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Agenda 

● DIY Malware Analysis (available on slides only -) 
● Vulnerability Hunt 
● Exploitation 
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Android Malware Analysis 
(please refer to slides from download 

section) 
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Let’s  get  the  emulator  running 

 
mobisec@Mobisec:/opt/mobisec/devtools/androi
d-sdk/tools$ emulator-arm -avd Android_4.0.3 
-scale 0.75 -debug all -logcat all -no-boot-
anim 
 
mobisec@Mobisec-VM:~$ adb install 
Malware/OBad/E1064BFD836E4C895B569B2DE470028
4.apk 
 
 
 

Let’s  get  OBAD in the emulator 
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The persistent begging starts 
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Won’t  take  No  for  an  answer 

Sales / 
Marketing 
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No Device Admin? 
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We would expect something like this 
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Can we see OBAD in app list and uninstall it? 
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May be from command line - ‘adb’ 
 

mobisec@Mobisec-VM:~/Malware/OBAD$ adb 
uninstall com.android.system.admin 
Failure 
  
mobisec@Mobisec-VM:~/Malware/OBAD$ adb 
logcat -d -b main -b events | grep admin | tail -1 
W/PackageManager(  277): Not removing 
package com.android.system.admin: has 
active device admin 
 

Let’s  try  the  command  line 

�   
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Let’s  hunt  the  code  that  hides  it  from  Device  Admin  List 
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Checkout  the  patch  history  …  or  ... 
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Launch Settings -> Security -> Device Administrators 
 
Check out the logs: 
adb logcat -d -b events 
 
  

I/am_new_intent(  276): 
[0,1106566944,17,com.android.settings/.Settings,android.intent.action.
MAIN,NULL,NULL,274726912] 
I/am_resume_activity(  276): 
[0,1106900904,17,com.android.settings/.Settings] 
I/am_on_resume_called( 1118): [0,com.android.settings.Settings] 
 

Find Relevant Code 
Find Relevant Code 
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▪search for these strings at  
androidxref.com 

 
▪following along you will arrive at  
 

packages/apps/Settings/src/com/android/settings/ 
DeviceAdminSettings.java 

Find Relevant Code (contd…) 
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▪check out the function  
void updateList() 
 
▪and the conditions for something to appear in device 
admin list 

Find Relevant Code (contd…) 
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getActivity().getPackageManager().queryBroadcastReceive

rs(Intent(DeviceAdminReceiver.ACTION_DEVICE
_ADMIN_ENABLED), ... 
             

Device Admin Vulnerability 
Device Admin Vulnerability 
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getActivity().getPackageManager().queryBroadcastReceive

rs(Intent(DeviceAdminReceiver.ACTION_DEVICE
_ADMIN_ENABLED), ... 
             

Device Admin Vulnerability 
Device Admin Vulnerability 
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Hackers  won’t  follow  the  specs  unless  they  have  to 
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To use the Device Administration API, the application's 

manifest must include the following: 

●A subclass of DeviceAdminReceiver that includes the 

following: 
oThe BIND_DEVICE_ADMIN permission. 
oThe ability to respond to the 
ACTION_DEVICE_ADMIN_ENABLED intent, expressed in 
the manifest as an intent filter. 
 

             

What they should do 
What they should do 
 

http://developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html
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<receiver "System" =".OCllCoO"> 
      <meta-data "android.app.device_admin" 
="@2130968576"> 
      </meta-data> 
      <intent-filter> 
        <action   
name="com.strain.admin.DEVICE_ADMIN_ENABLED"> 
        </action> 
      </intent-filter> 
    </receiver> 

What they actually did 
What they actually did 
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name="com.strain.admin.DEVICE_ADMIN_ENABLED"> 
         
 
 

What they actually did 

instead of 

android.app.action.DEVICE_ADMIN_ENABLED 
 

What they actually did 
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What’s  next 
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services/java/com/android/server/ 
 

DevicePolicyManagerService.java 

Device Admin Vulnerability 
Device Admin Vulnerability 
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When adding an Admin 
 
policy.mAdminMap.put(adminReceiver, newAdmin); 
 
and 
 
policy.mAdminList.add(newAdmin); 

Device Admin Vulnerability 
Device Admin Vulnerability 
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Please make sure you take ALL your stuff with you 

Device Admin Vulnerability 
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removeActiveAdminLocked 
 

1.policy.mAdminList.remove(admin); 
2.policy.mAdminMap.remove(adminReceiver); 
 

Device Admin Vulnerability 
Device Admin Vulnerability 



© 2014 IBM Corporation 

IBM Security 

30   

Please make sure you take ALL your stuff 
with you 

ALL THE TIME! even when in 
RUSH 

Device Admin Vulnerability 
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private void handlePackagesChanged(int userHandle) { 
 
removed = true; 
policy.mAdminList.remove(i); 
 
 
 

Device Admin Vulnerability 
Device Admin Vulnerability 
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private void handlePackagesChanged(int userHandle) { 
 

removed = true; 
policy.mAdminList.remove(i); 
 
 
 

Device Admin Vulnerability 

and who will clean up the 
mAdminMap for you 

Device Admin Vulnerability 
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This code path gets executed when you DISABLE the 
device admin component 

 

Device Admin Vulnerability 
Device Admin Vulnerability 
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All we have so far is a leak / bad coding practice 
 

Device Admin Vulnerability 
Device Admin Vulnerability 
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Is this a vulnerability? 
 

Device Admin Vulnerability 
Device Admin Vulnerability 
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Is there a code path that consults mAdminMap but not 
mAdminList ? 

 

Device Admin Vulnerability 
Device Admin Vulnerability 
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▪getActiveAdminUncheckedLocked 
▪ getActiveAdminForCallerLocked 
          (ComponentName who, int reqPolicy) 
          with  “who”  parameter  being  non  null   
 

Device Admin Vulnerability 
Device Admin Vulnerability 
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getActiveAdminUncheckedLocked is used by isAdminActive 

Device Admin Vulnerability 
Device Admin Vulnerability 

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
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So can we exploit it? 

Device Admin Vulnerability 
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DID YOU KNOW? By 2016, 20% of enterprise BYOD 
programs will fail due to deployment of mobile device 
management (MDM) measures that are too restrictive. 

Gartner: 
Gartner 
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How about typing a 14 character password while driving? 
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▪enable device admin 
▪disable the device admin component 
▪At this point, from the data structure and code 

perspective,  device  admin’s  isAdminEnabled  will  still 
return true 

Exploiting the Device Admin Vulnerability 
Exploiting the Device Admin Vulnerability 
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pm.setComponentEnabledSetting( 
   this.getWho(context), 
   
PackageManager.COMPONENT_ENABLED_STATE_DISABLED, 
   PackageManager.DONT_KILL_APP); 

Exploiting the Device Admin Vulnerability 
Exploiting the Device Admin Vulnerability 
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Uninstall the app (it will still be in the mAdminMap) 
 

Exploiting the Device Admin Vulnerability 
Exploiting the Device Admin Vulnerability 
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Now, install the original app 
 

Exploiting the Device Admin Vulnerability 
Exploiting the Device Admin Vulnerability 
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BUT 
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BUT it may not necessarily work with MDM 
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isActivePasswordSufficient 
 

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
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public boolean isActivePasswordSufficient(int userHandle) 
{  
   enforceCrossUserPermission(userHandle);  
   synchronized (this) {  
      // This API can only be called by an active device 
admin,  
      DevicePolicyData policy = getUserData(userHandle); 
      // so try to retrieve it to check that the caller is one.  
      getActiveAdminForCallerLocked(null, 
         DeviceAdminInfo.USES_POLICY_LIMIT_PASSWORD); 

isActivePasswordSufficient 
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ActiveAdmin getActiveAdminForCallerLocked 
   (ComponentName who, int reqPolicy) throws 
      SecurityException {  
   if (who != null) { ... }  
   else {  
      final int N = policy.mAdminList.size();  
       

getActiveAdminForCallerLocked 
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   else {  
      final int N = policy.mAdminList.size();  
      for (int i=0; i<N; i++) { 
                ActiveAdmin admin = policy.mAdminList.get(i); 
                if (admin.getUid() == callingUid && 
                     admin.info.usesPolicy(reqPolicy)) { 
                    return admin; 
                } 
            } 
            throw new SecurityException 
 

       

getActiveAdminForCallerLocked 
 



© 2014 IBM Corporation 

IBM Security 

56   

   else {  
      final int N = policy.mAdminList.size();  
      for (int i=0; i<N; i++) { 
                ActiveAdmin admin = policy.mAdminList.get(i); 
                if (admin.getUid() == callingUid && 
                     admin.info.usesPolicy(reqPolicy)) { 
                    return admin; 
                } 
            } 
            throw new SecurityException 
 

       

getActiveAdminForCallerLocked 
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There is a way 
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▪active device admin with same policies  
▪and same UID - sharedUID 
 

                if (admin.getUid() == callingUid && 
                     admin.info.usesPolicy(reqPolicy)) { 
 

       

sharedUID 
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▪Modify AndroidManifest.xml of the MDM  
−add android:sharedUserId attribute 
▪repackage and self sign 
 

Extended Hack 
Extended Hack 
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▪Create a different device admin 
−same sharedUid 
−same policies 
−install and activate it 

Extended Hack 
Extended Hack 
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▪Do everything else as before 
−but using the self signed MDM apk with sharedUID 
 

Extended Hack Extended Hack 
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COMPLIANT != SECURE 
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▪Don’t  make  it  really  painful  to  use  the  device 
▪code protection 
▪verifying app signatures 

Lessons 
Lessons 
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Further Learning 

● https://github.com/strazzere/android-unpacker 
● https://github.com/strazzere/android-

unpacker/blob/master/AHPL0.pdf 

https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker
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Loved ones, X-Force, DFRW EU and YOU 
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