kernel. This makes Linux memory acquisition significantly
more complex in practice, than on other platforms due to the number of variations of
kernel versions and configurations, especially when responding to incidents. The Linux
kernel maintains a checksum of kernel version and will generally refuse to load a module
which was compiled against a different kernel version. Although there are some tech-
niques to override this check, there is an inherent danger leading to an unstable kernel and
possible kernel crashes. This paper presents a novel technique to safely load a pre-
compiled kernel module for acquisition on a wide range of Linux kernel versions and
configuration. Our technique injects a minimal acquisition module (parasite) into another
valid kernel module (host) already found on the target system. The resulting combined
module is then relinked in such a way as to grant code execution and control over vital
data structures to the acquisition code, whilst the host module remains dormant during
runtime.
ª 2014 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Memory analysis has rapidly become a very powerful
tool in the arsenal of incident responders and forensic ex-
aminers. Frameworks such as Volatility (Walters, 2007) or
Second Look (Raytheon Pikewerks, 2013) allow an in-depth
analysis of operating system data structures and can be
used to gain a thorough understanding on a live systems
state like running processes, network connections and
mapped files.

For this to work it is necessary to acquire a memory
image. While multiple methods to do this using physical
access to the hardware exist (Carrier and Grand, 2004;

Boileau, 2006), physical access is often not available in an
incident response scenario. Thus, a software based
approach is sometimes the only viable option. Because
current operating systems operate in protected mode for
security and safety reasons, acquisition of the entire phys-
ical address space can only be achieved in systemmode. For
Linux this typically requires the injection of a Linux kernel
module into the running kernel. Since the Linux kernel
checks modules for having the correct version and check-
sums before loading, the kernel will typically refuse to load
a kernel module pre-compiled on a different kernel version
or configuration to the one being acquired. This check is
necessary since the struct layout of internal kernel data
structures varies between versions and configurations, and
loading an incompatible kernel versionwill result in kernel
instability and a potential crash.

For incident response this requirement makes memory
acquisition problematic, since often responders do not
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know in advance which kernel version they will need to
acquire. It is not always possible to compile the kernel
module on the acquired system, which may not even have
compilers or kernel headers installed.

Some Linux memory acquisition solutions aim to solve
this problem by maintaining a vast library of kernel mod-
ules for every possible distribution and kernel version
(Raytheon Pikewerks, 2013). While this works well as long
as the specific kernel is available in the library, it is hard to
maintain and can not cover cases where the kernel has
been custom compiled or just is not common enough to
award a place in the library. This is especially the case on
mobile phones. Often phone vendors might publish the
kernel version they used, but the configuration and details
on all vendor specific patches are often not known, severely
impeding memory acquisition (Sylve et al., 2012).

Rootkit authors also have encountered the same prob-
lem when trying to infect kernels where the build envi-
ronment is not available. Recent work for Android shows
that while it is trivial to bypass module version checking, it
is still a hard problem to identify struct layout in unknown
binary kernels (You, 2012). In the Android case this prob-
lem is solved by restricting dependencies to very few
kernel symbols and reverse engineering their data struc-
tures on the fly using heuristics (You, 2012).

A solution for data structure layout detection could be
live disassembly of functions which are known to be stable
and use certain members in these structs. Recent work
showed that it’s possible to dynamically determine the
offsets of particular members in certain structs used in
memory management, file I/O and the socket API (Case
et al., 2010).

Kernel integrity monitoring systems also have similar
problems, as they have to monitor dynamic data and need
to infer its type and structure to analyze it. Since this data
layout changes with kernel version, these systems need to
infer its data layout from external sources. The KOP
(Carbone et al., 2009) and MAS (Weidong et al., 2012)
frameworks, are exemplary systems designed to monitor
integrity of dynamic kernel data structures. Their
approach involves statically analyzing the kernel source
code and debug symbols to infer type information for
dynamic data. However, they rely on the kernel source-
code and debug symbols for the exact running kernel
being available in advance, which is exactly the de-
pendency we can not guarantee in the incident response
scenario.

Contributions. We have developed a method to inject a
parasite kernel module into an already existing host kernel
module as found on the running system. Most modern
kernels have a large number of legitimate kernel modules,
compiled specifically for the running kernel, already pre-
sent on the system. Our approach locates a suitable existing
kernel module (Host Module), injects a new kernel module
into it (Parasite module) and loads the combined module
into ring 0.

The resulting modified kernel module is fully compat-
iblewith the running kernel. All data structures accessed by
the kernel are taken from the Host module, andwere in fact
compiled with compatible kernel headers and config op-
tions. However, control flow is diverted from the Host

module to the Parasite module, by modifying static linking
information. This allows the parasite module’s code to use
the hosts’ structs for communication with kernel APIs.

Anatomy of a Linux kernel module

Linux kernel modules are relocatable ELF object files
and not an executable. The obvious difference is that
executable ELF files are processed by a loader, while relo-
catable objects are intended for a linker.

The loader relies on the ELF Program Headers to identify
the file layout and decide which parts to map into memory
with which permissions. The linker instead relies on ELF
section headers for this, with special sections containing
symbol string and relocation tables, to identify and resolve
inter-section symbol references (Fig. 1).

Dependencies on other objects in an ELF executable are
resolved by dynamic linking. In this process, external
symbols are referenced through the Global Offset Table
(.got) and Procedure Linkage Table (.got.plt), and resolved
by the dynamic linker at runtime (Fig. 2).

In contrast to this, relocatable ELF objects are statically
linked using relocations. Each section with references to
symbols in other sections or objects has a corresponding
relocation table. Entries in these tables contain information
on the specific symbol referenced, and how to patch a
specific code or data reference with the final address of the
symbol after it has been relocated.

One or more of these relocatable objects can be linked
together by placing them into their final position in the
final executable or address space, after which the linker
applies all relocations to patch the now final references
directly into the code.

In the context of the Linux kernel this means that
loading a kernel module is actually the same thing as
linking an executable, but with the executable being the
running kernel image.

How is a LKM loaded and linked

The actual loading process of a kernel module can be
characterized by four steps, which begin in user space
(Fig. 3):

Fig. 1. ELF file layout (TIS Committee, 1995).
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1. A user-mode process loads the kernel module image into
memory and issues an init_module system call. This
causes the kernel to dynamically allocate memory for
the module and copy it into kernel space.

2. The kernel verifies the ELF headers and then starts to
analyze two special sections in the module, .modinfo
and __versions. These sections contain information
on the exact version of kernel headers the module was
compiled with. The kernel will refuse to load any mod-
ules that contain incompatible version magic.

3. After the version check, the kernel invokes its internal
linker to resolve all relocations in the module. This will
replace any inter-section or external symbol references
in the module with the actual addresses of these sym-
bols in the running kernel, basically assimilating it into
the kernel image.

4. Finally, the kernel will link the struct module provided by
the module into the module list and call the function
pointer stored in module.init, which passes execution
to the modules init_module function.

Why kernel modules need to be compiled for a specific kernel
version

Linux kernel modules are object files and are linked
directly into the running kernel. There is no protection of
kernel memory from their actions, they run at the same

privilege level and bugs can lead to kernel data corruption
and thus to a kernel panic.

Furthermore, since it is directly linked with the module
object file, the kernel actually uses some of the modules
data structures. Each module contains a special section
called .gnu.linkonce.this_module, which holds a
static struct module generated in the compilation process.
This struct is defined in the kernel headers, and is used by
the kernel for bookkeeping and managing of the module. It
is linked into the module list and the kernel will regularly
access its members. For example the kernel directly der-
eferences the module.init member to call the modules
initialization function (Fig. 5).

Forcing the module to be compiled with the exact same
kernel version, configuration and compiler settings ensures
that all APIs are compatible and structs have the exact same
layout in both the module and the kernel. If the number of
members, their order, the compilers padding settings or a
conditional member are only present on certain configu-
rations or differ from kernel to module, certain members
(like for example the init pointer) will be at a different
offset than the kernel expects. The call to mod->init
might result in a call to something entirely different,
uninitialized data or even unmapped memory. This can
easily result in a kernel crash, forcing a reboot or leading to
possible data loss or corruption (Fig. 4).

Bypassing module version checking

There are multiple ways to get around the version check
and load a module even if it was compiled for a different
kernel version. However, because of the reasons mentioned
before this should only be a last resort as it can result
in undefined behavior, data corruption or worse.

There is a kernel config option “CONFIG_
MODULE_FORCE_LOAD”, which allows modules without
valid vermagic to be loaded by using the –force option of
modprobe. In many cases if the module was compiled on a
very closely related kernel (e.g. only the last digit is

Fig. 2. Static vs. dynamic linking.

Fig. 3. Loading of a kernel module.
Fig. 4. struct module in kernel/module.h (The linux kernel Archives,
2013).
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different) for the same distribution (which hopefully uses a
very similar configuration) this will work. For larger differ-
ences this technique could cause a kernel crash and is usu-
ally not recommended.

Because it is hard to verify if the versions are compatible
without comparing the kernel headers and configuration,
this option essentially allows for a gamble with the possi-
bility of a very bad outcome. Documentation clearly states
that “Forced module loading sets the ‘F’ (forced) taint flag and
is usually a really bad idea.” (The linux kernel Archives,
2013, init/Kconfig), which is the reason few production
kernels are compiled with this configuration option
enabled.

Even without the forced loading option enabled, the
kernel can still be tricked into accepting an incompatible
module by modification of the .modinfo and __ver-
sions sections. The version magic is not cryptographically
signed, so it can simply be extracted from a valid module on
the target system and replace the incompatible magic
previously stored another module. Because the module
now contains valid magic strings for kernel version and all
its imported symbols the version check will pass and the
kernel will allow the module to be loaded.

Nevertheless, the inherent danger with this is the same
as with forced loading. It can result in undefined behavior,
kernel crash and data loss.

Finally, the kexec system call offers another way to
insert code into system mode. “[K]exec is a system call that
enables you to load and boot into another kernel from the
currently running kernel” (The Linux man-pages, 2012). This
can be used to load a custom acquisition kernel, replacing
the old one, similar to the approach taken by the Body
Snatcher tool (Schatz, 2007). However, this will render the
old kernel unusable and there is no way to recover from
this into the state the system was in before. Additionally,
this system call only exists on kernels compiled with
CONFIG_KEXEC enabled, so there is no guarantee that it
will be available.

Reliable loading of generic acquisition modules

A technique for loading a generic memory acquisition
kernel module simplifies the acquisition process for inci-
dent responders of Linux systems. Investigators can
concentrate on the incident and stop worrying about the

exact kernel version of the target system, and prebuilding
compatible kernel modules.

Requirements for a stable approach
Multiple problems have to be solved to actually do this

in a reliable manner without affecting system stability. The
first is the matter of getting system mode code execution.
We need the ability to insert arbitrary code into the
running kernel and pass control to it. This involves
bypassing the version check and handing the kernel a valid
struct module with an module->init pointer under our
control.

For this to work it is also necessary to predict the layout
of the kernels data structures. Especially struct module is
needed to get code execution in the first place, but usage of
many kernel APIs also requires creation of specific structs
with the correct layout. For example the creation of a de-
vice inode to communicate with user mode requires a
kernel module to have a valid struct file_operations

with correctly positioned pointers to the relevant driver
functions (such as read, write, llseek).

The more APIs a kernel module wants to employ, the
more data structures have to be used which increases the
necessary knowledge on the running kernels struct layout.
This implies that the problem becomes much easier to
solve if the memory acquisition module uses as few APIs as
possible. Some Linux memory acquisition solutions have a
rich feature set, such as writing to disk from kernel mode or
dumping memory over the network (Sylve, 2012). How-
ever, this requires knowledge of vfs and socket struct
layout. Additionally, some existing tools parse the
iomem_resource tree to enumerate physical memory
mappings (so as to avoid acquiring DMA regions (Stüttgen
and Cohen, 2013)). Kernel APIs mapping the virtual address
space or even allocating memory can be difficult to use
without detailed knowledge of the running kernels data
structures and APIs. Ideally, an acquisition module for this
use case should use as few kernel APIs as possible.

Parasitizing a compatible module
The first step in parasitizing a compatible module, is to

locate a valid kernel module for the running kernel suitable
for parasitizing. On most distributions the directory /lib/
modules/ contains a large number of kernel modules for
different devices, which have all been compiled with the

Fig. 5. Initialization of a kernel module.
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correct headers and configuration and thus are compatible
for linking into the running kernel. Code injection into one
of these modules not only allows us to pass the kernel
version checks but also ensures that the struct module
linked into the kernel is compatible.

Parasitizing an existing kernel module is not a novel
technique. The technique has been employed by malware
authors previously as a stealthy persistence technique
(Truff, 2003). Because a kernel module is a relocatable ob-
ject, it is easy to add new code and data to it using standard
tools. It can be essentially relinked with another module to
combine both into a single object file. This can be done
using the linker ld or by copying individual sections using
objcopy. The Adore-ng rootkit (Stealth, 2004) for example
uses this technique to hide its kernel module inside a
legitimate one on infected systems and gain code execution
when the host is loaded on startup. The method is docu-
mented to work on a wide variety of kernels, from the 2.4
series (Truff, 2003) to more current 2.6 and 3.0 kernels
(Styx, 2012).

To divert control flow in the infected module, malware
usually rewrites the symbol names of initialization func-
tions. By renaming init_module to something else and
changing the name of the injected initialization routines to
init_module, the kernel linker will insert the address of
the injected routine into the struct module->init mem-
ber on relocation. When the kernel initializes the loaded
module it will thus call the malware’s code, not the hosts.

While this technique provides a stable method to solve
the first problem of getting code execution in a stable
manner, it does not address the problem of learning the
struct layout of the running kernel. For our use case, we are
interested in other structs a host module has to offer. If we
can find a kernel module on the target system that contains
all necessary structs which the parasite kernel module
needs in order to use the kernel APIs, we can parasitize this
module and make use of these structs ourselves.

The ELF relocation tables in the host module can then be
exploited to patch these structs on module load to suit our
needs, without having to know anything about their layout.

Code injection into kernel modules
Previous work used the linker ld to link code into the

host module (Truff, 2003; Styx, 2012). However, this com-
plicates the build process because it either needs the linker
available on the target system, or it is necessary to first copy
a suitable module from the target to a system with a suit-
able build environment, infect it there and then copy the
result back. This is both undesirable when responding to an
incident, as it changes the target’s state and increases
forensic impact.

Therefore it is prudent to implement a custom linker
that can perform this process on the fly in memory when
executed on the target. The linker has to be able to insert
entries into section header, symbol and string tables and
add sections to the binary.

Redirection of control flow
Once we are able to inject code into a kernel module, we

need to divert the control flow away from the host to the
parasite. This can be performed by using a technique we

call “Relocation Hooking”. This is commonly used to
manipulate entries in the Procedure Linkage Table to hook
calls to dynamic libraries in ELF executables (Shoumikhin,
2010). The general idea is that the linker will use infor-
mation in the relocation tables to patch the programs
control flow, thus manipulation of these tables can exploit
the linker to patch a program for us.

Relocation Tables are an array of relocation entries, each
describing the use of a symbol in a specific location of the
program. They provide information on how this code needs
to be patched to reference the actual address of this sym-
bol, as soon as it has been loaded and its address is known.
Because references and addressing are highly architecture
dependent, a large number of different types of relocations
exist. On x86-64, a relocation table is an array of struct
ELF64_Rela, storing the offset in the code where the
relocation will be performed, information on the type of
relocation, the index of the referenced symbol and an
addend. Depending on the type of relocation, the addend
has to be added to the symbol offset, for example when
patching an RIP relative reference in position independent
code. There are 37 different types of relocation on x86-64
(Matz et al., 2012), of which only 5 are actually used in
kernel modules (The linux kernel Archives, 2013, arch/
x86/kernel/module.c).

Hooking Module Initialization. Each kernel module
contains a struct module called __this_module, which is
automatically generated from the module source code at
compile time by expansion of some macros. The resulting
definition is available in the generated .mod.c file as seen
in Fig. 6, and is linked into the module using the reloca-
tion table for its section (.gnu.linkonce.this_mod-
ule). This struct is then used by the kernel to call the
initialization code pointed to by __this_module-

>init. The relocation table for this section has an entry
that instructs the kernel to patch the address of the
init_module function into this member of the struct. By
modifying the symbol index in that relocation entry we
can make the linker patch any symbol we want into the
struct when the module is loaded. Thus it is sufficient to
find this relocation entry and change its symbol index to
the one of the parasites initialization function to get code
execution.

Note that we don’t need to know anything about the
layout of struct module at all to do this, all information
needed to patch this struct is available in the relocation
entry and the patch itself is performed by the linker.

Communication with User Mode. Even after we have
code execution, we still lack a method of communicating
with user space. A memory acquisition driver needs to
receive instructions from user space on which physical
pages to acquire and needs to pass these pages back to
user space.

One of the simplest and most commonly used methods
for system- to user-mode communication in Linux is the
character device. A kernel module can create a struct fil-
e_operations, which contains function pointers for op-
erations like read, write, llseek and such. The module
then registers a major number with the kernel, which will
link the struct to any inode referencing that major number.
The system call mknod can be used from user space to
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create such an inode. Any file operations on this inode will
be dispatched to the functions referenced in the corre-
sponding struct file_operations.

If the host module implements a character device, it
must already have a compatible version of this struct in its
.data or .rodata section (Usually kernel modules
initialize their struct file_operations statically at
compile time). To populate the function pointers in this
struct there have to be relocation entries for this section,
because the functions are placed in another section whose
address is not known until loading time. When the kernel
loads themodule, the linker relocates the sections and then
places the addresses of all relevant functions into the
struct file_operations, by parsing the corresponding
relocation table.

We can exploit this process by modifying the relocation
table of the host to point to a symbol of our choice instead
of the original read and llseek functions exported by the
Host Module (Fig. 7).

When the parasitized module is loaded, the kernel
linker will patch the struct with function pointers to the
parasites’ read and llseek functions instead. The para-
site can then call the register_chrdev API in the kernel
with a pointer to this struct, which is guaranteed to be
compatible with the running kernel. Thanks to the relo-
cation entries we don’t need to know the layout of
struct file_operations to do this. Our pointers will be
placed at the correct offsets by the linker and any read or
llseek calls to a device inode with our major number

will be dispatched to the parasites’ read or llseek

functions.

Selection of suitable host
Due to the need for certain symbols and structs, this

approach won’t work with arbitrary kernel modules.
However, most distributions ship with a large number of
modules to handlemany different hardware devices, which
are found in /lib/modules/‘uname -r’. We can scan
this directory and select a host module that satisfies the
following criteria:

! It contains a symbol with an _fops suffix in the .data
or .rodata section, which indicates it has a struct

file_operations available.
! It contains symbols with _read and _llseek suffixes,

with relocation entries into the struct file_opera-

tions. This is necessary for us to successfully patch the
struct file_operations.

! It imports the symbols register_chrdev and
copy_to_user, which the parasite needs to register
the file operations struct with a major number and copy
data to user buffers when called for read.

If we find such amodule on the target we can load it into
memory, inject the acquisition module, hook the re-
locations and then pass it to the init_module system call
for linking into the kernel.

Fig. 6. Relocation hook of module->init.

Fig. 7. Relocation hook of struct file_operations.
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Implementation of acquisition module

As mentioned in Section Requirements for a Stable
Approach, it is important that the memory acquisition
module imports as few kernel symbols as possible. While it
is possible to employ the same technique for other data
structures as used on struct module and struct file_opera-
tions, this increases the requirements on the host module.

For each additional API we want to use we add a de-
pendency that must be satisfied by some module on the
target. This decreases the number of suitable modules,
reducing the chance of finding a suitable host.

We have developed a minimal physical memory acqui-
sitionmodule, which only relies on the register_chrdev
and copy_to_user symbols. The module is based on the
pte_mmap library for mapping memory without kernel
support (Stüttgen and Cohen, 2013). This is accomplished
by directly editing the page tables andmanually remapping
parts of the modules data segment to the desired physical
page. A few other tweaks were necessary to remove symbol
dependencies.

Commonly, memory acquisition modules perform I/O
range checks in kernel mode by parsing the iomem_re-

source tree (Sylve, 2012; Cohen, 2011). However, this re-
quires knowledge of the struct resource layout. We
removed this functionality from the kernel module, and
leave the detection of physical memory layout to the user
space imaging tool. Typically this can be determined for
example by parsing /proc/iomem or using pci introspec-
tion (Stüttgen and Cohen, 2013).

The original pte_mmap also used the pre-
empt_disable and preempt_enable symbols to ensure
the modules thread can’t be interrupted and resumed on
another CPU. Because the TLB of another CPU might still
contain the old mapping for the remapped page, this could
result in a corrupted image. Use of these symbols implies
we would have to find a valid version magic on the target,
which we don’t want to rely on. We have replaced them by
simply using the cli/sti instructions to disable interrupts
for the brief period of remapping and copying a page.

We also removed debug logging from themodule, as not
every suitable host module might import printk.

Furthermore, we removed all dynamic memory alloca-
tion from the pmemmodule, and placed all data structures
into the data segment. This even allows us to get rid of the
kmalloc, vmalloc, kfree and vfree symbols, as each
module might use a different memory allocation API and
we don’t want to limit our selection in target modules this
way.

Another important detail we discovered when trying to
make a module as version independent from the running
kernel as possible is config options affecting APIs. For
example the copy_to_user API is an inline function
calling _copy_to_user after performing some debug
bookkeeping on kernels with config option CON-
FIG_DEBUG_ATOMIC_SLEEP enabled (on kernels newer
than 3.0, older kernels have CONFIG_DEBUG_
SPINLOCK_SLEEP).

Compiling in an environment where this option is
enabled will result in a symbol dependency that kernels
compiled without it can not satisfy, thus limiting the scope

where the module can be successfully loaded. Also this
causes problems when scanning for suitable hosts, as they
import _copy_to_user when this option is enabled and
copy_to_userwhen compiled without it. We have solved
this problem by explicitly calling _copy_to_user in our
module, and modifying the symbol table to use the correct
one depending on what the host uses. Since copy_-

to_user essentially calls _copy_to_user, this is doesn’t
affect the codes correctness or stability.

Finally, the build environment needs to be slightly
tweaked, because some configuration options trigger
dependencies on symbols that might not be available
on the target system. For example, if the CON-

FIG_FUNCTION_TRACER option is enabled, all functions
will call the symbol __fentry__ at the beginning to
enable ftrace functionality in the kernel. Any module
compiled with this will depend on the __fentry__ sym-
bol which is not available on kernels without ftrace.

Evaluation

We have evaluated on multiple Linux distributions and
kernel versions to provide data on how big the difference in
kernel version can actually be while still being able to
obtain a physical memory image. We compiled our parasite
module on an Ubuntu system with kernel 3.8.0-34. We do
not believe this technique will work on 2.4 kernels due to
massive changes in LKM loading and relocation architec-
ture, so we did not test these.

We have tested our module on six different kernels and
distributions as shown in Table 1. The number of available
modules was always quite large. All tested systems had a
number of suitable modules available, with newer kernels
providing 14–15 different suitable host modules.

Our techniquewas successful in acquiring memory from
all tested systems without crashes or any other major
problems.

Conclusion and future work

We have developed a physical memory acquisition
kernel module and an LKM infection engine that, once built
in our environment, can be loaded on any Linux kernel
between 2.6.38 and 3.10, regardless of configuration or
compiler options. Testing shows our approach has very
little impact on system stability and provides reliable ac-
cess to physical memory. This simplifies memory forensic
procedures significantly and allows for physical memory
acquisition even on systems where kernel headers are not
available. It also minimizes the impact on the target system,

Table 1
Host modules by kernel version.

Kernel version Modules available Modules suitable

2.6.27 (fedora 10) 1746 4
2.6.38 (fedora 15) 2280 14
3.1 (fedora 16) 2384 14
2.6.24 (ubuntu 8.04) 1939 6
3.8 (ubuntu 12.10) 3708 14
3.11 (ubuntu 13.10) 3957 15
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as there is no need to install a build environment and
compile software on the system that is to be analyzed.

However, one problem remains. For sophisticated
analysis of the acquired memory dump we need to gather
information on symbols and data structures. The Volatility
project for example refers to this as a profile. This profile is
usually built by compiling a module with DWARF infor-
mation for the exact kernel version on the target, which is
then parsed to extract struct layout and symbol informa-
tion (Hale, 2013).

When the kernel version and configuration is not
known or available, this is not possible. Further work can
utilize the information gathered from existing Linux kernel
modules’ relocation information to build a partial profile
for the target system. By extracting and parsing this infor-
mation we can get an understanding of the layout at least
parts of certain structs. With this knowledge we can build a
partial profile without having access to kernel headers and
configuration files.

We also want to port the relocation hooking library to
ARM and do some tests on Android. Because phone vendors
usually don’t publish their exact kernel config and sources
this is a very interesting use case andmorework is certainly
required (Sylve et al., 2012).
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