
DIGITAL FORENSIC RESEARCH CONFERENCE

How I Forced An Android Vulnerability Into

Bypassing MDM Restrictions + DIY Android Malware Analysis

By

Zubair Ashraf

Presented At

The Digital Forensic Research Conference

DFRWS 2015 EU Dublin, Ireland (Mar 23rd- 26th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized

the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners

together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working

groups, annual conferences and challenges to help drive the direction of research and development.

http:/dfrws.org

© 2014 IBM Corporation

IBM Security

0 © 2014 IBM Corporation

HOW I FORCED AN ANDROID
VULNERABILITY INTO BYPASSING MDM
RESTRICTIONS + DIY MALWARE
ANALYSIS
 Zubair Ashraf
Team Lead & Security Researcher
IBM X-Force Advanced Research

© 2014 IBM Corporation

IBM Security

1

@b0ut.m3

▪ Team Lead & Security Researcher
@ IBM X-Force Research

 @zashraf1337

 securityintelligence.com/author/zubair-ashraf

 ca.linkedin.com/in/zubairashraf

© 2014 IBM Corporation

IBM Security

2

Agenda

● DIY Malware Analysis (available on slides only -)
● Vulnerability Hunt
● Exploitation

© 2014 IBM Corporation

IBM Security

3

© 2014 IBM Corporation

IBM Security

4

Android Malware Analysis
(please refer to slides from download

section)

© 2014 IBM Corporation

IBM Security

5

Let’s get the emulator running

mobisec@Mobisec:/opt/mobisec/devtools/androi
d-sdk/tools$ emulator-arm -avd Android_4.0.3
-scale 0.75 -debug all -logcat all -no-boot-
anim

mobisec@Mobisec-VM:~$ adb install
Malware/OBad/E1064BFD836E4C895B569B2DE470028
4.apk

Let’s get OBAD in the emulator

© 2014 IBM Corporation

IBM Security

6

The persistent begging starts

© 2014 IBM Corporation

IBM Security

7

© 2014 IBM Corporation

IBM Security

8

Won’t take No for an answer

Sales /
Marketing

© 2014 IBM Corporation

IBM Security

9

© 2014 IBM Corporation

IBM Security

10

No Device Admin?

© 2014 IBM Corporation

IBM Security

11

We would expect something like this

© 2014 IBM Corporation

IBM Security

12

Can we see OBAD in app list and uninstall it?

© 2014 IBM Corporation

IBM Security

13

May be from command line - ‘adb’

mobisec@Mobisec-VM:~/Malware/OBAD$ adb
uninstall com.android.system.admin
Failure

mobisec@Mobisec-VM:~/Malware/OBAD$ adb
logcat -d -b main -b events | grep admin | tail -1
W/PackageManager(277): Not removing
package com.android.system.admin: has
active device admin

Let’s try the command line

�

© 2014 IBM Corporation

IBM Security

14

Let’s hunt the code that hides it from Device Admin List

© 2014 IBM Corporation

IBM Security

15

Checkout the patch history … or ...

© 2014 IBM Corporation

IBM Security

16

Launch Settings -> Security -> Device Administrators

Check out the logs:
adb logcat -d -b events

I/am_new_intent(276):
[0,1106566944,17,com.android.settings/.Settings,android.intent.action.
MAIN,NULL,NULL,274726912]
I/am_resume_activity(276):
[0,1106900904,17,com.android.settings/.Settings]
I/am_on_resume_called(1118): [0,com.android.settings.Settings]

Find Relevant Code
Find Relevant Code

© 2014 IBM Corporation

IBM Security

17

▪search for these strings at
androidxref.com

▪following along you will arrive at

packages/apps/Settings/src/com/android/settings/
DeviceAdminSettings.java

Find Relevant Code (contd…)

© 2014 IBM Corporation

IBM Security

18

▪check out the function
void updateList()

▪and the conditions for something to appear in device
admin list

Find Relevant Code (contd…)

© 2014 IBM Corporation

IBM Security

19

getActivity().getPackageManager().queryBroadcastReceive

rs(Intent(DeviceAdminReceiver.ACTION_DEVICE
_ADMIN_ENABLED), ...

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

20

getActivity().getPackageManager().queryBroadcastReceive

rs(Intent(DeviceAdminReceiver.ACTION_DEVICE
_ADMIN_ENABLED), ...

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

21

Hackers won’t follow the specs unless they have to

© 2014 IBM Corporation

IBM Security

22

To use the Device Administration API, the application's

manifest must include the following:

●A subclass of DeviceAdminReceiver that includes the

following:
oThe BIND_DEVICE_ADMIN permission.
oThe ability to respond to the
ACTION_DEVICE_ADMIN_ENABLED intent, expressed in
the manifest as an intent filter.

What they should do
What they should do

http://developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html

© 2014 IBM Corporation

IBM Security

23

<receiver "System" =".OCllCoO">
 <meta-data "android.app.device_admin"
="@2130968576">
 </meta-data>
 <intent-filter>
 <action
name="com.strain.admin.DEVICE_ADMIN_ENABLED">
 </action>
 </intent-filter>
 </receiver>

What they actually did
What they actually did

© 2014 IBM Corporation

IBM Security

24

name="com.strain.admin.DEVICE_ADMIN_ENABLED">

What they actually did

instead of

android.app.action.DEVICE_ADMIN_ENABLED

What they actually did

© 2014 IBM Corporation

IBM Security

25

What’s next

© 2014 IBM Corporation

IBM Security

26

services/java/com/android/server/

DevicePolicyManagerService.java

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

27

When adding an Admin

policy.mAdminMap.put(adminReceiver, newAdmin);

and

policy.mAdminList.add(newAdmin);

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

28

Please make sure you take ALL your stuff with you

Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

29

removeActiveAdminLocked

1.policy.mAdminList.remove(admin);
2.policy.mAdminMap.remove(adminReceiver);

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

30

Please make sure you take ALL your stuff
with you

ALL THE TIME! even when in
RUSH

Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

31

private void handlePackagesChanged(int userHandle) {

removed = true;
policy.mAdminList.remove(i);

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

32

private void handlePackagesChanged(int userHandle) {

removed = true;
policy.mAdminList.remove(i);

Device Admin Vulnerability

and who will clean up the
mAdminMap for you

Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

33

This code path gets executed when you DISABLE the
device admin component

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

34

All we have so far is a leak / bad coding practice

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

35

Is this a vulnerability?

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

36

Is there a code path that consults mAdminMap but not
mAdminList ?

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

37

▪getActiveAdminUncheckedLocked
▪ getActiveAdminForCallerLocked
 (ComponentName who, int reqPolicy)
 with “who” parameter being non null

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

38

getActiveAdminUncheckedLocked is used by isAdminActive

Device Admin Vulnerability
Device Admin Vulnerability

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html

© 2014 IBM Corporation

IBM Security

39

So can we exploit it?

Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

40

© 2014 IBM Corporation

IBM Security

41

DID YOU KNOW? By 2016, 20% of enterprise BYOD
programs will fail due to deployment of mobile device
management (MDM) measures that are too restrictive.

Gartner:
Gartner

© 2014 IBM Corporation

IBM Security

42

How about typing a 14 character password while driving?

© 2014 IBM Corporation

IBM Security

43

▪enable device admin
▪disable the device admin component
▪At this point, from the data structure and code

perspective, device admin’s isAdminEnabled will still
return true

Exploiting the Device Admin Vulnerability
Exploiting the Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

44

pm.setComponentEnabledSetting(
 this.getWho(context),

PackageManager.COMPONENT_ENABLED_STATE_DISABLED,
 PackageManager.DONT_KILL_APP);

Exploiting the Device Admin Vulnerability
Exploiting the Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

45

Uninstall the app (it will still be in the mAdminMap)

Exploiting the Device Admin Vulnerability
Exploiting the Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

46

Now, install the original app

Exploiting the Device Admin Vulnerability
Exploiting the Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

47

© 2014 IBM Corporation

IBM Security

48

BUT

© 2014 IBM Corporation

IBM Security

49

© 2014 IBM Corporation

IBM Security

50

BUT it may not necessarily work with MDM

© 2014 IBM Corporation

IBM Security

51

© 2014 IBM Corporation

IBM Security

52

isActivePasswordSufficient

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html

© 2014 IBM Corporation

IBM Security

53

public boolean isActivePasswordSufficient(int userHandle)
{
 enforceCrossUserPermission(userHandle);
 synchronized (this) {
 // This API can only be called by an active device
admin,
 DevicePolicyData policy = getUserData(userHandle);
 // so try to retrieve it to check that the caller is one.
 getActiveAdminForCallerLocked(null,
 DeviceAdminInfo.USES_POLICY_LIMIT_PASSWORD);

isActivePasswordSufficient

© 2014 IBM Corporation

IBM Security

54

ActiveAdmin getActiveAdminForCallerLocked
 (ComponentName who, int reqPolicy) throws
 SecurityException {
 if (who != null) { ... }
 else {
 final int N = policy.mAdminList.size();

getActiveAdminForCallerLocked

© 2014 IBM Corporation

IBM Security

55

 else {
 final int N = policy.mAdminList.size();
 for (int i=0; i<N; i++) {
 ActiveAdmin admin = policy.mAdminList.get(i);
 if (admin.getUid() == callingUid &&
 admin.info.usesPolicy(reqPolicy)) {
 return admin;
 }
 }
 throw new SecurityException

getActiveAdminForCallerLocked

© 2014 IBM Corporation

IBM Security

56

 else {
 final int N = policy.mAdminList.size();
 for (int i=0; i<N; i++) {
 ActiveAdmin admin = policy.mAdminList.get(i);
 if (admin.getUid() == callingUid &&
 admin.info.usesPolicy(reqPolicy)) {
 return admin;
 }
 }
 throw new SecurityException

getActiveAdminForCallerLocked

© 2014 IBM Corporation

IBM Security

57

There is a way

© 2014 IBM Corporation

IBM Security

58

▪active device admin with same policies
▪and same UID - sharedUID

 if (admin.getUid() == callingUid &&
 admin.info.usesPolicy(reqPolicy)) {

sharedUID

© 2014 IBM Corporation

IBM Security

59

▪Modify AndroidManifest.xml of the MDM
−add android:sharedUserId attribute
▪repackage and self sign

Extended Hack
Extended Hack

© 2014 IBM Corporation

IBM Security

60

▪Create a different device admin
−same sharedUid
−same policies
−install and activate it

Extended Hack
Extended Hack

© 2014 IBM Corporation

IBM Security

61

▪Do everything else as before
−but using the self signed MDM apk with sharedUID

Extended Hack Extended Hack

© 2014 IBM Corporation

IBM Security

62

© 2014 IBM Corporation

IBM Security

63

COMPLIANT != SECURE

© 2014 IBM Corporation

IBM Security

64

© 2014 IBM Corporation

IBM Security

65

▪Don’t make it really painful to use the device
▪code protection
▪verifying app signatures

Lessons
Lessons

© 2014 IBM Corporation

IBM Security

66

Further Learning

● https://github.com/strazzere/android-unpacker
● https://github.com/strazzere/android-

unpacker/blob/master/AHPL0.pdf

https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker

© 2014 IBM Corporation

IBM Security

67

Loved ones, X-Force, DFRW EU and YOU

© 2014 IBM Corporation

IBM Security

68

 @zashraf1337

 securityintelligence.com/author/zubair-ashraf

 ca.linkedin.com/in/zubairashraf

