
DIGITAL FORENSIC RESEARCH CONFERENCE

Wirespeed: Extending The Aff4 Container Format

For Scalable Acquisition And Live Analysis

By

Bradley Schatz

From the proceedings of

The Digital Forensic Research Conference

DFRWS 2015 USA 

Philadelphia, PA (Aug 9th - 13th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics 

research. Ever since it organized the first open workshop devoted to digital forensics

in 2001, DFRWS continues to bring academics and practitioners together in an 

informal environment. 

As a non-profit, volunteer organization, DFRWS sponsors technical working groups, 

annual conferences and challenges to help drive the direction of research and 

development. 

http:/dfrws.org



DFRWS 2015 US

Wirespeed: Extending the AFF4 forensic container format for
scalable acquisition and live analysis

Bradley L. Schatz
Schatz Forensic, Level 10 149 Wickham Tce Brisbane, QLD 4000, Australia

Keywords:
Digital forensics
Evidence containers
Live forensics
Acquisition
Imaging
AFF4

a b s t r a c t

Current approaches to forensic acquisition are failing to scale to large devices and fast
storage interfaces. The research described in this paper identifies limitations in current
widely deployed forensic image formats which limit both the ability to acquire evidence at
maximal rates, and to undertake live analysis in today's environment. Extensions to the
AFF4 forensic file format are proposed which address these limitations. The proposals have
been implemented and proof of concept demonstrated by demonstrating that non-linear
partial images may be taken at rates that exceed current physical acquisition ap-
proaches, and by demonstrating linear acquisition at rates significantly exceeding current
approaches: in the range of 400 MB/se500 MB/s (24e30 GB/min).
© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Within the field of digital forensics the volume problem
is well recognized: more devices and larger storage com-
pound the amount of data to preserve and analyse per case.
In 2015, storage technology exhibits a significant amount of
diversity: the capacity of spinning disk hard drives grows at
a rate faster than I/O rates; SSD's are capable of I/O rates
many times faster than their spinning disk cousins; and
storage is increasingly absent a direct attachment, located
across comparatively low I/O rate networks, such as cloud
based storage.

Forensic acquisition has failed to scale with this growth
in both volume and I/O rates. In practice, forensic imaging
remains generally reliant on the imaging approach defined
over a decade ago e the linear and complete image,
integrity protected by a hash, and optionally block com-
pressed (Rosen, 2002). In the field, the dominant methods
of imaging generally achieve I/O rates in the realm of
100e150 MB/s, with hardware imaging tool manufacturers
beginning to promise speeds of a maximum of 250 MB/s
(Tableau, 2014). Few empirical studies exist in the literature

in regard to acquisition throughput. Zimmerman (2013)
observes far lower rates of in the low 100's of MB/s, and
Bertasi and Zago (2013) observes peak rates of 110 MB/s.

Source devices with I/O rates exceeding the commodity
SATA hard drive threshold of around 200 MB/s are
increasingly common. Formerly it may have only been
servers with RAID subsystems which produced this load;
today's SSD's, and in-cloud virtual attached storage
commonly double this rate. Acquisition of such devices
commonly proceeds at rates far lower than themaximum I/
O rate of such devices.

The above trends result in bandwidth constrained
spinning disks longer acquisition times, and in the band-
width rich devices, sub optimal acquisition durations. Both
of these contribute to latency between the identification of
target evidential devices and the gaining of meaningful
analytic results, due in part to lack of cohesion between
forensic processing steps (Roussev et al., 2013).

Current responses to minimize this latency when facing
very large sets of evidence fail to be wholly satisfactory to
the practitioner: preserve a limited subset of available ev-
idence and run the risk of not preserving potentially rele-
vant evidence (triage), or cause significant availability
impacts on computing resources while complete imagingE-mail address: bradley@wirespeed.io.

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

http://dx.doi.org/10.1016/j.diin.2015.05.016
1742-2876/© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Digital Investigation 14 (2015) S45eS54



of everything proceeds. Current research proposals
addressing this end to end latency issue are scarce. The
LOTA (Roussev et al., 2013) proposal goes far in conceptu-
alizing the problem as a real time processing problem,
however, due to the requirement for low hundreds of CPU
cores per target device being processed, the proposed
approach is generally only applicable to in-lab usage,
limiting its application to evidence seized (collected) from
the field and processed within the laboratory.

The primary hypotheses of this research are that latency
between the beginning of acquisition and the obtaining of
analysis results can be reduced by reframing acquisition as
a (potentially) partial and non-linear activity, and by
employing a forensic image format that enables the former
while not creating bottlenecks.

We posit that for contexts where seizure is not an option
(for example Civil, covert, Incident Response, and at scale of
hundreds of machines) this latency can be minimized in
two ways. First, by employing a forensic container format
that enables acquisition to proceed at maximal I/O rates.
Secondly, by re-conceptualizing forensic acquisition as a
process which occurs hand in hand with live analysis.
Computationally feasible analysis tasks, and live analysis
tasks which traditionally fall in the domain of triage ac-
tivities or live preview, are applied as a priority, contrib-
uting to the incremental building of a partial (or eventually
full) physical image.

Improvements to the AFF4 forensic container which
resolve the identified shortcomings are proposed, and their
effectiveness evaluated through a systematic set of exper-
iments focused on high input rate acquisition.

Motivation

This section describes at a high level our acquisition and
live analysis system (which we call Wirespeed), the
implementation and testing of which has identified the
shortcomings in existing forensic containers described
later in this paper. We note that the architecture of the
Wirespeed system is the subject of a separate publication.

Acquisition as an interactive & batch process

Fundamental to our proposal is the idea that the scope
of acquisition should be subject to change and prioritized
based on live analysis activities of the examiner, and more
generally by categories of forensic data identified for
acquisition. Starting with an empty forensic image, the
image is successively built from target blocks, first of vol-
ume metadata and then filesystem metadata. A non-linear,
partial image is foundational to such an approach.

Blocks are then preserved into the image based on two
separate activities.

An analyst might conduct a live analysis of the storage
device via a virtual disk (i.e. iSCSI) interface to the image e
blocks present in the partial image are returned to the
analyst's preferred tool directly via the virtual hard disk,
and blocks not present in the image are scheduled for
reading from the target device, and when read, stored in
the image and returned to the analyst's tool via the virtual

hard disk. These interactive accesses are prioritized by a
scheduler ahead of other accesses.

The analyst might also task the acquisition of various
categories of data via a separate GUI controlling the
acquisition process: our current implementation allows for
file subsets such as event logs, registries & page files, and
wider categories such as all allocated data, and unallocated
data. This enables the analyst to successively widen the
scope of acquisition as their live analysis activities proceed.
Further, live analysis might result in the determination that
the target device is not relevant, and the acquisition process
terminated, the resulting partial image remaining as a basis
for reproducing the said analysis.

Maximizing acquisition rate

Maximizing the rate at which the above non-linear
sequence of blocks might be assembled into a forensic
image is a systems problem involving a range of variables,
including:

! The maximal I/O rate of the target device;
! The maximal I/O rate of the target device interface;
! The method of hashing;
! The number of cores and CPU speed;
! The method of compression;
! The path taken in reading disk blocks;
! The available I/O interconnects to the image storage

device;
! The maximal write rate of the filesystem

implementation
! The maximal write rate of the evidence container

device.

Depending on budgetary constraints, it is reasonable to
believe that on a small scale the examiner may be able to
control the majority of these. For example an analyst
employing a removed dead disk acquisition using a forensic
media duplicator (“drive cloner”) in the field has control
over many of the above but the maximal I/O rates of the
target device and its storage interface.

In thefield and at a scale of numerous devices, examiners
are regularly facedwith far less control over these variables:
budgetary constraints will limit the number of forensic du-
plicators able to copy removed dead disks in parallel. Com-
mon responses to these pressures are the usage of forensic
live-CD's to employ in-situ dead disk techniques, necessi-
tating the usage of the CPU and I/O channels of the target
system. For such approaches, combined with old server
hardware, acquiring via USB2 (max 40 MB/s) is, while not
desirable, still in 2015 a reasonable option.

It is well understood in the literature that for at least
spinning disks, the I/O rate of reads from the disk is
maximal for reads of long runs of consecutive blocks,
with seeks imposing a significant penalty in throughput.
Accordingly, we adopt a priority based scheduling
approach that prioritises interactive analysis over non-
interactive acquisition goals, and scheduling the reading
of blocks and caching in RAM to minimize disk seeks in
acquiring non-linear block sequences.

B.L. Schatz / Digital Investigation 14 (2015) S45eS54S46



What is a disk image?

The preceding sections outlined our approach to
minimizing latency in a combined forensic acquisition
and live analysis system, and posited that the key enabler
of the approach is in addressing limitations in the cur-
rent conception of the evidence container. This section,
and the following review the current state of the art in
such.

For the purposes of this paper, an image refers to a
physical forensic image, which is, by consensus in the
field, generally agreed to refer to a near-complete
contiguous bit for bit ordered copy of a storage medium,
stored with a linear hash of the same bitstream. An image
may be split into blocks and optionally compressed in
such a form that it supports efficient random access. We
say near-complete as the image may differ from the actual
source evidence due, for example, to inaccessible sectors
yielding discontinuities containing unknown data in the
original.

Not all image formats proposed in the literature
strictly adhere to the above definition; the reader is
referred to papers describing the original Advanced
Forensic Format (AFF) (Garfinkel et al., 2006) and AFF4
container format (Cohen et al., 2009) for a thorough re-
view of evidence container formats currently in use
within digital forensics.

As our work builds on the AFF4 work, we recap the key
features of this format in comparison to the model
described above. The AFF4 evidence container expands on
the model by adding address space virtualization and a
globally unique referencing scheme. The address space
virtualization scheme allows one to construct a virtual
bitstream based on mapping sub-bitstreams into a virtual
address space. In AFF4 terminology the virtual bitstream is
specified by a Map stream. Maps can point to arbitrary
sources of bytes: the first such contemplated being an
Image stream (a contiguous bit stream composed of com-
pressed or uncompressed blocks of equal size). Such blocks
are organized into groups for efficient indexing. The groups
are called Segments. The globally unique referencing
scheme is used by the Map to refer to objects in the AFF4
system, ranging from byte sequences to entities, and
located locally or remotely.

Limitations in current evidence container approaches
and related work

The dominant approach to assurance of the integrity of
the forensic image is the linear bitstream hash: generally an
MD5 or SHA1 hash (or both) of the linear image byte
sequence, starting from the first byte of the first storage
block, to the last byte of the last storage block. An alter-
native to the linear bitstream hashes is the use of segment
hashes: hashes of equal and fixed size chunks of the source
device. In the AFF container format these were typically 1M
or 16M, and in dcfldd are configurable.

At high I/O rates, linear bitstream hashes are prob-
lematic for scaling acquisition. Such a hash is a relatively
expensive operation in terms of CPU resources, with
SHA1 currently able to hash at around 600 MB/s on a

current generation i7 core (see Table 1) and around
450 MB/s on a current generation i5 core. Unlike segment
hashes, linear bitstream hashes cannot be parallelized
across multiple cores, accordingly, on low speed CPUs
linear bitstream hashes become a bottleneck for high
speed acquisition.

We contend that hashes in general are not an efficient
use of CPU resources when faced with uniform, sparse data
such as sectors filled with zeros. Today's SSD's appear to
store such empty blocks as sparse segments and are
capable of streaming such sectors at rates exceeding the
maximum bandwidth of these standard hashes (current
generation PCIe based SSD's are beginning to approach
1 GB/s).

Partial imaging

Inherent in the triage approach is the understanding
that the analyst (or tool manufacturer) can make reasoned
decisions about the evidential value of data, and that triage
should facilitate preservation of the most valuable data
while leaving behind the least. The dominant approach to
preservation in triage is the Logical Imaging approach. That
is, specific file streams and associated filesystem metadata
are collected and stored in a logical evidence container.
Limitations of this approach include the absence of context
(only the metadata chosen by the tool author is collected)
and a lack of repeatability (the collected metadata is an
interpretation).

An alternative is to relax the completeness requirement
of the standard block level forensic image, such that only a
subset of the blocks are acquired. Achieving this requires
such an image format to be able to record not only collected
data blocks, but also which data blocks have not been
collected, the “holes”, so to speak. This issue is well
recognized in the Volatile Memory acquisition field, due to
the prevalence of memory discontinuities in the physical
RAM address space, and has led to the adoption of two
primary approaches: employ a linear image and fill the
discontinuities with a known “innocuous” value (Encase
EWF and Garner's DD) or to adopt a section based binary
storage format (i.e. ELF, DMP).

X-Ways has recently added support for “Skeleton im-
ages” (Watkins et al., 2009) the implementation of which is
a raw image backed by a sparse NTFS file. On attachment of
an empty skeleton image, subsequently read blocks of an
associated device are copied into the skeleton image at the
appropriate offsets, such that relevant volume metadata,
filesystem metadata, and accessed file content are saved
into the image. An MD5 block is calculated and stored for
each sector, and saved in a log file.

Table 1
Single core algorithm throughput for i7-4770 3.4 GHz.

Function Algorithm Throughput (single core)

Compression Snappy 1405.42 MB/s
Compression LZ4 1538.31 MB/s
Compression Inflate 39.42 MB/s
Hash Blake2b 601.87 MB/s
Hash SHA1 619.23 MB/s
Hash MD5 745.65 MB/s

B.L. Schatz / Digital Investigation 14 (2015) S45eS54 S47



Non-linear imaging

While ideal for maximizing the read bandwidth of the
storage devices such as spinning disks, the general linear
approach to imaging prevents the preservation of blocks in
any other order.

The “Teleporter” (Watkins et al., 2009) and the AFF4
hash based imaging proposals (Cohen and Schatz, 2010)
implicitly proposed a non-linear approach to acquisition,
but fell short of addressing the overall integrity hashing
approach. While it may seem straightforward to create a
linear bitstream hash of the input (albeit out-of-order)
bitstream, verifying such a hash is not possible using the
AFF4 evidence container in its current form. This is due to
there being no mechanism in the AFF4 by which the
ordering of all Map segments is recorded.

Compression throughput

Within the field there is a lack of consensus regarding
the benefits of employing compression in acquisition. The
use of compression allows a tradeoff between CPU and
output I/O resources. In I/O bandwidth limited and CPU rich
environments, compression can lead to significant gains in
throughput and minimization of latency.

The de-facto standard compression scheme in physical
images is the use of the Deflate algorithm (Deutsch, 1996) to
compress data blocks, as employed by sgzip, EWF, AFF1
and AFF4. The Deflate algorithm is an order of magnitude
slower than MD5 and SHA1 e achieving on a single core of
an I7 on the order of 40 MB/s. Unlike linear bitstream
hashing, such block compression is parallelizable across
multiple cores, and as demonstrated by tools such as
Guymager, readily achieve speeds in the range of 100 MB/s
(Zimmerman, E). In addition to Deflate, AFF v3 supported the
use of LZMA, a slower but more space efficient compressor.

Symbolic compression

Byte runs consisting entirely of a single byte value are a
common occurrence on storage mediums. These are
increasingly of relevance due to the emptying of unallo-
cated space brought about by some implementations of the
SSD TRIM feature. While highly compressible, the
compression of such data runs using dictionary coding data
compressors such as Deflate is inefficient compared with
testing for the contents being uniformly of the same byte.
Furthermore, storing the compressed version is inefficient
in terms of storage consumption.

While the notion of sparse image sections (byte se-
quences consisting entirely of the byte 0) was contem-
plated by the AFF4 proposal, it was never formally
described. AFF4 provided the aff4:Zero stream, which is
used to represent data runs consisting wholly of bytes with
hex value 0x00, similar to /dev/zero in Unix. More recently,
the EWF2 format has extended this idea by introducing
sparse chunks, which enable the specification of chunks
containing wholly a particular byte. Such symbolic
compression is useful in symbolically compressing erased
flash memory, which in that state, contains wholly the byte
0xFF.

Aggregating output throughput

The current model of forensic imaging is generaly based
on the paradigm of storing the forensic image on a single
storage device. Assuming unlimited CPU and memory
bandwidth, this restricts the upper limit of the speed at
which imaging proceeds based on the combination of
storage device write throughput, storage I/O bus speed,
and OS/Filesystem efficiency. For example, when imaging
with a Linux based forensic Live CD, one might be able to
sustain on the order of 200 MB/s to a commodity SATA
drive, however this is might be limited to only 40 MB/s if
the only output I/O channel on the suspect computer is
USB2.

Assuming sufficiently fast I/O channels, filesystem, and
CPU, the primary limiting factor in scaling image
throughput is then dictated in current approaches by the
write speed of a single hard drive or its bus.

Approaches contemplating spreading image sub-
component writes across multiple destinations are
limited in the literature: the original AFF4 work contem-
plated storing of sub parts of forensic images in arbitrary
physical or virtual locations and Farrell (2013), describes a
method of copying hard drive blocks across multiple drives
simultaneously, utilizing the aggregate I/O throughput,
without however, addressing hashing.

The current generation of dedicated imaging devices are
beginning to offer “fill and spill” of an image from one
storage device to another when full, however this ad-
dresses scaling of image size but not rate.

Extending the AFF4 container format for low latency
acquisition and analysis

The former section identified a range of limitations
inherent in current acquisition approaches. This section
describes our proposed solutions to these limitations, by
way of additions to the AFF4 container format. While it is
not in the scope of this paper to describe the architecture
and operation of the software which implements this
extended version of the AFF4, we describe some imple-
mentation related concerns where relevant.

Symbolic compression

Our implementation performs symbolic compression
prior to regular compression, identifying blocks consisting
entirely of the same byte. Where such blocks are found,
regular compression is omitted. These blocks are repre-
sented in the AFF4 Map by reference to virtual streams
named after the hex representation of the byte; i.e. “aff4:-
SymbolicStream00” and “aff4:SymbolicStreamFF”, and so on
for the byte range 0x0 to 0xff. We keep as a synonym
“aff4:Zero” for backwards compatibility.

Partial imaging

Our implementation contains our own independent
implementations of the MBR, GPT and LVM volume man-
agement schemes, and NTFS, HFSþ, FATx & EXTx fil-
esystems. These are used to interpret higher level goals

B.L. Schatz / Digital Investigation 14 (2015) S45eS54S48



related to what is to be acquired into concrete regions of
blocks of the target storage device.

With the ability to map out the topography of the target
storage device in place per the above, supporting partial
imaging on top of AFF4 is straightforward. Using the Map
abstraction, we define two new virtual stream abstractions:
aff4:UnreadableData and aff4:UnknownData. Used similarly
to the existing aff4:Zero stream, the former is used to
identify areas where the data is unknown due to read
failures. The latter is used to refer to byte sequences within
the Map (and consequently image) for which the corre-
sponding data is unknown, due to its not having been read.

On closing a partial image (i.e. an image which has
blocks that have never been stored) the all such address
runs (holes) are identified in the Map, and a corresponding
aff4:UnknownData region placed in the Map.

Aggregate output throughput

While the original AFF4 work proposed a means of
storing portions of a forensic image across multiple vol-
umes, located locally or remotely, it did not explicitly
address scaling. We have implemented as an application of
the AFF4 what we call striped imaging. Like its RAID
namesake, we spreadwrites acrossmultiple disks, however
unlike RAID, we are capable of utilizing the aggregate
bandwidth of output channels of differing throughput.

Our striped imaging profile is implemented using the
AFF4 primitives in the following way:

1. An AFF4 evidence Container is created on each desti-
nation storage device;

2. All such containers have a different and unique Volume
ID;

3. In each such container a uniquely identified Image
stream is opened;

4. A Map Stream is created in each container such that the
ID of the map is identical.

5. For each image chunk, if the chunk is either compressed
or un-compressible data, the chunk is written to the
Image stream with the smallest number queued writes
(measured in bytes and not objects), and the Map
streams in each container updated to reflect the storage
of the chunk in the stream. If the chunk is a Symbolic
Chunk the chunk is stored in the Map streams in each
container without writing data to any Image stream.

Non-linear imaging and hashing

The AFF4 container format already supports non-linear
imaging (a specific application of which is demonstrated
in hash based imaging) by way of the Map abstraction. One
aspect of non-linear imaging not considered in the AFF4
work was the means of calculating linear hashes for such
images. The current AFF4 design is limited in that it does
not record the ordering relationship of blocks stored in the
Map. Furthermore, one cannot assume that blocks stored in
the Image stream are ordered, due to concurrency in the
compression process, and symbolic blocks, stored only in
the Map, may be merged, potentially making the original
block ordering indeterminate.

Our initial approach to addressing this limitation was to
revise the Map serialization of AFF4 to optionally include a
record of the ordering of all blocks as received from OS
reads of the subject storage device (which we called a
mapPath). Our experiments identified that such a linear
hash of the raw data was a significant bottleneck on low
powered CPU's due to a lack of concurrency.

Accordingly, our default approach to hashing is to
employ segment based hashing (which we call block based
hashing due to the overloaded usage to the term segment
in our current vocabulary), and to limit its application to
only to non-sparse (symbolic) blocks. This enables hashing
to proceed in parallel on multi-core CPU's.

We define a third bevy element (a block hash segment)
which stores the block hash of each corresponding chunk of
a data stream. The name of the block hash segment is based
on the name of the bevy and the type of hash in use. For
example, for the compressed block stream named aff4://
83a3d6db-85d5/ we might have the following segments
as described in Table 2:

We consider hashing of sparse chunks to be a waste of
resources and accordingly do not hash those chunks.
Symbolic regions, being a component of the Map, are pro-
tected by the Map hash. For example, for a Map named
aff4://89313d6db-15d9/ the hash is calculated as

The period (“.”) represents concatenation of bytes and
the sha256 operations are applied to the content of the
named segments. Curly brackets represent optional
elements.

A hash of the block hashes of an Image stream is
calculated per the below:

The aff4:blockHashesHash can be calculated as each hash
of each chunk is added. In striped acquisitions, therewill be
multiple Image streams, each of whichwill have a stream of
block hashes, and accordingly, an aff4:blockHashesHash
over those. The ordering of those in the blockHash calcu-
lation above is determined by the ordinal of the corre-
sponding Image stream in the Map index.

Finally, recognizing the importance of having a single
hash to record and communicate which applies to the
entire image, we generate a single SHA256 hash called

B.L. Schatz / Digital Investigation 14 (2015) S45eS54 S49



aff4:blockHash based on the concatenation of the hashes of
the block hashes of each stream and the associated Map
hashes as follows

The abovehashing approach enables the blockHash to be
calculated without any re-reading of data from the image.

Compression throughput

As identified in the prior section, non-symbolic compres-
sion is the single most costly compute related operation
involved in contemporary physical acquisition. While paral-
lelizing the operation has succeeded in achieving rates in
the realm of 100e200 MB/s, imaging remains, with high I/O
rate source devices, CPU bound. Scaling requires more cores
or faster algorithms. Our approach is to employ both.

We modify the AFF4 container schema to support con-
figurable compression schemes and apply lighter-weight
compression algorithms: the Snappy algorithm developed
by Google and the LZ4 algorithm used in the ZFS filesystem.
In our benchmarks both algorithms exhibit single threaded
compression at around 1500 MB/s on a single core of a dual
core I7 (around 30# faster than Deflate).

In order to support such configurable compression, we
add a property called “aff4:compressionMethod” to the AFF4
Stream object, with the corresponding values being https://
code.google.com/p/lz4/ and http://code.google.com/p/snappy/
used to specify the algorithm used for that stream. The
following example demonstrates the Snappy compression
method specified for the stream aff4://0466b8fb-9af0-4ef2-
b36c-8b0d90fc0ac2.

While these algorithms do not compress data as well as
the Deflate algorithm, they do allow a CPU/bandwidth
tradeoff which assists in achieving higher effective speeds.
In situations where the available CPU exceeds output
bandwidth (for example cross-internet), usage of Deflate or
even LZMA may be warranted.

Experimental methodology

In order to demonstrate the limitations identified in
existing evidence container approaches and to demon-
strate proof of concept, a testbed focusing on high bitrate
acquisition was built. Table 3 summarises the hardware
used in the testbed.

Sample preparation

The target device (test drive) was populated with data
as follows:

1. Windows 8.1 installed from empty to the whole drive
(around 10.2G allocated)

2. High entropy data added to filesystem from Linux /dev/
random (38.4 GB)

3. Windows main filesystem shrunk by around 100 GB
4. A new volume and NTFS filesystem created in the free

space.
5. From the GovDocs1 (Garfinkel et al., 2009) corpus, the

contents of Zip files 001-075 were extracted into the
fresh volume, then the files corresponding to 001-040
copied such that a second set of those files exist on the
filesystem (59.8 GB).

Compression characteristics

The drive was linearly acquired using our system using
the Snappy compression algorithm, and a graph generated
from the image such that, the y-axis corresponds to the
chunk size (in bytes) and the x-axis corresponds to ordinal
of the chunk (see Fig.1). The uppermost horizontal line, (red
points in web version) indicate the size of chunks pre
symbolic and snappy compression, and the green points (in
webversion) the size of chunks as stored, post symbolic and
Snappy compression.

With reference to Fig. 1, the leftmost vertical grouping
labeled “A” corresponds to around 10.2G of files related to
the windows installation, and shows Snappy compression
has yielded significant gains. Similarly, the GovDocs subset
(the rightmost vertical grouping labeled “E”, roughly cor-
responding to 59.8 GB) shows significant stored size re-
ductions due to Snappy compression.

Table 3
Testbed hardware.

Element Details

Target device 240G Intel 730 SSD
Computer 1 4 core i7-4770R 3.20 GHz CPU system
Computer 2 2 core i5-3337U 1.80 GHz CPU system
USB3 Bridge(s) Orico USB3/eSATA bridge
Evidence HDD(s) Toshiba 2 TB 7200RPM Commodity SATA

Table 2
Bevy segments related to segment hash.

AFF4 name Segment type Purpose

aff4://83a3d6db-85d5/
00000032

Data segment Chunks of stored data

aff4://83a3d6db-85d5/
00000032/index

Chunk index
segment

Offsets within data
segment for chunks

aff4://83a3d6db-85d5/
00000032/
blockHashes.sha1

SHA1 block hash
segment

SHA1 hashes of chunks
within data segment.

B.L. Schatz / Digital Investigation 14 (2015) S45eS54S50



The uppermost horizontal grouping labeled “C” corre-
sponds to the 38.4 GB of high entropy (random) data in the
filesystem, and is uncompressed. Much of the lowermost
horizontal groupings labeled “B”, “D”, and “F” correspond
to sparse (unused) portions of the drive that have been
symbolically compressed.

Compression effectiveness

Two separate test runs generated a linear image of the
sample drive connected via SATA3 to Computer 1, and a
single hard drive via USB3 as the image destination. The
variable in the experiment was the usage of compression
(Symbolic Compression remains active in both runs).
Samples of the read I/O rate of the sample drive were
collected on a 1s basis using the Linux iostat utility.

Fig. 2 is a graph of the results, where the read I/O rate of
the target drive is graphed vs elapsed time, the results for
compression enabled are graphed in red points (in web
version) and the results for compression disabled are
graphed in green points (in web version).

With reference to the figure, when read from the left, it
is apparent that the rough shape of both plots is in general
similar in regard to both sparse (empty) blocks (labeled “A”,
“B”, and “C”) and the high entropy (random) data (labeled
“D”). In the former case, acquisition proceeds at close to the
wire speed of the SSD, which, according to Intel, is around
550 MB/s (Intel, 2014). This is due to the negligible load on
both the CPU and output I/O channel due the effect of
symbolic compression.

In the case of high entropy data, the I/O rate hovers at
around 200 MB/s, with the maximumwrite throughput of
the destination evidence hard disk being the bottleneck.

The primary variance in the two plots is the sections
corresponding to the Windows OS (labeled “E”) and the
GovDocs files (labeled “F”): with compression the I/O rate is
higher, while without compression, the I/O rate tends to-
wards the 200 MB/s limit imposed by the output I/O
channel.

Acquisition completes more quickly using compression
than without, with acquisition completing 2:08 faster with
Snappy compression.

Striping effectiveness

The effectiveness of striping acquisition across multiple
output channels was tested by employing the same hard-
ware setup as the prior experiment. Three test runs were
conducted involving the generation of linear images, with
the variable being the number of output channels (USB3
connected disks).

The results of the runs are graphed as Fig. 3, with the
read I/O bandwidth graphed in red (in web version) for the
run using only a single destination drive, and in green (in
web version) for the run using two destination drives, and
in blue (in web version) for the run employing three
destination drives.

With reference to the figure, the high entropy data
section contains the most variability, being I/O bound on
output for the run employing a single destination drive,
sitting on around 200 MB/s (label “A”). The addition of a
second destination drive significantly increases the effec-
tive bandwidth for this section, averaging at around
400 MB/s (label “B”). The addition of a third destination
drive increases the effective bandwidth again, to
approaching 500 MB/s (label “C”).

Table 4 summarises the total acquisition time for the
three runs.

The impact of hashing

In order to validate our theory that stream based
hashing is a bottleneck for CPU constrained environments,
the following test was conducted. Computer 2 (a dual core
i5) was paired with two destination drives (an aggregate of
400 MB/s). As before, we acquire a linear image, and in this
test, vary the hashing scheme between stream based
hashing and block based hashing. Stream based hashing

Fig. 1. Stored chunk size vs chunk address for sample image.

B.L. Schatz / Digital Investigation 14 (2015) S45eS54 S51



takes a hash of ALL data (LBAstart / LBAend) including
blocks that are symbolically compressed, whereas block
based hashing is as described in Section 5.4, omitting
symbolic blocks.

Fig. 4 plots the read I/O bandwidth of both tests. With
reference to the figure, it is apparent that for the sparse
section of the disk the read I/O rate sits at around 350 MB/s
(the green plot (in web version), label “A”), effectively
constrained by the single core performance of SHA1
hashing for this CPU (which we have separately confirmed
by a separate test). For the same section of data (labeled

“B”) under block based hashing, the bottleneck is, as with
all prior tests, approaching the maximum read I/O band-
width of the combination of the target device and SATA3
bus (around 530 MB/s).

A similar test employing Computer 1 (the 4 core i7)
showed no effective difference between the usage of
stream and block based hashing, most likely due to the
single thread hashing performance exceeding the
maximum input rate.

Effectiveness of partial acquisition

In order to evaluate the effectiveness of partial non-
linear acquisition, test runs were undertaken involving an
allocated-only acquisition of the sample using Computer 1,
with two output channels.

The graph of read I/O rates of the test, along with the
results of a linear acquisition for the same setup is pre-
sented as Fig. 5.

Fig. 2. Linear acquisition throughput is increased by compression.

Fig. 3. Aggregated I/O channels increase linear acquisition throughput.

Table 4
Total acquisition time by number of destinations.

Number of destinations Total acquisition time

Single destination 11:29
Two destination 8:00
Three destination 7:40

B.L. Schatz / Digital Investigation 14 (2015) S45eS54S52



With reference to the figure, it can be seen that an
allocated only acquisition (115 GB in total) completes in just
over half the time that it takes for a full linear acquisition at
an average rate of around 400 MB/s.

Summary of total acquisition times

Table 5 summarizes the total acquisition times associ-
ated with varying both the number of stripes and the scope
of acquisition (linear full vs. non-linear allocated) for
Computer 1 and the test drive. With reference to the table,
for linear acquisition of the whole disk, the average
acquisition rate reaches what we have observed to be the
maximum read rate of the SSD in our test system when
using 3 stripes as output (a 35% increase in throughput over
one stripe). Using two stripes yields a round a 30%
improvement (Table 6).

The single stripe allocated acquisition has a compara-
tively lower acquisition rate, due to the removal of the
easily compressible and low cost storage sparse regions.
Adding a second stripe to an allocated acquisition nearly
doubles the throughput, consistent with being output I/O
bound. Adding a third stripe, while giving an appreciable
gain of 40 MB/s, is less than the gain of adding a third stripe
for linear acquisitions. We speculate that this may be due to
the more random nature of this workload impacting our
scheduler or the SSD's read-ahead.

Comparison with existing approaches

In order to compare the effectiveness of the approach in
comparison with existing common approaches, we under-
took 6 further test runs, using the test sample and Com-
puters 1 & 2 and a single image destination. The tests

Fig. 4. Block based hashing gives higher throughput than stream based hashing in linear acquisition.

Fig. 5. Non-linear partial acquisition reduces acquisition time.

B.L. Schatz / Digital Investigation 14 (2015) S45eS54 S53



recorded the total acquisition time using FTK Imager and X-
Ways running from a WinFE forensic live CD, based on
Windows 8.1. No graphs were generated due to an absence
of performance monitoring infrastructure on the LiveCD.

FTK Imager 3.1.3.2 was executed using compression
setting 1 (fast compression) and using standard stream
hashes. There is no setting to configure the hash(es) in use,
so the defaults (SHA1 & MD5) were used. X-Ways 18.0SR-8
was executed using fast adaptive compression, using the
default number of compression threads (2*CPU core
count), and only SHA-1 hashing. Both applications use
Deflate based compression. The results are summarized in
Table 5.

With reference to the table it is apparent that for XWays
Forensics, the cost of the Deflate algorithm is largely
negated by the usage of threaded compression and an
abundance of CPU resources for Computer 1, whereas with
low CPU resources (Computer 2), the usage of the Deflate
algorithm lowers throughput by more than half.

Recalling that the maximum write rate of the destina-
tion drive has been measured to be around 200 MB/s, at
that rate, writing 240 GB of raw data should take around
only 20 min. Comparing the measured acquisition times
with this, it is apparent that for FTK Imager, even with an
abundance of CPU resources, the Compression/Output
throughput tradeoff of using compression is inconclusive.
With limited CPU resources it is detrimental. For X-Ways,
under abundant CPU, the usage of compression yields sig-
nificant gains, but, like FTK imager, is detrimental to
throughput on lower power hardware. The proposed
technique yields significant throughput gains in both
situations.

Limitations

The above experiments do not include an image verifi-
cation phase, which is generally used in practice.

Verification under our proposed extensions to the AFF4
format enjoys commensurate throughput increases due to
faster compression algorithms and the absence of hashing
symbolic chunks.

Conclusions

In this work we identified the limitations inherent in
current forensic physical acquisition approaches which
limit both the rate at which acquisition may proceed and
the extent to which targeted subsets of physical disks can
be acquired. The contributions of the paper are the pro-
posal of a number of extensions to the AFF4 image
container format which allow acquisition to proceed at
high bitrates through increased concurrency, lightweight
compression schemes& horizontal scaling of image storage
devices. These proposed extensions have been systemati-
cally evaluated through experiments which quantify the
limitations of former approaches under a variety of factors
adversely affecting acquisition throughput, and proof of
concept demonstrated by acquiring images at target
bitrates of around 500 MB/s.

Finally, it has been demonstrated that partial non-linear
images may be taken at bit rates that exceed current
physical acquisition approaches.

Acknowledgments

The author thanks the reviewers for their detailed and
considered feedback.

References

Bertasi P, Zago N. FASTDD: an open source forensic imaging tool. In:
Availability, Reliability and Security (ARES), 2013 Eighth International
Conference on. IEEE; 2013, September. p. 485e92.

Cohen M, Garfinkel S, Schatz B. Extending the advanced forensic
format to accommodate multiple data sources, logical evidence,
arbitrary information and forensic workflow. Digit Investig 2009;6:
S57e68.

Cohen M, Schatz B. Hash based disk imaging using AFF4. Digit Investig
2010;7:S121e8.

Deutsch P. DEFLATE compressed data format specification. version 1.3,
rfc1951, IETF. 1996.

Farrell, (2013) Digital memory imaging system and method, Patent
GB2503600.

Garfinkel S, Farrell P, Roussev V, Dinolt G. Bringing science to digital fo-
rensics with standardized forensic corpora. DFRWS 2009, Montreal,
Canada. 2009.

Garfinkel S, Malan D, Dubec KA, Stevens C, Pham C. Advanced forensic
format: an open extensible format for disk imaging. In: Advances in
digital forensics II. New York: Springer; 2006. p. 13e27.

Intel. Intel Solid State Drive 730 Series. 2014 (accessed 26.09.14), http://
www.intel.com.au/content/www/au/en/solid-state-drives/solid-
state-drives-730-series.html.

Rosen A. ASR expert witness compression format specification. 2002.
Accessed Sept 2014, http://www.asrdata.com/SMART/whitepaper.
html.

Roussev V, Quates C, Martell R. Real-time digital forensics and triage. Digit
Investig 2013;10(2):158e67.

Tableau. Tableau TD2u forensic duplicator. 2014 (accessed 26.09.14),
https://www.guidancesoftware.com/products/Pages/tableau/
products/forensic-duplicators/td2u.aspx.

Watkins K, McWhorte M, Long J, Hill B. Teleporter: an analytically and
forensically sound duplicate transfer system. Digit Investig 2009;6:
S43e7.

Zimmerman E (accessed 26.09.14), http://goo.gl/2h9pCd; 2013.

Table 5
Total acquisition times for proposed approach.

Number of destinations Total time
(s)

Average rate
(MB/s)

Wirespeed, 3 stripes, linear 7:30 533
Wirespeed, 2 stripes, linear 8:00 500
Wirespeed, single evidence

disk, linear
11:29 348

Wirespeed, 3 stripes, allocated 4:17 447
Wirespeed, 2 stripes, allocated 4:42 408
Wirespeed, single evidence

disk, allocated
8:21 229

Table 6
Total linear acquisition time in seconds.

Acquisition application Computer 1 Computer 2

FTK Imager 20:10
(198 MB/s)

37:38
(106 MB/s)

X-Ways Forensics 13:58
(286 MB/s)

33:23
(120 MB/s)

Proposed approach 11:29
(348 MB/s)

15:08
(264 MB/s)

B.L. Schatz / Digital Investigation 14 (2015) S45eS54S54


	Wirespeed: Extending the AFF4 forensic container format for scalable acquisition and live analysis
	Introduction
	Motivation
	Acquisition as an interactive & batch process
	Maximizing acquisition rate

	What is a disk image?
	Limitations in current evidence container approaches and related work
	Partial imaging
	Non-linear imaging
	Compression throughput
	Symbolic compression
	Aggregating output throughput

	Extending the AFF4 container format for low latency acquisition and analysis
	Symbolic compression
	Partial imaging
	Aggregate output throughput
	Non-linear imaging and hashing
	Compression throughput

	Experimental methodology
	Sample preparation
	Compression characteristics
	Compression effectiveness
	Striping effectiveness
	The impact of hashing
	Effectiveness of partial acquisition
	Summary of total acquisition times
	Comparison with existing approaches

	Limitations
	Conclusions
	Acknowledgments
	References


