72DFRWS

DIGITAL FORENSIC RESEARCH CONFERENCE

A Scalable File Based Data Store
For Forensic Analysis

By
Flavio Cruz, Andreas Moser and Michael Cohen

From the proceedings of
The Digital Forensic Research Conference
DFRWS 2015 EU
Dublin, Ireland (Mar 237- 26%")

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics
research. Ever since it organized the first open workshop devoted to digital forensics
in 2001, DFRWS continues to bring academics and practitioners together in an
informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,
annual conferences and challenges to help drive the direction of research and
development.

http:/dfrws.org

Digital Investigation 12 (2015) S90—-S101

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

A scalable file based data store for forensic analysis

@ CrossMark

Flavio Cruz ®*, Andreas Moser °, Michael Cohen P

4 Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
b Google Inc., Brandschenkestrasse 110, Zurich, Switzerland

ABSTRACT

Keywords:

Distributed database
Incident response
Sqlite

Evidence analysis
Distributed computing

In the field of remote forensics, the GRR Response Rig has been used to access and store
data from thousands of enterprise machines. Handling large numbers of machines requires
efficient and scalable storage mechanisms that allow concurrent data operations and
efficient data access, independent of the size of the stored data and the number of ma-
chines in the network. We studied the available GRR storage mechanisms and found them
lacking in both speed and scalability. In this paper, we propose a new distributed data store
that partitions data into database files that can be accessed independently so that
distributed forensic analysis can be done in a scalable fashion. We also show how to use
the NSRL software reference database in our scalable data store to avoid wasting resources
when collecting harmless files from enterprise machines.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Digital Forensics necessarily deals with the storage,
manipulation and exchange of large quantities of data, from
disk images, memory images, to logical objects such as files,
and analysis results (Garfinkel, 2010). In addition, practi-
tioners do not only need to store large quantities of data,
but they also need to be able to analyze it and ensure it can
be easily exchanged.

Traditionally, proprietary storage formats such as the
Eye Witness Format (EWF) have been developed to store
evidence in structured containers (Guidance Software,
2014). Other proposals facilitate the free interchange of
data, one example is DFEXML which stores digital forensic
information within an XML schema (Garfinkel, 2012).

The Advanced Forensic Format 4 (AFF4) was initially
proposed as an interchange format for digital evidence
(Cohen et al., 2009). The AFF4 proposal is essentially an
object data store — objects are defined with appropriate
behaviors and these are stored in the evidence file. The

* Corresponding author.
E-mail address: flaviocruz@gmail.com (F. Cruz).

http://dx.doi.org/10.1016/j.diin.2015.01.016

original AFF4 paper describes a data-at-rest file format
centered around the Zip archive format and a number of
objects with predefined behaviors (such a Containers,
Streams etc). These objects are instantiated through a
central Resolver which abstracts file storage details from the
application.

The GRR Rapid Response (GRR) framework is a live
forensic and incident response framework constructed
using the AFF4 technology (Cohen et al.,, 2011). Rather than
operating on static evidence files, the Resolver in GRR is
implemented as an abstraction to a NoSQL data store. The
application then uses the Resolver to permanently store
AFF4 objects inside a NoSQL data store, while the rest of the
application only deals with high level objects. NoSQL
technologies are becoming increasingly popular in forensic
analysis (Wen et al., 2013) since they offer more flexibility
and scalability than relational databases (Parker et al.,
2013).

The initial implementation of GRR was based around the
proprietary BigTable technology (Chang et al., 2008) and
demonstrates impressive scalability in remote response of
very large numbers of machines. In the open source version
of GRR that has since been released, the framework sup-
ports a number of interchangeable data store backends. By

1742-2876/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

E Cruz et al. / Digital Investigation 12 (2015) S90—S101 S91

default, GRR uses a backend based on MongoDB (MongoDB,
2014). Other options include for example a MySQL (MySQL,
2014) backend. The scalability of the GRR system heavily
depends on the performance of the data store technology,
so choosing the underlying technology is extremely
important.

In this paper we present a new data store backend that
can be used as a storage layer for the AFF4 Resolver. We
analyze the access patterns of AFF4 objects focusing spe-
cifically on the way that the GRR system utilizes the AFF4
space. By tailoring the data storage to the specific use case
presented by GRR and AFF4, we implement a data storage
layer that significantly improves the overall scalability of
the GRR system in general.

This paper is organized as follows: First, we present the
AFF4 object model and specifically examine how the GRR
system utilizes the AFF4 abstraction. By analyzing the
specific access pattern we propose a novel implementation
of a NoSQL data store engine based on the SQLite database
technology. We then evaluate the new data store in com-
parison to previous data stores. Finally, we utilize the new
data store to perform a typical forensic analysis step —
collect all the executable files on a Windows system which
are not already known by the NSRL software reference
database (NSRL, 2014b). The use of NSRL and other hash de-
duplication techniques has been demonstrated in the past
to dramatically increase the efficiency of evidence collec-
tion and analysis, particularly for remote forensic applica-
tions (Rowe, 2012; Fisher, 2001; Watkins et al., 2009).

The AFF4 object model

The Advanced Forensic Format 4 (AFF4) was initially
proposed as an interchange format for digital evidence that
stores forensic data in object abstractions. All AFF4 Objects
have a type, which specifies their behavior (e.g. An object of
type AFF4Stream can be used to present an abstract stream
interface), and a number of data attributes that contain
additional information about the object (Cohen et al,
2009).

Every AFF4 object is identified by a Universal Resource
Name (URN) which specifies an object uniquely within the
AFF4 namespace. A URN is globally unique within the AFF4
universe and all access to AFF4 objects occurs via the AFF4
Resolver — a central logical factory for AFF4 objects. One can
open, create and store AFF4 objects through the resolver,
without consideration to their actual persistent
serialization.

An important property of the AFF4 design is that the
AFF4 namespace universe is assumed to be incomplete at
any specific time. For example, when one obtains an AFF4
volume containing a number of AFF4 objects, it does not
imply that we know the complete subset of the AFF4 uni-
verse. For example, an AFF4 object may refer to other AFF4
objects which are not necessary stored in that specific
volume (i.e., there may be unresolved external references).
This property allows merging different AFF4 volumes
containing overlapping parts of the AFF4 namespace.
Similarly, it does not make sense to directly enumerate any
parts of the AFF4 namespace (since any specific imple-
mentation can not know the complete space). All AFF4

objects are related via semantic relations and therefore the
AFF4 subsystem does not directly enumerate names, but
must follow existing semantic links.

The following example illustrates this important point.
Consider the logical collection of files on one machine's
filesystem. The container aff4:/C.12345/fs/os/c:/Windows
refers to the Windows directory of that filesystem. If we
want to list the files contained within the Windows
directory, we can not simply query the AFF4 subsystem
directly to enumerate all URNs (e.g. with a wild card of
aff4:/C.12345/fs/os/c:[Windows/*.*). Instead, we must
explicitly store references to all children inside the AFF4-
Volume object aff4:/C.12345/fs/os/c:/Windows itself, which
are then used to retrieve the children of the directory.

The overall effect is that the data store must only sup-
port access to AFF4 URNs by exact name, rather than pro-
vide enumeration strategies. For the use of AFF4 in the GRR
application this means that the application itself must
maintain internal indexes to support object enumeration in
cases where this is needed. For these reasons, modern key-
value store NoSQL databases are a particularly good fit for
serving the needs of the AFF4 data model (Grolinger et al.,
2013).

The GRR rapid response framework

The GRR Rapid Response (GRR) Framework is a modern
incident response and remote forensic tool designed to
perform live forensics on a large number of systems. The
GRR framework is outlined in Fig. 1. Although the details of
the system are specified elsewhere (Cohen et al., 2011), the
most pertinent point of this architecture is that GRR is
constructed over the AFF4 subsystem. In practice, this
means that all data stored in the GRR data store consists of
serialized AFF4 objects. The AFF4 Resolver which allows

Clients

Frontend Workers

=

AFF4 Subsystem

>

Data Store

Fig. 1. The GRR Architecture. Clients use the HTTP protocol to exchange
messages with the Frontend servers. Frontend servers in turn communicate
with the AFF4 subsystem to queue messages in the data store. Workers
communicate with the AFF4 subsystem in order to perform analysis tasks
and schedule new operations on the clients. Note that all parts of the GRR
framework interact with the AFF4 subsystem, which in turn abstracts access
to the data store.

S92 E Cruz et al. / Digital Investigation 12 (2015) S90—S101

accessing those objects is implemented as a data store
abstraction, which can be switched between a number of
backend implementations.

Section 4 details all the requirements from a data store
implementation but Fig. 1 already gives a clear indication
that since the data store underlies all operations in GRR, it
is critical to overall system performance and scalability.

Data store requirements

We summarize the functionality that a data store must
implement in order to support an AFF4 Resolver:

e Single object access. Objects are only accessed by directly
specifying their URN. The data store does not need to
enumerate multiple objects at a time and all data store
methods only operate at object level. This property
simplifies the partitioning of data because operations
never deal with multiple objects.

e Support for both asynchronous and synchronous operations.
Synchronous operations will block until the data store
returns the results, while asynchronous operations will
be scheduled to be performed at some point in the future.
Asynchronous operations follow an eventual consistency
semantics and any subsequent data store operations may
not reflect past asynchronous operations. Optionally, the
data store provides a Flush() operation hat will wait until
all asynchronous operations are fully completed.

Strictly speaking, asynchronous operations are not a
prerequisite per se and could be replaced by just using their
synchronous equivalent but experiments have shown that
when processing large bulk inserts of data into the storage
layer, asynchronous operations improve program concur-
rency and provide a huge performance advantage. Thus, it
comes as no surprise that GRR makes heavy use of asyn-
chronous operations. Nevertheless there are some opera-
tions of the GRR system which require synchronous
operations to guarantee globally deterministic ordering.

e Object locking. The data store does not need to specif-
ically support object locking, but must support atomic
read-modify-write semantics. The AFF4 framework
provides co-operative locking semantics built upon this
feature.

e Concurrency. The data store must be concurrently
accessible by multiple processes and threads.

e Timestamped attributes: The data store must maintain
different versions of object attributes.

Since GRR is designed to scale horizontally, the data
store APIs are specifically geared towards networked data
stores. In such data stores, interactions occur over the
network and, hence, may carry long latencies. The data
store API allows for multiple operations to be specified over
the same API call in order to amortize network latencies. So
for example, it is possible to retrieve multiple AFF4 objects
simultaneously, write multiple object simultaneously, etc.

GRR was initially released as an open source project
with data store implementations based on two off the shelf,

general purpose database technologies, namely MySQL
(MySQL, 2014) and MongoDB (MongoDB, 2014). These
database technologies are mature and perform very well
for general purpose applications in multiple use cases.
However, the design of databases is a compromise between
performance and features. Since these database technolo-
gies are general, they necessarily perform sub-optimally for
the GRR needs. For example, Section 2 describes the special
optimization afforded by the AFF4 object model (namely
that there is no need to maintain efficient enumeration
capabilities in the data store). This optimization is not uti-
lized by the general purpose data stores. Other possible
backends for GRR would be distributed and clustered fil-
esystems such as GlusterFS (GlusterFS, 2014) and pNFS
(pNFS, 2014), however those lack timestamped data and
the ability to perform complex queries.

It therefore makes sense that a custom data store,
optimized to take advantage of the unique data access
pattern of the AFF4 space will outperform the general
purpose databases and filesystems.

SQLite data store

The data stores provided by GRR exhibit severe
limitations:

1. Horizontal scaling limitations. As more workers are
introduced to a GRR system, the capacity of each single
worker is reduced due to contention at the data store.

2. Storage limitations. Since the existing data stores rely on
a central data base server, increasing storage demands
scaling the storage on a single server which is only
possible to a certain extent.

We reasoned that many of the performance limitations
noted above stem from the fact that the backend database
tries to store all URNs in the same disk storage file, hence
leading to file lock contentions. Our approach is to
completely divide the AFF4 namespace into independent
storage files. That is, we shard the AFF4 objects by their
URNSs across multiple containers.

This approach is shown in Fig. 2. Each URN is mapped
into a separate SQLite file, and a specific handler is used to
open it. The connection pool ensures that recently used

SQLite Data Store.

Connection
URN Map Pool

SQLite File 1

SQLite File 2
SQLite File 3

Fig. 2. An overview of the SQLite data store. For each URN presented to the
AP, the data store uses a URN Map to resolve it to a SQLite file name on the
local file system. The data store then selects from a pool of connections a
handler to manipulate that specific SQLite file.

E Cruz et al. / Digital Investigation 12 (2015) S90—S101 S93

files can be immediately reused without needing to re-
open the file.

Organization

The SQLite data store is implemented as a directory of
database files, where each file is a SQLite (SQLite, 2014b)
database. We map the entire AFF4 namespace into this
directory and each AFF4 object is mapped to exactly one file
(even though one file can contain multiple objects). It is not
possible for the attributes of an object to be split among
multiple files. This simplifies operations since the data
store always knows exactly where to apply a given
operation.

Each database file contains two tables: tbl, which maps
a triplet (object, attribute, timestamp) to a value; and sta-
tistics, containing information about the database file. Fig. 3
shows the tables in each file. A value can either be a string,
integer or a blob of data.

An index is added for the triplet (object,attribute,
timestamp) so that we can efficiently look up by object, by
object and attribute, or by the full triplet. This index also
acts as a primary key since there cannot be multiple values
for the same triplet.

Mapping the AFF4 namespace

Objects such as aff4:/C.34a62f06/boot.ini need to be
mapped to a unique file. The mapping algorithm uses a
mapping configuration that is initially setup when the data
store is created. A configuration is a list of regular expres-
sions that maps objects to some specific path in the data
store directory. The resulting path is always a substring of
the object without the aff4:/prefix.

Let's consider the following configuration:

1. (?P<path>C.{1,16}?)/.*
2. (?P<path>hunts/[]]+).*
3. (?P<path>blobs/[/]+).*
4. (?P<path>[]]+).*

In order to assign a path to an object, the regular ex-
pressions are applied in order until one of them matches.
We then retrieve the named group path that represents the
path of the file.

For the object aff4:/C.4ecf7¢33d24129c2/fs/os/boot.ini,
the first regular expression will apply and return the path
C.4ecf7c33d24129c2. Note that the first regular expression
forces all objects related to a GRR client to be stored in the
same file. The third regular expression maps URNs of the
form blobs/ab29cf to a file ab29cf in the directory blobs.

tbl —
‘subject varchar statistics
‘predicate varchar *name varchar
*timestamp big integer °value blob
°value blob

Fig. 3. SQLite database tables. Table tbl stores object attributes while table
statistics stores statistics about the database file.

The sharding strategy is specified by the URN map. By
choosing an appropriate strategy we must balance lock
contention, file handle limitations and disk overheads. For
example, in one extreme, we might map each URN to a
separate database file. In this kind of configuration, files
stay relatively small and operations on different URNs do
not involve lock contention. However, in practice, there are
limits on the total number of file handles a process may
have so this will lead to a lot of opening and closing of
database files. The overall disk usage will also be higher
than necessary, since each SQLite file contains bookkeeping
overheads.

At the opposite extreme, all URNs might be stored in the
same file. This configuration requires less disk space but
suffers from lock contention since all operations must lock
the same table for updates.

A good mapping configuration creates a relatively high
number of evenly sized files and groups related objects into
the same file. This improves database locality, since the
probability of doing an operation on an already opened file
is high. It is also important that the number of queries per
file stays relatively uniform since if one file is accessed too
often compared to other files, throughput will again be
reduced due to lock contention.

This is the reason we chose to implement the URN map
as a configurable map of regular expressions. It is the
application specific knowledge that is used to create a well
tuned URN map: Frequently used parts of the AFF4 URN
space are sharded into more files than less used subsets of
the URN namespace.

SQL queries

The availability of the SQL language to perform queries
on the database file makes it easy to implement the oper-
ations described in Section 4. Each operation that modifies
the database creates a new SQLite transaction that is
committed after all the commands are applied. For
instance, a MultiSet operation may generate many INSERT
commands — one per attribute that needs to be written —
that are committed as a single transaction.

Concurrency and caching

SQLite supports multithreading and multiprocessing
concurrency, which makes it possible to have different
processes running queries on the same file at the same time
(SQLite, 2014a).

Since there may be many SQLite files in the database
directory, our implementation only keeps a limited number
of them opened at any given point. There is a local cache of
SQLite connections to speed up lookups but the cache is
limited in size, closing off old connections to files that are
no longer used.

Database maintenance

By default, SQLite database files will grow as new re-
cords are added. If a record is deleted however, the freed
record is kept in the file to be reused for future inserts. This
means that the database file is never reduced and with

S94 E Cruz et al. / Digital Investigation 12 (2015) S90—S101

time, accesses will become slower with many interleaved
INSERTs and DELETESs. To solve this, our data store runs the
VACUUM (SQLite, 2014c) operation on files that have too
many free records.

Typically, running VACUUM on a database might lead to
a slow down as that file is compacted. However, since each
SQLite file only contains a small subset of the URN space,
the slowdown only affects operations on those objects
while the rest of the system performs normally.

Distributed data store

While the SQLite data store has shown to perform well,
it still shares one of the limitations with the existing data
stores — the storage capacity is limited to a single machine.
Even worse, the processes that use those database files
must also run on the same machine since SQLite does not
work well when files are stored on a remote filesystem like
NFS (Sandberg et al., 1988).

As explained in Section 2, the AFF4 specification allows
each AFF4 storage volume to only store a subset of the total
AFF4 URN namespace. This allows for efficient sharding of
the AFF4 namespace between multiple servers. By imple-
menting a distributed data store that is able to run on
clusters of computers (Buyya, 1999), we are able to greatly
increase the storage capacity of our initial data store.

Architecture

An overview of the distributed data store architecture
is shown in Fig. 4. Each process using the data store em-
beds a data store client library (E.g. the GRR frontend
server, the GRR worker or the GRR GUI/CLI console). On
the left, we have the data store server group that is
composed of several data store servers and one data store
master. The data store server group manages a database
directory and each data store server manages its own
shard. The data store master, itself a regular data store
server, additionally performs special operations such as
bootstrapping, data store server registration and data
store maintenance.

The specification of a data store server group includes
the addresses and ports of each server and an assignment
of one of the servers with the data store master role. This
specification is used by the data store master to create a
data store server configuration. The configuration is stored
in each data server database and contains not only the
addresses and ports of all the servers, but the data store
server shard map. On first execution, the data store
master creates the data store server configuration and
stores it in its own database. Every time a data store
server starts, it registers with the data master and receives
a data store server configuration that is also stored into
the database.

Communication between data store servers and the
data store master is done using HTTP. The data store master
contacts the data store servers for maintenance tasks, while
the data servers contact the data store masters for regis-
tration and for periodic pushes of data store server statis-
tics. These statistics include server load, database size and
number of files in the server.

GRR Process

GRR AFF4 Data Store
Library | Abstraction Client
Socket Socket
HTTP
Data Master 1 |« »| Data Server 2
A
HTTP HTTP
\ 4

Data Server 3 Data Server 4

Fig. 4. Overview of the distributed data store. GRR processes use the data
store client in order to make requests to the data store servers. Communi-
cation between data servers is done using HTTP, while streaming HTTP is
used by the GRR processes in order to efficiently perform data store
operations.

Mapping files to servers

When a client needs to use the distributed data store, it
has to know which data store server to contact for a given
object. That data store server, in turn, needs to map the
object to a database file on its filesystem. The latter prob-
lem was already addressed in Section 5.2 through the use of
the URN Map. The former problem (mapping URNSs to data
store servers) therefore, aims to uniformly shard database
SQLite files among the available data store servers.

The data store server mapping therefore maps from
SQLite filenames to the data store server which hosts this
file. For this, we hash the SQLite filename path (obtained
from the URN Map) to a 64 bit integer and then use the
data store server mapping to locate the server hosting this
file.

The data store server mapping contains, for each data
store server, an interval in the range [0,254]. The server
intervals do not intersect and the union of the intervals is
exactly [0,2%4]. This mapping technique is known as
consistent hashing (Karger et al., 1997) and allows us to
smoothly add or remove data store servers. In Fig. 5 we
present an example data store server mapping with four
data store servers along with some objects. The range was
uniformly distributed among the four data store servers
and several objects were mapped into different servers by
computing the hash value of their path. Since the distri-
bution of the hash values is practically random and uni-
form, we expect the files to be distributed evenly among
the servers.

E Cruz et al. / Digital Investigation 12 (2015) S90—S101 S95

0x00000000

aff4:/C.34a62f06/fs/os/boot.ini

b\ob5/54ab2365/ /C.34362f06/
C.87f541a0

aff4:/C.87f541a0/fs/os/cmd.exe

aff4:/blobs/54ab23c5

/

OXBFFFFFFF OX3FFFFFFF

0x7FFFFFFF

Fig. 5. Data store server mapping for four data store servers. The hash value
distribution is uniformly distributed among the hash range, resulting in
servers with an even number of files.

When a client starts using the data store, it randomly
picks a data store server and asks for the data store server
mapping. The mapping will subsequently be applied to all
data store operations. The advantage of our design is that
the data store master is not the sole owner of the mapping
and is not responsible for mapping objects to data store
servers. The clients only need the mapping to decide which
data store server to use.

Fig. 6 shows how n URN finds its way from the client to
the SQLite database file residing in the data store server.
The mapping configuration is used in the Server Map and in
the URN Map.

Operations

Every time a client needs to perform an operation on an
object, it resolves the object to the data store server
responsible for it. If the client does not have a communi-
cation channel already setup, it contacts the data store
server and asks for a new data store session. Although the
initial handshake is performed using the HTTP protocol, the
data store server immediately changes to a faster streaming
protocol.

A data store session is made of N pending data store
requests and M data store replies from the server. A data
store request is simply a data store operation presented in
Section 4 and a data store reply contains the results of each
data store request, including potential errors.

The use of streaming protocols for communication al-
lows the client to write asynchronous data store requests

Data store client

Server Map Server Manager

—— Server 1
Consistent
Hashing Server 2

Server 3

into the server and then read the replies later. This im-
proves the throughput of the system since there is no need
to wait for the data store server response. For synchronous
operations, the client will wait until it receives a reply for
that operation.

In order to improve the concurrency of the system, the
client maintains up to C communication channels to a
single data store server, where C>0. Since some
communication channels may have pending requests, the
client will select the channel with the least number of
pending requests in order to get a reply faster. Fig. 7
shows a client with three communication channels to a
data store server. The first channel has three operations
and the data store server already replied to the two
MultiSet requests. The second channel has two pending
requests and the third channel has no pending requests,
so the client decides to use this one for doing a Multi-
ResolveRegex (a synchronous request that retrieves at-
tributes of a given object, waiting for the results before
returning).

Adding servers

After the data store is used for a while, many files will be
created on each server, requiring the partitioning of more
hardware. The problem with adding more servers is that
the datastore server mapping will need to be adjusted as
files are re-sharded onto the new server.

The distributed data store includes a data manager that
allows changes to the data store server group. One of the
use cases is adding new servers. Adding new servers works
in two phases. First, a new server is added to the configu-
ration but with an empty server range. This is followed by a
rebalance phase, where datastore server map intervals are
re-defined.

The re-balance operation is essentially a two-phase
commit protocol (Mohan et al., 1986) and is orchestrated by
the manager that communicates with the data store mas-
ter. The data store master, then communicates with the
whole data server group in order to synchronize the op-
erations. A re-balance operation is thus done as follows:

1. Configuration Phase: The manager builds a new data
store server configuration with the new ranges.

2. The manager sends the new configuration to the data
store master and data master asks the data store servers
to compute how much data needs to be moved around.

Data store Server

Connection
Pool j
URN Map sqQLite File 1

=

\ SQLite File 2
SQLite File 3

Fig. 6. From a URN to the database file. After mapping n URN to a specific data server, the data store client sends the URN to the server, where it will be mapped to

an SQLite database file.

S96 E Cruz et al. / Digital Investigation 12 (2015) S90—S101

DeleteAttributes \\

Client

oK oK
/ MultiSet | MultiSet
Data Server MultiSet | DeleteAttributes

MultiResolveRegex

/

Fig. 7. Performing asynchronous operations on a data store server. Each data store client may create up to N communication channels in order to buffer many

data store operations at once.

3. The data store servers will go through their database
directory, map the files with the new configuration, and
check if the file will stay in the same server.

4. Commit-Request Phase: The manager tells the user
how much data will be moved. Once the user confirms,
the manager will ask the data store master to force the
group to copy the files to their eventual location. This
phase is shown in Fig. 8.

5. Each data store server will receive a copy request and
will then send the misplaced files to the new servers.

6. At this point, the new files will be stored in a temporary
directory that represents a database transaction.

7. Commit Phase: Once all copy operations have been
completed, the manager asks the data store master to
perform the transaction.

8. Data store servers will move the files from the trans-
action directory to their correct location and those files
that were sent are removed.

9. The operation completes.

If the operation fails during the Commit Phase, the data
store is still able to recover from this error. The transaction
can simply be resumed by forcing all the data store servers
to move the remaining files from the transaction directory

into the database directory, guaranteeing a clean data store
state.

The use of consistent hashing allows us to move a
limited number of files, since the server ranges will only
change by a fraction whenever we add new servers.

Removing servers

Removing a data store server from the group can be
done in two phases. We first change the shard ranges of the
target server to be empty and then apply a re-balance
operation with the new mapping. Once the files are fully
moved, the data store server can then be safely removed
from the server map altogether.

Experiments

We executed our benchmarks on an Intel(R) Xeon(R)
CPU E5-1650 0 @ 3.20 GHz with 12 cores and 32 GB of RAM.

Micro-benchmarks

In this section, we present a set of micro-benchmarks
that measure the raw performance of the data store when

File C.34a62f06.sqlite

Manager »| Data Master 1 >

Copy files
»

Data Server 2

Copy files

Copy files

Data Server 3

Data Server 4

File C.a764b290.sqlite

Fig. 8. Re-balancing the data store by copying files from server to server. The manager requests the data store master to coordinate the operation and the data
store master makes sure all the data store servers send their files to their correct data store server.

E Cruz et al. / Digital Investigation 12 (2015) S90—S101 S97

performing a sequence of data store operations. We wrote a
series of scripts that create a data store and initially fill it
with a large number of AFF4 objects and corresponding
attributes. Afterwards, they apply predefined sequences of
read, update and delete operations. It is important to note
that those scripts are single threaded and we therefore do
not expect to see performance gains when using multiple
data store servers.

We measured the time taken and total data store disk
usage for each data store at each checkpoint the test suite.
The data stores include MySQL, MongoDB, the basic SQLite
data store and the distributed data store with up to four
data store servers.

We now present three scenarios used in the
benchmarks.

Many objects, each object having few attributes

Fig. 9 presents the results of a benchmark where the
datastore is filled with 25,000 AFF4 objects, each having at
most 3 attributes each. Each attribute has 3 versions and
the attribute value is only 100 bytes long. The 25,000 ob-
jects are distributed within the namespace of 500 GRR
clients (i.e. 500 SQLite shards). The Values line represents
the total number of attribute values in the data store with
the number of iterations.

Running Time

i i 4140000
500 &=A MySQL — Values
==' MongoDB 4120000
s =x SQLite
400p| = =+ HTTP 1 o000
®-0 HTTP2 P
— v
2 of]
Lol BE HTTP 4 » _» 480000 g
[J] T (= - S
€ . T e ©
= . g . {60000 =
200F " B L.
" g -
. ol 40000
¥ 07 # 1
: o
100F o R
' Ry 420000
[% amw@==" e ===
“"ﬁ)(----X"'-x--
23S admm =" . L n
% 20 40 60 80 0
Iteration
Data Store Size
- j j - 4140000
sof | & =A MySQL — Values
ol T MongoDB 120000
% =x SQLite
60 1100000
"
_ []
g 50r ' {80000 g
;: ML =
401 [] ©
N | >
n s 60000
30f : en -pr .-
. X-.--.>@...—)< 140000
207:' x_;--g(----'
‘l: ‘,:‘...-.‘....‘---.‘-...‘--..&-- -{20000
10w /o o
w/e e
*
*
% 20 20 60 80 0

Iteration

Fig. 9. Many objects with few attributes.

After the database is filled with all the objects, we
perform several data store operations. The Values line in the
plot indicates if new values were added or removed. When
the line is parallel to the horizontal axis, it means we are
performing read operations of random objects. At the end
of the benchmark, we remove all the objects from the data
store and the number of values goes back to 0.

MongoDB takes a long time to complete (more than
700 s) and SQLite is the fastest, taking under 100 s to
complete the full benchmark. The distributed data store,
represented in the plots as HTTP, performs similarly to
MySQL and shows very little differences in performance
when using either one, two or four data store servers. This
is reasonable since the micro-benchmarks are sequential
(i.e. there is no concurrency).

In terms of size, MySQL has the smallest data store size
(only 17 MB), while SQLite comes up in second place with
30 MB. The SQLite data store creates 500 shard files, which
represent the 500 GRR clients. The distributed data store is
not shown in the plots since it has the same size as the
SQLite data store.

Few objects and many attributes

For the second benchmark, presented in Fig. 10, we start
with a data store with only 100 objects and for half of them,

Running Time

1000

==+ MongoDB 200000
800f | >« =x SQLite
+=+ HTTP 1
@®-0 HTTP2 £

600 -
O-E HTTP 4 Ke

4150000

%
9]
=
2 ©
100000 >

Time (s)

400

50000

]
]
]
]
]
]
]
]
U
200 .
U

.
[

ot on 1288 %
0 10 20 30 20 50
Iteration

Data Store Size

160
&=-A MySQL — Values
140l| ==' MongoDB 1200000
% =x SQLite
120-
EEE e L EE T T S
@ 100 H "
s emmmm]
- 1] 3
@ 80 ! ©
N - 1100000 >
m "
60F .
L]
1]
-
aor o e o » {50000
N PP CEEEE SEEEF CEEEE CEEEN
20F o= CLANS
. : st ‘?
e ® %
- ® L L L L L 0
(] 10 20 30 40 50

Iteration

Fig. 10. Few objects with many attributes.

S98 E Cruz et al. / Digital Investigation 12 (2015) S90—S101

we add 1000 attributes. The 100 objects are distributed
among 5 GRR clients (i.e. 5 database files).

Once again, SQLite is the fastest. However the gap be-
tween SQLite and MySQL has closed when compared with
the previous micro-benchmark. Interestingly enough, the
distributed data store is now faster than MySQL. The dif-
ferences between them increase during the first read
operation of the database (around iteration 30—40), indi-
cating that MySQL performs slow reads once the database
is filled up with many values.

In terms of size, both SQLite and MySQL have very
similar data store sizes. Since SQLite is only using 5 files,
there is little overhead wasted on many database files.
However, as noted, the performance dropped slightly.

Many objects and many attributes

Finally, in Fig. 11, we present the last scenario, where we
have 500 GRR clients with 50 AFF4 objects each. Each ob-
ject has 50 attributes. This is the longest running micro-
benchmark since the total number of attribute values is
the highest.

The SQLite data store outperforms all other data stores
in terms of run time, but still uses more storage than
MySQL. We do not show the MongoDB data store in this
plot since the MongoDB data store was unable to complete

Running Time

- ; ; ; ;
2000000
&=A MySQL — Values
2000 ="' MongoDB
> =x SQLite
=t HTTP1 1500000
1
3000, | @ =@ HTTP 2 Lot
— .
) m-m HTTP4 oA g
) T Lo’ -1 S
' » 41000000 15
E 2000} » -4 ot e s
. . &« .58
[] G‘ °
’ ’
b a’ e-n7lE
' o L8 500000
1000 R %
X . ot
' PYSGPR |
" * .
. "- - -P -
% 100 200 300 400 500 600 0
Iteration
Data Store Size
2000000
&=-A MySQL — Values
350t
== MongoDB
300l | =< SQLite
1500000
2500 REREELLEEES 6 mmtmKm S
m Ka 0
= R Ry CEEE VS E LR CE R YR [}
= 200} oA =)
) o 1000000 g
E L4 'l
L4
n 150f " "
\A"'
100 A 500000
"
e, L/
50F t,'
0 0
0 100 200 300 400 500 600

Iteration

Fig. 11. Many objects with many attributes.

this micro-benchmark in a reasonable time. We also note
that the distributed data store is slightly faster than MySQL.

End to end benchmarks

The previous section examined how the data stores
perform when running the micro-benchmarks. However, in
practice, the overall performance of the system depends on
other factors than pure data store performance. In order to
get a more realistic feel for the scaling performance in
typical system operation, we designed a set of end to end
benchmarks where we run the GRR system with 100 GRR
clients connected and then perform multiple Flows (Cohen
et al.,, 2011) on the clients. All the GRR processes, including
the GRR clients, are executed on the same machine. To
better stress the data store, all the flows are started at the
same time. We register the time elapsed between flow
creation and flow completion.

GRR supports the use of multiple frontend servers,
which communicate with the clients, and multiple
workers, which process work stored in the data store by the
frontend servers. Theoretically, increasing the number of
frontend servers and workers should reduce the time
needed to complete all the flows. However, if the system is
not scalable, run time will only reduce slightly. For these
benchmarks, we use three configurations:

1. A single frontend server with one worker
2. Two frontend servers and two workers
3. Four frontend servers and four workers.

Fig. 12 presents the results of the end to end bench-
marks for the SQLite, MySQL and the distributed data store.
We do not present the results for the MongoDB data store
since those benchmarks just take too long to finish on that
backend.

The SQLite data store (Fig. 12(a)) is the fastest data store
and one of the most scalable. Most flows are completed
under 100 s when using four frontend servers and four
workers.

The MySQL data store (Fig. 12(b)) shows relatively good
overall speed but poor scalability. While the SQLite data
store is able to reduce the run time in almost half when
using two frontend servers and two workers, the MySQL
data store can only reduce the run time by 25% percent. The
situation gets worse when using four frontend servers and
four workers, since the run time barely improves upon the
previous configuration. The poor scalability of MySQL may
be attributed to the fact that the data store is using a single
MySQL database, which all processes will need to syn-
chronize at every datastore operation.

For the distributed data store, we measured the per-
formance by varying the number of data store servers. We
experimented with one, two and four data store servers
and the results are summarized in Fig. 12(c—e). It can be
seen clearly that there is a clear improvement of perfor-
mance as we add more data store servers. When using only
a single data store server, there is only one process handling
all the requests from the different GRR processes. Even
though the requests are distributed among several threads,

E Cruz et al. / Digital Investigation 12 (2015) S90—S101 S99
wo_SQLite MySQL
A-A 1 worker/ 1 frontend server A-A 1 worker /1 frontend server
700 700
==+ 2 workers /2 frontend servers === 2 workers / 2 frontend servers
so00 | =>4 workers / 4 frontend servers 600t | <=x_ 4 workers / 4 frontend servers
500 500
g g
400 400 -
= = U N
300] 300 A o L “:_
-“.":- (_ﬂ;(:._.u
200 200 . -',..5{"
P
100 100 :}{:- .
. Kow ™
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 40
Completed Flows Completed Flows
() (b)
1 Data Store Server 2 Data Store Servers 4 Data Store Servers
A-A 1 worker /1 frontend server A-A 1 worker /1 frontend server A-A 1 worker/ 1 frontend server
7 - 7 7
==+ 2 workers / 2 frontend servers [®I -+ 2 workers / 2 frontend servers ==+ 2 workers / 2 frontend servers
600 | <= 4 workers / 4 frontend servers 600 | <= 4 workers / 4 frontend servers 600 | <= 4 workers / 4 frontend servers
500 .‘M"“l 500 500
0] Lo ~tt W 0]
Ea00 .m" N -"":><‘~_ A Eaoo e ---d Ea00 4
F o T F ot =
300 ,A ',.o“‘":;é Pide > 300 _n“"' A 300 _,..‘»""‘
o = ‘ oYy
- at? - ,‘ ‘o
200 'A slrese"" 200 o’ s 200 - LI N
e -y e ‘2:::..;(,. —edgenn . o amere et
100:::#"')‘{' 100 ..“‘_.-%".:"')\ . 100 o ,.--'“_“%,,“-.)énwn}(" ==
F Loe® “:".Q‘_ SIS e
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

Completed Flows

(©)

Completed Flows

(@

Completed Flows

(e)

Fig. 12. End to end benchmarks using a different number of frontend servers and workers. As we increase the computing capacity, we expect the data store to
scale and allow the run time of the system to go down almost linearly. In our experiments, only MySQL is not able to scale successfully.

a single data store server process will only have limited
capacity when dealing with multiple clients. A big part of
this problem can be attributed to the Global Interpreter
Lock (Python, 2014) used by the Python language to syn-
chronize multithreaded byte-code execution. However,
these limitations start to disappear as we add more data
store server processes. When using four data store servers,
we see that the performance of the distributed data store
scales very well and the overall run time starts to approach
the SQLite data store and clearly outperforms MySQL in all
configurations.

We also measured the size of the database of each
distributed data store after running the end to end
benchmarks. Table 1 presents the size and number of files
found in each data store server directory. The results show
that the files are evenly distributed across the data store
servers.

Table 1
Size of the data store for each data store server after executing the end to
end benchmarks.

Server Size (MB) # files
Server 1 26 58
Server 2 27 52
Server 3 29 53
Server 4 29 50

NSRL hash de-duplicated file collection

The National Software Reference Library (NSRL) con-
tains metadata about known files present in known soft-
ware packages. Each file entry of the database contains the
cryptographic hash values of the file's content, file name,
file size and the software package containing the file. The
NSRL is commonly used in forensic analysis to exclude
known files from further manual analysis (NSRL, 2014a).

The GRR system already de-duplicates files based on
hashes when retrieving the files from GRR clients. So for
example if the same file is present in different clients, GRR
will recognize that the file hash exists in the data store and
will not retrieve the file from the client — saving band-
width, time and additional storage. By pre-populating the
data store with NSRL hashes it is therefore possible to
prevent GRR from downloading known NSRL files again
into the data store, saving resources.

We created a new type of AFF4 object representing the
NSRL file (This AFF4 object does not have data contents,
only hashes and metadata). During the initial import stage,
we write a single NSRL AFF4 object for each entry. The AFF4
objects are stored into the AFF4 namespace under the
scheme aff4:/files/nsrl/shal-hash. When GRR fetches a file
from the client, it checks if an object exists at this URN, and
decides if the file should be transferred.

Using our local SQLite data store, it took us five hours to
import the complete dataset into a directory of 33 GB in

S100 E Cruz et al. / Digital Investigation 12 (2015) S90—S101

Table 2
Size of the data store for each data store server after importing the NSRL
library.

Server Size (MB) # files
Server 1 8216 1001
Server 2 8739 1065
Server 3 8362 1020
Server 4 8286 1010

size. To split the dataset into many SQLite files, we defined a
URN Map configuration that splits the NSRL hash objects
using the first three characters of the SHA-1 hash value, so
that all the entries that share the first three characters will
be stored in the same SQLite database file. Table 2 shows
the number of files and database size after importing the
NSRL library into a distributed data store composed of four
data store servers. Again, we notice that our sharding
mechanism works very well, with an almost perfect parti-
tioning of data across servers.

We also imported the NSRL library into MySQL and it
took over 3 days, around fifteen times longer than it did
using the SQLite data store. We consider this long import
time and also the following slow data access prohibitively
expensive for day to day use and, thus, we conclude that
our novel data store approach makes utilizing data sets as
big as the NSRL to deduplicate live file collection feasible in
GRR for the first time.

We then applied our pre-populated data store to collect
all executable files residing on a fresh Windows 7 SP1
machine. By manual analysis, we found 1605 executable
files occupying a total of 479 MB of disk space. We intend to
assess how much space and time we save by checking if a
given file is already present in the NSRL library and thus
does not need to be downloaded from the GRR client. We
start a flow on the GRR system that collects all the files
ending with .exe on the Windows client. The client will
hash the files locally and send back the SHA-1 hash value
that is checked against the imported NSRL library. If the file
is found, we do not download the file's content from the
client and do not store it in the data store since it is a well
known file referenced by the NSRL library.

Table 3 presents the results of our collection experi-
ment. Using the NSRL library, we note a 77% reduction in
the number of files fetched from the client machine and a
reduction in the network usage and CPU time that would be
needed to transfer the skipped files. We argue that the use

Table 3

Collecting executable files from a GRR client. When importing the NSRL
library into the distributed data store, we avoid duplicating data by
checking if the file is already referenced by the NSRL library.

Statistic With NSRL Without NSRL
Files found 1605 1605

Files skipped 1245 2

Files fetched 360 1603

Data store size 148 MB 314 MB
Client sent 117 MB 243 MB
Client received 5 MB 8 MB

Client time 293 s 400 s

of our new data store allows us to import large data sets of
useful forensic information that can be used to reduce the
time and space it takes to store new data. Although we have
used only a single client machine, if we had to do the same
forensic analysis on multiple machines, the overall number
of files fetched and stored would be reduced accordingly,
resulting in even greater data de-duplication. Furthermore,
due to our scalability results we showed early one, our data
store can be used to perform concurrent collection of many
machines, speeding up remote forensic analysis.

Conclusions

We have presented a novel distributed data store for
GRR, an incident response framework that uses the AFF4
object model to store and retrieve forensic data. This new
implementation leverages specific properties of the access
pattern exhibited by the GRR application to improve data
processing performance and, by extension, the scalability of
the entire GRR system. As another advantage over the
existing data store implementations, our new approach
also seamlessly shards the data to be stored among a
number of data servers to further increase scalability.

In the presented experiments we have shown how this
data store approach clearly outperforms the existing
implementations. In the micro-benchmarks we have run,
the SQLite data store is on average five times faster than the
second fastest implementation (the one based on MySQL)
and still more than twice as fast in the worst case. In
addition, we have shown that the distributed data store we
introduced shows the best scalability characteristics by
obtaining a 2.9-fold speedup from using four GRR workers
instead of one where the MySQL data store can only
leverage a 1.38-fold performance increase. Finally, we have
shown how this new data store is able to efficiently deal
with big amounts of real world data by storing the com-
plete NSRL hash set and utilizing it to perform data dedu-
plication while downloading files from Windows machines
in a live GRR test setting.

We believe that demands on storage technology are
rising steadily due to the increasing number of computing
devices holding more and more information. This is an
important challenge that needs to be addressed by the fo-
rensics community and our data store design is a promising
approach to tackling this challenge and allowing forensic
practitioners to gather and analyze large amounts of
forensic data.

References

Buyya R. High performance cluster computing: architectures and systems.
Upper Saddle River, NJ, USA: Prentice Hall PTR; 1999.

Chang F, Dean], Ghemawat S, Hsieh WC, Wallach DA, Burrows M, et al.
Bigtable: a distributed storage system for structured data. ACM Trans
Comput Syst (TOCS) 2008;26(2):4.

Cohen M, Bilby D, Caronni G. Distributed forensics and incident response
in the enterprise. Digit Investig 2011;8:5S101—10.

Cohen M, Garfinkel S, Schatz B. Extending the advanced forensic format
to accommodate multiple data sources, logical evidence, arbitrary
information and forensic workflow. Digit Investig 2009;6(Suppl. (0)):
S57—68. The Proceedings of the Ninth Annual {DFRWS} Conference.

Fisher GE. Computer forensics guidance. Management 2001.

Garfinkel SL. Digital forensics research: the next 10 years. Digit Investig
2010;7:564—73.

E Cruz et al. / Digital Investigation 12 (2015) S90—S101 S101

Garfinkel S. Digital forensics xml and the dfxml toolset. Digit Investig
2012;8(3):161-74.

GlusterFS. Glusterfs distributed filesystem. 2014. http://www.gluster.org.

Grolinger K, Higashino WA, Tiwari A, Capretz MA. Data management in
cloud environments: nosql and newsql data stores.] Cloud Comput
Adv Syst Appl 2013;2(1):22.

Guidance Software I. Encase forensic. 2014. http://www.
guidancesoftware.com/products/.

Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D.
Consistent hashing and random trees: distributed caching protocols
for relieving hot spots on the world wide web. In: Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing.
STOC'97. New York, NY, USA: ACM; 1997. p. 654—63. URL, http://doi.
acm.org/10.1145/258533.258660.

Mohan C, Lindsay B, Obermarck R. Transaction management in the R*
distributed database management system. ACM Trans Database Syst
1986;11:378—96.

MongoDB. Mongodb, the no-sql database. 2014. http://www.mongodb.org/.

MySQL. Mysql database system. 2014. http://www.mysql.com.

NSRL. Data formats of the nsrl reference data set (rds) distribution. 2014.
http://www.nsrl.nist.gov/documents/Data-Formats-of-the-NSRL-
Reference-Data-Set-12.pdf.

NSRL. National software reference library. 2014. http://www.nsrl.nist.gov.

Parker Z, Poe S, Vrbsky SV. Comparing nosql mongodb to an sql db. In:
Proceedings of the 51st ACM Southeast Conference. ACMSE'13. New
York, NY, USA: ACM; 2013. 5:1-5:6.

PNFS. Parallel nfs/nfs v4.1. 2014. http://www.pnfs.com.

Python. Global interpreter lock. 2014. https://wiki.python.org/moin/
GloballnterpreterLock.

Rowe NC. Testing the national software reference library. Digit Investig
2012;9:5131-8.

Sandberg R, Golgberg D, Kleiman S, Walsh D, Lyon B. Innovations in
internetworking. Norwood, MA, USA, Ch: Artech House, Inc.; 1988.
p. 379-90. Design and Implementation of the Sun Network
Filesystem.

SQLite. File locking and concurrency in sqlite version 3. 2014. http://www.
sqlite.org/lockingv3.html.

SQLite. Sqlite website. 2014. http://sqlite.org.

SQLite. Vacuum command. 2014. http://sqlite.org/lang/_vacuum.html.

Watkins K, McWhorte M, Long], Hill B. Teleporter: an analytically and
forensically sound duplicate transfer system. Digit Investig 2009;6:
S43—-7.

Wen Y, Man X, Le K, Shi W. Forensics-as-a-service (faas): computer
forensic workflow management and processing using cloud. In: Cloud
computing 2013, the Fourth International Conference on Cloud
Computing, GRIDs, and Virtualization; 2013. p. 208—14.

	A scalable file based data store for forensic analysis
	Introduction
	The AFF4 object model
	The GRR rapid response framework
	Data store requirements
	SQLite data store
	Organization
	Mapping the AFF4 namespace
	SQL queries
	Concurrency and caching
	Database maintenance

	Distributed data store
	Architecture
	Mapping files to servers
	Operations
	Adding servers
	Removing servers

	Experiments
	Micro-benchmarks
	Many objects, each object having few attributes
	Few objects and many attributes
	Many objects and many attributes

	End to end benchmarks
	NSRL hash de-duplicated file collection

	Conclusions
	References

