
DIGITAL FORENSIC RESEARCH CONFERENCE

The Impact of GPU-Assisted Malware on

Memory Forensics: A Case Study

By

Davide Balzarotti, Roberto Di Pietro and Antonio Villani

Presented At

The Digital Forensic Research Conference

DFRWS 2015 USA Philadelphia, PA (Aug 9th - 13th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized

the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners

together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working

groups, annual conferences and challenges to help drive the direction of research and development.

http:/dfrws.org

The Impact of GPU-Assisted Malware on The Impact of GPU-Assisted Malware on
Memory Forensics: A Case StudyMemory Forensics: A Case Study

D.Balzarottia, R. Di Pietrob and A. Villanib

aEURECOM, Sophie Antipolis, France
bUniversity of Roma Tre, Rome, Italy

davide.balzarotti@eurecom.fr,
{dipietro,villani}@mat.uniroma3.it

DFRWS USA 2015 Annual Conference, DFRWS USA 2015 Annual Conference, PhiladelphiaPhiladelphia

Software memory acquisition

OS
0x0

0xFFFF...FF

Proc A

Proc B

MA

Memory Acquisition
1)For each page in pages

a)Read p from memory
b)Write p to disk

Memory Layout

Software memory acquisition

OS
0x0

0xFFFF...FF

Proc A

Proc B

MA

Memory Acquisition
1)For each page in pages

a)Read p from memory
b)Write p to disk

Memory Layout

Real Memory Layout

Reserved

Reserved

Dumped by MASystem
RAM

System
RAM

System
RAM

Passive Anti-forensic techniques*

Reserved

Reserved

Dumped by MASystem
RAM

System
RAM

System
RAM

* Stuttgen, J., Cohen, M., Anti-forensic resilient memory acquisition – DFRWS 2013

OS

Proc A

Proc B

MA

DMA

DMA malware*

* P. Stewin, Understanding DMA
Malware, DIMVA 2013

Could it be worse?

● Of course, yes! ;-)

● Think about an “external” device that is (w.r.t. AMT):

– more pervasive

– more essential for the system

– with more computational power

– with a big reserved memory

– easy to program

– not supported/considered by current anti-virus software

● What can be such device?

Could it be worse?

● An external device more pervasive than AMT and which is
enabled by default

● A device that does not require exploits in order to be
programmed

● A device which is not supported by current anti-virus software

● What can be such device?

The Graphic Processing Unit!

The GPU threat

● Almost every server/laptop/smartphone has one GPU (at least)

– Some even have multiple GPUs (e.g. optimus technology)

● GPUs:

– are fundamental for any system that runs a GUI

– can be easily programmed with OpenCL / CUDA / APP

– are equipped with GBs of reserved/dedicated RAM

– have great computational capabilities

– ABI is not supported by anti-virus

It got the attention of the DF community...

...and media

Contributions

● Model the GPU malware from a memory-forensic perspective

● Identify which artifacts can/should be collected for an effective
DF investigation

● Provide a case study for Intel GPUs

● Show novel GPU anti-forensics techniques

Outline

I. Motivation

II. Background

III.GPU-assisted malware

IV.Case study: Intel Integrated GPUs

V. Conclusion

CPU

ALU
Control Logic

Cache

ALU

ALU ALU

HOST MEMORY

1) Few ALUs (e.g. 4,8,16)
2) Complex control Logic

● Speculative execution
● Branch prediction

3) Cache
1)Shared LLC
2)Per-core cache

(smaller)

GPU

GPU MEMORY

1) Many ALUs
(hundreds)

2) Simple control
Logic
● e.g. Divergent

execution paths
get serialized

3) Very small Cache

HOST MEMORY

The execution model

GPU kernel

D

TGPU .text

GPU .data

C
o

n
tr

o
ll

i n
g

 P
r o

c
e

s
s

M
e
m

o
ry

Data

GPU
Driver

Process and Context lists

P1 P2 P3 P4

C1 C2 C3

GPU Task

Context list
(e.g. struct
i915_hw_cont
ext)

Process list
(e.g. struct
task_struct)

O
S

 m
e

m
o

ry

Outline

I. Motivation

II. Background

III.GPU-assisted malware

IV.Case study: Intel Integrated GPUs

V. Conclusion

The execution model

GPU kernel

D

TGPU .text

GPU .data

C
o

n
tr

o
ll

i n
g

 P
r o

c
e

s
s

M
e
m

o
ry

Data

GPU
Driver

GPU anti-forensic techniques

● We identified four different techniques

– Unlimited code execution

– Process-less code execution

– Context-less code execution

– Inconsistent Memory Mapping

● Each technique

– may require different priviledges / knowledge about the driver internals

– allows the malware to get different level of stealthiness

Unlimited Code Execution

However this limitation can be circumvented so that the malware can
 get the Ulimited Code Execution

GPUs are non-preemptive:
● If a GPU is doing computation, it cannot do rendering at the same time
● The graphic driver usually enforces a timeout to kill long lasting kernels
This limits a malware activity since it needs a controlling process

Processless execution

In normal condition the graphic driver maintains a link between
a task executed in the GPU and its controlling process

The GPU execution model can be broken allowing the presence

of a running kernel without any controlling process

Process and Context lists

P1 P2 P3 P4

C1 C2 C3

GPU Task

Context list
(e.g. struct
i915_hw_cont
ext)

Process list
(e.g.
trask_struct_t)

Contextless execution

The graphic drivers stores information about the task
being executed on the GPU

A malware can detach its context from the list in the GPU
driver and remove traces about its existence

Process and Context lists

P1 P2 P3 P4

C1 C2 C3

GPU Task

Context list
(e.g. struct
i915_hw_cont
ext)

Process list
(e.g.
trask_struct_t)

Inconsistent Memory mapping

However, a malware can break this information to hide mapped
areas that look suspicious (e.g. the keyboard buffer)

GPU and CPU use different information (i.e. different page tables) to perform virtual to
physical address translation
Usually, this pieces of information are synchronized

GPU-assisted malware and memory forensic

● A forensic analyst needs to answer a certain number of questions

– Which processes are using the GPU? (List processes)

– What code is running within the GPU? (List kernels)

– Which part of the host memory is accessed by the GPU? (List
GPU memory maps)

● Is the host memory enough to answer to these three questions?

Outline

I. Motivation

II. Background

III.GPU-assisted malware

IV.Case study: Intel Integrated GPUs

V. Conclusion

About our case study

● Intel Integrated GPUs of the Haswell processors family

● Linux 3.14

● Direct Rendering Manager (DRM)

– Graphic Execution Manager (GEM)
● i915.ko kernel module

● Beignet (OpenCL)

The Address Space Layout on Intel Haswell

● Some widely adopted
memory acquisition
softwares (e.g.
LiMe,/proc/kcore and pmem)
dump only the memory
marked as System RAM

PPGTT points to System RAM!

Findings on Intel GPUs

● Inconsistent Memory Mapping

– Change virt to phys mapping inside the PPGTT (it also breaks the W^X bit)

● Process-less execution

– Kill the controlling process after the GPU kernel submission

● Context-less execution

– DKOM attack on the driver data structures (after the GPU kernel execution):
● Access the struct drm_i915_private and gets the context_list pointer

● Call i915_gem_context_unreference() on our i915_hw_context

● Unlimited Code Execution

– disable the hangheck through the sysfs, at the path

/sys/module/i915/parameters/enable hangcheck

Artifacts of Intel GPUs

● Hangcheck flag status

● struct drm_i915_private

– List of contexts

– List of buffer objects

– List of process using the GPU

● PCI BAR0

– Register file

– GTT

– PPGTT

Need to modify the MANeed to modify the MA

Host memory limitations

AF Technique Malware
Requirem.

List
Process

List
Kernels

Memory map

None U OS Driver OS

Unlimited
exec

S OS Driver OS

Process-less S N/A Driver Driver

Inconsistent K OS Driver N/A

Context-less K N/A N/A N/A

Outline

I. Motivation

II. Background

III.GPU-assisted malware

IV.Case study: Intel Integrated GPUs

V. Conclusion

Conclusions

● GPU-assisted malware can become a serious threat in the near
future

– First PoC published (e.g. Demon)

● Lack of:

– analysis tools

– Memory acquisition tools supporting this threat

● OS, vendor and family seriously affects the analysis

Acknowledgment

European Antitrust Forensic IT Tools (EAFIT)

This work partially supported by the European Antitrust Forensic IT Tools project (rif.
HOME/2012/ISEC/FP/C2/4000003977) funded by the Prevention of and Fight against
Crime Programme of the European Union European Commission

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

