
ilable at ScienceDirect

Digital Investigation 16 (2016) S114eS123
Contents lists ava
Digital Investigation

journal homepage: www.elsevier .com/locate/di in
DFRWS 2016 Europe d Proceedings of the Third Annual DFRWS Europe
TLSkex: Harnessing virtual machine introspection for
decrypting TLS communication

Benjamin Taubmann*, Christoph Fr€adrich, Dominik Dusold, Hans P. Reiser
University of Passau, Innstr. 43, 94032 Passau, Germany
Keywords:
Virtual machine introspection
Transport layer security
Decryption
Malware analysis
Virtualization
Semantic gap
* Corresponding author.
E-mail address: bt@sec.uni-passau.de (B. Taubm

http://dx.doi.org/10.1016/j.diin.2016.01.014
1742-2876/© 2016 The Authors. Published by Elsev
creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

Nowadays, many applications by default use encryption of network traffic to achieve a
higher level of privacy and confidentiality. One of the most frequently applied crypto-
graphic protocols is Transport Layer Security (TLS). However, also adversaries make use of
TLS encryption in order to hide attacks or command & control communication. For
detecting and analyzing such threats, making the contents of encrypted communication
available to security tools becomes essential. The ideal solution for this problem should
offer efficient and stealthy decryption without having a negative impact on over-all se-
curity. This paper presents TLSkex (TLS Key EXtractor), an approach to extract the master
key of a TLS connection at runtime from the virtual machine's main memory using virtual
machine introspection techniques. Afterwards, the master key is used to decrypt the TLS
session. In contrast to other solutions, TLSkex neither manipulates the network connection
nor the communicating application. Thus, our approach is applicable for malware analysis
and intrusion detection in scenarios where applications cannot be modified. Moreover,
TLSkex is also able to decrypt TLS sessions that use perfect forward secrecy key exchange
algorithms. In this paper, we define a generic approach for TLS key extraction based on
virtual machine introspection, present our TLSkex prototype implementation of this
approach, and evaluate the prototype.
© 2016 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access

articleunder theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The proliferation of encrypted communication in the
Internet has led to an increase in security, but also to an
increase in the difficulty of performing forensic in-
vestigations and analysis of malicious activity. Today's de-
facto standard for securing communication is transport
layer security (TLS), which is used in a large variety of ap-
plications, including e-mail, instant messaging and VoIP
communication. A recent NSS Labs report concluded that
encryption using TLS ‘‘actually reduces security on the
corporate network by creating blind spots for corporate
security infrastructures’’ (Pric, 2013). It is likely that an
ann).

ier Ltd on behalf of DFRWS
attack against a web-based server uses TLS-based
communication channels. Similarly, malware can use TLS
channels for protecting information leakage or for
communicating with a command & control server. A
detailed investigation of such problems can benefit from
the ability to decrypt the TLS-encrypted network traffic.

Among existing approaches for TLS decryption, which
we discuss in more detail in the Section Related work,
active TLS proxies are most likely the most practical
approach. Such a proxy acts as a “man-in-the-middle”,
decrypting and re-encrypting the network traffic. In this
paper, we investigate whether TLS-encrypted network
traffic can be decrypted if using such a proxy is not feasible.
Ideally, TLS decryption should work in a non-intrusive and
universal way. Being non-intrusive implies the following
two requirements:
. This is an open access article under the CC BY-NC-ND license (http://

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:bt@sec.uni-passau.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2016.01.014&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2016.01.014
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2016.01.014
http://dx.doi.org/10.1016/j.diin.2016.01.014


B. Taubmann et al. / Digital Investigation 16 (2016) S114eS123 S115
� No active manipulation of communication: The commu-
nication should be monitored passively without modi-
fying the contents of the communication (we do not
exclude a possible impact on the timing of messages).

� No modification of application: The decryption should
work without internal modifications to the communi-
cating applications (such as exporting the session key to
a file).

Being universal implies the following four
requirements:

� Independence of specific key exchange: The decryption
key extraction should work for any key exchange
algorithm.

� Independence of encryption algorithm: The decryption
and key extraction should work independently of a
specific cryptographic algorithm.

� Independence of client/server role: It should work for
local applications that operate as a server, as well as for
local client applications that connect to a remote server.

� Independence of the implemenation: The key extraction
should work for every TLS implementation.

This paper proposes a novel approach for TLS decryp-
tion based on virtual machine introspection (VMI) and
presents details of TLSkex, a prototype implementation of
this approach. The proposed approach makes the following
contributions. First, it proposes a method for inspecting
network traffic to detect TLS connections and extracting
essential information out of it. Second, it defines a strategy
for minimizing the size of memory snapshots that poten-
tially contain TLS session keys. Third, it proposes and
compares various heuristics to minimize the time required
for a brute-force search of cryptographic session keys in
memory snapshots. Finally, it presents an evaluation of the
prototype implementation and discusses benefits and
limitations.

The remainder of this paper is organized as follows. In
Section TLS internals we present some background about
the TLS protocol. The basic concepts of TLSkex are dis-
cussed in Section Conceptual approach. The implementa-
tion details are presented in Section TLSkex
implementation and evaluated in Section Evaluation. In
Section Related work we compare our approach to related
work in the fields of TLS decryption, cryptographic key
extraction of main memory and VMI. We finally conclude
our elaborations in Section Conclusion.
TLS internals

TLS is the successor of secure sockets layer (SSL). These
cryptographic protocols provide a secure communication
channel.

TLS uses cryptographic certificates based on asymmetric
cryptography for server authentication and e optionally e

client authentication. This means that all decryption at-
tempts based on active man-in-the-middle intercepts with
fake certificates can be detected, unless the interceptor has
access to the private keys of the original endpoints.
After endpoint authentication, TLS negotiates a sym-
metric session key (master secret). This negotiation can be
done with RSA encryption, or with the Diffie-Hellman (DH)
or elliptic curve Diffie-Hellman (ECDH) algorithm. Nowa-
days, DH or ECDH should be the preferred way to negotiate
a session key. In contrast to RSA, they have the advantage
that even if an attacker obtains the private RSA key it is not
possible to decrypt already captured connections as it is not
possible to extract the session key from the network traffic.
This property is called perfect forward secrecy (PFS).

Finally, the communication between the endpoints is
protected with symmetric encryption and message
authentication based on symmetric keys derived from the
master secret. TLS does not rely on a single fixed crypto-
graphic algorithm; instead it provides a flexible framework
that can support a large variety of encryption algorithms. At
the beginning of a TLS session, the endpoints negotiate
which algorithms and parameters to use.

TLS records

Internally, TLS is composed of several sub-protocols. The
lower protocol layer is the TLS record protocol, which is
used to exchange control and data messages between the
communication partners. Each message of the record pro-
tocol contains the content type of a record, the TLS version,
the length of a data fragment, and the data fragment
(compressed, integrity protected and encrypted using the
negotiated algorithms). At this layer, only the data fragment
is encrypted, whereas all other fields (record type, TLS
version and length) are exchanged in plain text.

Key negotiation and derivation

The key negotiation process is used to exchange the
cryptographic parameters of the upcoming encrypted
network session. The client initiates the protocol by
sending a TLS record with the content type Client Hello
(CH) and the server responds with a Server Hello (SH).
Thesemessages do not only definewhich algorithms to use,
but are also used to exchange a client and server random
value. Afterwards, the client and server define a premaster
secret, for example by using the DH algorithm. In the initial
handshake of TLS, no encryption is used, and thus the client
and server randomvalue are exchanged in plain text. If keys
are renegotiated on an already encrypted TLS channel, the
parameters will be encrypted with the still active
configuration.

The premaster secret, client random, and server random
are used to calculate the master secret of a connection. The
master secret is used together with the server and client
random to compute the derived keys using a pseudo
random function (PRF). Typically, they comprise a MAC
secret key used to verify the integrity of a TLS record
(write_MAC_key), the data encryption key used to encrypt
the payload of a TLS record (write_key), and an initialization
vector (write_IV).

In the TLS protocol, a dedicated message is used to
signal the transition to new cryptographic parameters.
After completing the computation of the master secret,
each communication partner sends a Change Cipher Spec



B. Taubmann et al. / Digital Investigation 16 (2016) S114eS123S116
(CSP) message to the other endpoint and starts encrypting
all subsequent messages using the new cryptographic pa-
rameters. The CSP payload message itself, which consists of
a single constant byte, is encrypted using the previous
parameters. Note, that the message is sent using the record
layer protocol using a dedicated record type, which makes
it possible to detect any CSP message in an encrypted TLS
channel without decryption.

MAC computation

TLS protects the integrity of each TLS record using a
message authentication code (MAC). For not encrypted
messages or messages encrypted with a standard stream
cipher or CBC block cipher, TLS appends an HMAC
(Krawczyk et al., 1997) to the payload data. The HMAC is
keyedwith a dedicatedMAC secret derived from themaster
secret (as described above), and is computed over the im-
plicit sequence number of the TLS record, the type of the
record, the TLS version, the length and the unencrypted
data of the record. To verify the integrity of a TLS record, the
receiver can recompute the HMAC of a decrypted record
and check whether it matches the sent one. For authenti-
cated encryptionwith associated data (AEAD) ciphers, such
as counter with CMC-MAC (CCM) or Galois/Counter Mode
(GCM) an authentication tag is used to verify the integrity
of a TLS record instead of a separated MAC.

Session resumption

TLS supports the resumption of previously established
TLS sessions. In session resumptions, parameters and keys
of a previous TLS session are reused instead of negotiating
new values, resulting in a faster initial handshake. The
session state includes the choice of cryptographic param-
eters as well as the values for client random, server
random, and master secret. The session state can be stored
either on the server and is identified using a unique ID that
the client includes in its initial CH message (session ID), or
on the client (session tickets) (Salowey et al., 2008).

Conceptual approach

This section presents all the components that are neces-
sary to decrypt TLS secured connections (see Fig. 1) The TLS
decryption process can be separated into two stages e an
online and an offline part. The online functions must be
executed synchronous to the TLS communication and
include capturing of the network traffic, detecting TLS ses-
sions, and taking a snapshot of thememory inwhich the key
is stored, e.g., a snapshot of the whole virtual machine main
memory. The offline part can be executed later, whenever
the decrypted content of a TLS connection needs to be
accessed. The process of extracting the master secret from
memory uses the information captured by the online parts.

Network logging

Network logging is responsible for capturing the
network traffic of all TLS connections that shall be moni-
tored. This task can be executed by any standard network
logging tool, such as a dedicated device on a promiscuous
network switch port or a local capturing process on the
host running a virtual machine.

Trigger mechanism

The acquisition of virtual machine memory must be
triggered at the right point in time, when the key material
is present in main memory. The master secret and the
derived key material is available as soon as the TLS hand-
shake for key negotiation has finished and the key calcu-
lation has been executed. According to the TLS protocol, a
CSP message is sent when a node is ready to use new key
material in subsequent messages. This means that the right
moment for snapshot creation can be detected by moni-
toring the network traffic for TLS records that contains the
CSP message.

During a TLS session the key material can be renego-
tiated. This means that the key extraction routine must be
triggered each time when new cryptographic parameters
are exchanged. We can detect the subsequent CSP mes-
sages even if these messages themselves are encrypted,
because they are sent with a unique payload type in the TLS
record layer header, which is not encrypted (as explained in
the previous section).

Memory acquisition

The memory acquisition must be performed synchro-
nous to the triggered snapshot request and network traffic.
If it is performed asynchronously, the connection or the
program might be terminated and the key could be gone.
Thus, it is important that the memory acquisition is
executed synchronous. Additionally, it is important to take
the snapshot fast in order to decrease the impact on the
timing of the network communication.

There are several ways how the time required to take a
snapshot can be decreased. For example, LibVMI supports
copyonwrite snapshots of virtualmachines. But this feature
is currently not implemented for Xen (Xu et al., 2013).

The other way to decrease the time is to reduce the size
of the snapshot. However, this requires contextual knowl-
edge about the guest operating system. This includes for
example to know which process is communicating and
where its memory is located in physical memory.

Key extraction

There are several ways how the master secret can be
obtained from a memory snapshot. In contrast to RSA keys,
there is no standardized way to store the master secret of a
TLS session. Thus, there is no general approach to find it
with a simple pattern matching approach. But there are
several other ways how this can be achieved.

One way is to parse the structures of a process in order
to find the TLS session structure. This requires contextual
knowledge about the program. Thus, this approach is not
feasible for unknown programs such as malware. However,
this approach is very fast because no complex computation
is required. The search routine only needs to follow
pointers in memory.



Fig. 1. The main steps for decrypting TLS connections: network logging, TLS detection, memory acquisition, and key extraction.

B. Taubmann et al. / Digital Investigation 16 (2016) S114eS123 S117
A similar alternative is to search for well-known TLS
session structures of different implementations that
include the master secret. These sessions structures often
contain values such as the TLS version or the IP address of
the communication partner. Thus, these structures can be
found easily when some parts of them are known (Homan,
2013). This approach requires searching for parts of the key
structure in the whole address range of a process but no
complex computation is required to identify the key.
However, the key structure must be known a priori. If
malware uses an unknown TLS implementation, this
approach does not work.

When no a priori knowledge about a process is given,
there is still the option to try every byte sequence as a
potential master secret. This approach is slow as the testing
of a byte sequence includes the key derivation and the
decryption of a data block. Thus, first of all, the size of the
snapshot should be reduced to memory areas which
potentially contain the key. For example, in most of the
cases it would not make sense to search the master secret
in the read-only mapped text segment of a process. With a
high probability it is stored in amemory region that is write
able as it is negotiated dynamically at runtime. This
approach can be further optimized with heuristics that
filter byte sequences that are no potential keys, e.g., by
checking the entropy.

After a potential master secret was found in memory, it
must be tested whether it fits to the corresponding
connection. This can be achieved by decrypting a TLS re-
cord and verifying the HMAC that is included in every TLS
record. As the HMAC is computed over the sequence
number of a TLS record, this number must be known. Thus,
the first CSP message should be used as it has always the
sequence number zero.

TLSkex implementation

TLSkex implements the concepts described in the pre-
vious section. It is a frameworkwritten in the programming
language C that uses LibVMI in order to access the memory
of a virtual machine running under the XEN hypervisor.

TLSkex has been created with the focus on the following
goals: It shall obtain the master secret of a virtual machine
without active manipulation of the TLS channel itself, and
without manipulation of the communicating application.
TLSkex shall work independent of the specific key exchange
mechanism and selected cryptographic algorithms and
independent of whether a client or a server application
runs within the virtual machine.

Trigger mechanism

We need to trigger the snapshot process after observing
a network packet containing a CSP message, but before the
connection is closed and the master secret removed from
main memory. It is not sufficient to monitor the network
passively and trigger the key extraction process asynchro-
nously. In such a passive approach, triggering the creation
of the memory snapshot might take longer than the life-
span of the TLS connection, and thus fail to capture the
master secret. This is especially a problem for very short
living connections. Instead, we implemented an active
network monitoring approach.

Thus, TLSkex includes an active network monitoring
component that is able to analyze every packet coming
from or to the monitored virtual machine. The network
analyzer forwards packets only after they have been
inspected. It is equipped with two virtual TUN network
interfaces. One interface is bridged to the virtual machine
and the other interface is bridged to the rest of the network.
In general, the network analyzer simply receives a packet
from one interface, analyzes its content, and writes it to the
other one.

The network analyzer must recognize various types of
TLS messages. These messages together with the corre-
sponding actions of the network analyzer are depicted in
Fig. 2. The most important message is the CSP because it
triggers the memory snapshot. As both communication



B. Taubmann et al. / Digital Investigation 16 (2016) S114eS123S118
partners send a CSP message, the snapshot is triggered
when the monitored virtual machine sends it. The corre-
sponding packet is not passed to the destination interface
until a memory snapshot has been taken.
Memory acquisition

Every time the trigger mechanism detects a new TLS
connection, the master secret that is present in VM mem-
ory needs to be recorded. This can either be achieved by
directly searching the memory for the key, or by taking a
snapshot of (parts of) the virtual machine and extract the
key from the snapshot later when the communication
needs to be decrypted.

In both cases, the snapshot process has to be executed
fast in order to keep the delay impact on the connection as
lowas possible. Therefore, we decrease the time required to
take the snapshot by minimizing its size. Thus, we have to
find out where the master secret is stored in the main
memory of a virtual machine. First of all we restrict the
snapshot to thememory of the process that handles the TLS
session. Therefore, we parse the kernel task structures of
each process in order to find the process that handles the
connection. To get this information we parse the file
descriptor table of each process in the task structure and
compare the source and destination IP/port combination.
For this purpose, we wrote a custom utility extracting the
required information from the guest Linux kernel as we
found existing tools like Volatility or Rekall as too slow for
that time-critical operation.

Additionally, we consider only those pages of a process
that are mapped write able and anonymous. Anonymous
pages do not have a reference to a file in their description
structure. This usually holds for the heap and stack of a
process as they are allocated dynamically.

Furthermore, we decrease the size of the snapshot by
considering only pages that have been altered between the
establishment of the connection and the key negotiation of
the session key. Therefore, we register memory access
handlers that monitor the process memory between the
Fig. 2. TLS key negotiation process and the corresponding TLSkex actions.
sending/receiving of the SH record and the CSP message.
The occurrence of the SH marks the last point in time
where the session key is not existing and the CSP message
indicates that the key was computed. Thus, the key can be
found in pages that have been modified or newly allocated
during this period.

This approach does not work, when the session key is
stored in main memory before the connection is estab-
lished, e.g., for resumed sessions. In this case, we can as-
sume that we have captured the first key negotiation and
do not need to extract it again. If this is not the case, only a
snapshot of the whole address space of a process works.
Key extraction

TLSkex implements a brute force approach to find TLS
master secrets in main memory. Therefore, it takes each 48
byte sequence in the snapshot as a master key and checks
whether its derived write_key can successfully decrypt a
TLS record of the connection. To test whether the decryp-
tion was successful we compute the HMAC of a decrypted
TLS record and compare it with the given one. If they
match, the key is correct. All necessary parameters, e.g. the
server random, are extracted from the network flow by the
proxy component.

As the key validation process is slow it is important that
we do not try every byte sequence as a master secret.
Therefore, we have implemented several strategies to pre-
check whether a byte sequence is a potential key. The first
optimization is that we assume that a key is stored four
byte aligned in memory. This increases the speed by a
factor of four. The second optimization is that we look at
the stochastic properties of a byte sequence. As the master
secret is generated by a pseudo random function we as-
sume that it contains about the same amount of zero and
one bits and the amount is distributed binomial. For
example, a 48 byte sequence that is randomly generated
and binomial distributed has with a probability of about 90
percent between 176 and 208 one bits. The parameter m is
the expected count of one bits in the master secret. The TLS
master secret is 48 bytes long and the probability p that a
bit is one is 0.5. Thus, m is 0.5 � 48 � 8 ¼ 192.

Xmþk

m�k

�
n
k

�
pk�ð1� pÞn�k > ¼ 0:89

k ¼ 16; m ¼ 192; p ¼ 0:5

Thus, we first test bytes sequences in the snapshot that
have between 176 and 208 one bits. If we do not find a key
with these properties we increase the borders and iterate
again over the snapshot. Another heuristic to minimize the
search space is to check whether a byte sequence consists
only of ASCII characters. If so, the highest bit of each byte
must be unset. The probability that such a 48 byte sequence
with only ASCII characters is a key is about 0.548, which is
negligibly small. The amount of required characters could
also be reduced but the chance that a key gets pre-
eliminated will increase. The last heuristic that is imple-
mented in TLSkex is to check whether an eight byte



B. Taubmann et al. / Digital Investigation 16 (2016) S114eS123 S119
sequence contains either only one bits or only zero bit. This
can be tested easily as the bit counting function takes eight
bytes as input and returns the amount of one bits. The
probability that a key contains at least one sequence with
64 zero or one bits is also negligible (2*48*0.564z 10�15).
TLSkex combines all three heuristics in order to decrease
the search space as much as possible without eliminating
too many potential keys. If the key was not found, the
heuristics can be switched off in order to research the key
in the snapshot. After we have found the session key of a
connection, we write it into a key log file that serves as in
input for Wireshark to decrypt TLS streams.

Network logging & traffic decryption

TLSkex extracts only the master secret of TLS connec-
tions from main memory. It does not save the corre-
sponding network traffic. In order to save the network
traffic standard tools like tcpdump (Tcpdump contributors)
can be used. Depending on the use case, the network sniffer
should store only TLS connections in order to save space.

Moreover, TLSkex does not decrypt TLS sessions directly.
It only extracts the TLS master secret from main memory.
However, it can be used togetherwithWireshark to decrypt
TLS encrypted network connections based on the extracted
master key.

Evaluation

In this sectionwemeasure the time to take a snapshot of
several programs and the time that is required to extract
the key out of it. Additionally, we discuss the limitations
and stealthiness of TLSkex. All measurements in this sec-
tion are executed on a machine with an Intel(R) Core(TM)
i5-2500 CPU@ 3.30 GHz and 4 GB of RAM. The hypervisor is
Xen in version 4.4.1 out of the Debian stable repository. The
dom0 and guest operating system is a 64 Bit Debian Linux
with kernel version 3.16.0-4.

Memory acquisition

To measure the throughput of the memory acquisition
process we read the whole address space of a virtual ma-
chine using LibVMI. Therefore, we requested each page
sequentially by starting from the virtual address 0. For a
guest system with 1024 MB of main memory the snapshot
took 2.4 s, with 256 MB it took 0.6 s. These results not
include the time for storing the data on a persistent storage.
It only includes the address translation and the copy
operation but not the write operation.

Table 1 depicts the total amount of pages of a sample set
of processes, the amount of pages that are mapped anon-
ymous and writable and the amount of pages that are
allocated (new) and altered (modified) during the key
negotiation process and dumped as a snapshot. The time
tsnap_start describes the time that is required to set the
memory events and tsnap_stop the time that is required to
take the snapshot and find newly allocated pages. The time
that is required to extract the session key out of a snapshot
is denoted tsearch. All values in this table are based on single
runmeasurements in order to provide the dimension of the
timing values. The Apache2 process acted as a server, the
others ones as clients.

The first notable observation in Table 1 is that the dif-
ferential snapshot is very small compared to the size of the
anonymous and write able pages. For example, the differ-
ential snapshot of the Apache2 process is about one percent
as big as the snapshot of the anonymous and writable
mapped pages. This decreases the search space for the
master secret dramatically.

Additionally, we can see that the time required to take a
snapshot does not only correlate to its size. It also de-
pendents on the size of the address space. For example, the
snapshot of the s_client process has about the same size as
the other ones. However, it is six to ten times faster as the
other ones because its address space is smaller. This is
caused by the fact, that we have to iterate over the address
space in order to set and remove the memory events.

Key extraction

In Table 1 we present the time that is required to extract
the TLS master secret from the memory dump of different
processes. The different times to find the key by having the
same snapshot size are caused by the position of the
cryptographic key and the entropy of a snapshot. For
example, if the key was stored in the heap of the process, it
is in the beginning of the process dump and is found faster.
However, when the key is on the stack, it is in the rear part
of the memory dump and it takes longer to find it. Addi-
tionally, the time depends on the amount of bytes that are
filtered out by our heuristics.

Our brute-force implementation was able to test about
131 thousand keys per second. This means that every
sequential 48 byte sequence of a memory snapshot with a
size of 131 KB can be tested in 1 s. The low throughput is
mainly caused by the key derivation of TLS and the
decryption process. We assume that we can improve the
performance of the key testing algorithm in the future.
However, this can be executed offline and does not affect
the monitoring process.

In Table 2 we show how the performance of different
heuristics can decrease the size of the search space of a
memory snapshot by selecting only byte sequences that
have the characteristics of a random encryption key. The
first row shows the computed probability that a key
matches the heuristic.

The first six columns show howmany four-byte-aligned
48 byte sequences have between 192� k and 192þ k one
bits. For k ¼ 16 only about two to four percent of the
memory meet this condition. However, there is a chance of
about 90% that a randommaster key satisfies this condition.
In other words, we find the master keywith a probability of
about 90% if we just search the small part of the memory
that matches this condition. The bit counting heuristic is
implemented very efficiently. Thus, the pretesting reduces
the time for finding the key dramatically.

In Table 2 we depict as well the performance of two
other heuristics. The first one is testing whether a byte
sequence is not an ASCII string. This is accomplished by
testing if the highest bit of each byte is set. Depending on
the application, this simple heuristic reduced the time for



Table 1
Amount of mapped and changed memory pages (4096 bytes) of different processes during the key negotiation procedure and the time to prepare (tsnap_start)
and take (tsnap_stop) a differential snapshot; tsearch denotes the time to extract a key from a snapshot.

Process Total Anon & writeable New Modified Dumped tsnap_start tsnap_stop tsearch

Apache2 72,090 3715 0 26 26 4.3 ms 4.4 ms 30 ms
Curl 38,264 3438 15 19 34 3.3 ms 4.0 ms 2 ms
Wget 22,813 1378 16 13 29 4.0 ms 3.5 ms 2 ms
s_client 6114 152 9 22 31 0.4 ms 0.6 ms 8 ms

Table 2
First row: probability that a key is not eliminated by the heuristic. Other rows: percentage of a memory snapshot that contains a 48 byte long and four byte
aligned sequence with: a) 192± k one bits, b) the byte sequence is not an ASCII string c) no 8 byte sequencewith only zero or only one bits d) a to c combined.

Process a b c d

k ¼ 1 k ¼ 2 k ¼ 4 k ¼ 8 k ¼ 16 k ¼ 32 No string Not all 0/1 Combined (k ¼ 16)

key included 8.12 16.2 31.6 58.5 89.7 99.9 1�10�15 1�10�19 87.7
Apache2 0.10 0.28 0.64 1.27 2.33 4.26 85.49 43.54 1.69
Curl 0.15 0.45 1.04 2.11 3.50 4.75 77.53 10.55 3.32
Wget 0.15 0.46 1.06 2.15 3.60 4.91 78.10 10.68 3.38
s_client 0.054 0.18 0.49 0.96 1.89 3.40 56.52 37.35 1.63

B. Taubmann et al. / Digital Investigation 16 (2016) S114eS123S120
the key search in our experiments by between 56% and 85%
s. Another approach is to test whether each of the eight
byte blocks where we count the bits in has either 0 or 64
one bits. This reduced the search space by between 10% and
44%, again depending on the application process. The last
column shows howmuch of thememory snapshot contains
potential keys when all presented heuristics are combined.
Network proxy

The performance of the network is mainly influenced by
two factors: (1) The overhead of each packet which is
caused by the deep packet inspection proxy that analyzes
the contents of the TCP headers in order to check if it be-
longs to a TLS connection. We currently ignore this over-
head in our proof-of-concept implementation as it is a
constant factor that affects all packets. The optimization of
this proxy is part of our future work.

(2) The overhead that is caused by analyzing the TLS
records and the corresponding actions, e.g., the creation of
the snapshot depends on the TLS records which are
included in a TLS record. For example packets with only
application data records are simply forwarded. The only
packets that are delayed noticeable are packets with a SH
and outgoing CSP records. Packets with a SH record are
delayed by tsnap_start and CSP messages by tsnap_stop. Both
values depend on the size of the address space of a process
and the amount of changed pages.
Limitations

We have made several assumptions to increase the
performance. For example we only take a snapshot of the
process that handles the connection. However, malware
might spawn a dedicated crypto process that runs the
encryption routine. In that case, our approach would not
work. Thus, it might be better to save a snapshot of the
whole virtual machine. A malware might also obfuscate the
key in memory, e.g., by shifting the byte order in order to
hide it from TLSkex. But a human operatormight notice this
problem when the key was not extracted and can imple-
ment a custom strategy for the specific use case.

Another way to circumvent the automatic key extraction
process of TLSkex is to use a slightly changed version of the
TLS protocol, e.g., by modifying the default numbers of some
commands. However, this requires that both e the client and
the server e use the same modified protocol version.

TLSkex trusts the kernel structures of the guest to be
uncorrupted and reliable and uses them for example to
extract memory mappings of a process. Thus, a guest sys-
tem might foil VMI based analysis by placing crafted data
structures inmemory (Bahram et al., 2010). This is a general
problem of VMI based analysis and is out of the scope of
this paper.

Furthermore, memory areas can be swapped out to disk.
If the master secret is in a page that is swapped out, our
current implementation would not be able find it. The time
interval between generation of the master secret and the
detection of the CSP message (and thus the creation of the
snapshot) is very small, and thus it is highly unlikely that
the memory page will be swapped out. We have not
observed this problem during our experiments.

Finally, TLSkex can serve as a DoS vector, for example,
when many TLS connections are spawned and many
snaphshots must be taken. Thus, it is important to find
ways to minimize the overhead of TLSkex in the future.
Additionally, we have to investigate how this problem can
be circumvented in practice.
Stealthiness

One of the use cases of TLSkex is to analyze the network
traffic of malware. Thus, we have to discuss whether mal-
ware can detect that it is being analyzed and thus decides
to behave differently (Balzarotti et al., 2010).



B. Taubmann et al. / Digital Investigation 16 (2016) S114eS123 S121
The first observation malware can make is that it runs
inside of a virtual machine (Raffetseder et al., 2007).
However, this does not state anything about whether
TLSkex is monitoring the process.

The next thing a monitored process might detect is that
some network packets have a higher latency than others.
Especially packets with a CSP and a SHmessage are delayed
until the corresponding action (setup memory events and
take snapshot) has been executed. Depending on the size of
the address space of a process this might be noticeable to
the communicating process. We assume that the time
required to take the snapshot can be decreased by future
implementations which will make the delay not detectable
anymore in common network scenarios.
Related work

Approaches for decrypting TLS traffic

Butler (2013) describes advantages of decrypting
encrypted SSL network connections in company networks.
He recommends doing that especially for intrusion detec-
tion, forensics and data loss prevention. Other authors have
as well described this problem and proposed several so-
lutions. In general we can divide these solutions into active
and passive approaches. Passive approaches do not inter-
cept the communication. They try to decrypt the network
traffic by having knowledge about the key. Active ap-
proaches manipulate the network traffic, e.g., by installing
man-in-the-middle proxies. In Taubmann et al. (2015) we
already presented a use case where the decryption of TLS
connections can be used to detect attacks and to perform
malware analysis. Therefore, we described an attack that
was executed via https and TLS encrypted IRC botnet
communication.

Active approaches
The easiest way to decrypt network traffic is by forcing

the client not to encrypt. This approach is taken by sslstrip
(Marlinspike, 2009). It acts as a http to https proxy.
Therefore, it replaces the https designator in the content for
the client with http. Thus, the proxy can simply read the
unencrypted data and forward it encrypted. To make it
more stealthy to users, it also sets a fake encryption favicon
(the icon next to the URL in address bar).

The tool sslsniff (Marlinspike, 2002) acts a man in the
middle proxy for TLS based connections. In this case the
client does not connect directly to the server. Instead, he
connects to sslsniff and sslsniff connects to the server.
Hence, the client does not see the certificate of the server
but the certificate of sslsniff. This is the reason why the
client is able to detect when someone intercepts the
connection who does not have a valid certificate for the
server. Thus, this approach is only feasible when the client
program does not verify the server certificate. In order to
solve this problem SSLsplit (Heckel, 2013) can be used. It
generates on the fly certificates for each target. When an
attacker is able to install the fake certificate authority (CA)
certificate (e.g., in the browser) all SSL connections seem to
be trustworthy to the user. This can be easily established in
company networks where an administrator can easily
install certificates on every client.

All active approaches work in most of the cases very
well. This is caused by users that do not have the knowl-
edge to detect intercepted connections or by programs that
have flaws in the certificate verification process. However,
all of them can be detectede at least in theory. For example
it is possible to detect when a connection is not encrypted
at all or if the certificate was signed by an untrusted CA or
not the expected one. Active approaches are often inap-
propriate for malware analysis as the system under analysis
might behave differently when it gets monitored
(Balzarotti et al., 2010). Moreover, active approaches
potentially lower the security of the monitored connec-
tions. Thus, they are not applicable in real world scenarios
where keeping the security level is important.

Passive approaches
They only monitor encrypted connection and do not

modify it. They try to decrypt it by getting the key from
other sources. For example, the tool ssldump (Iveson, 2014)
is able to decrypt RSA-based TLS connections on-the-fly
when the private key of the server is available. This can
be achieved by copying it from the hard disk or by
extracting it frommain memory. However, this approach is
not feasible when a client connects to a server (e.g, a
command & control server) where its private key is not
available or when symmetric session keys are negotiated
with PFS key-agreement protocols like DH or ECDH. Addi-
tionally, this approach works only with TLS session tickets
(Salowey et al., 2008) when the key exchange of the session
ticket was captured.

The tool Wireshark (Wireshark contributors, 2015) is
also able to decrypt TLS connections if the TLS session keys
are made available to it. Some webservers like Apache or
browsers such as Firefox and Chrome support to log session
keys into a file which can be interpreted by Wireshark.

Another approach to extract the master secret of a TLS
session is tomonitor the function calls of a process. This can
be achieved by setting a breakpoint on the key generation
function (e.g., the PRNG function) of the TLS implementa-
tion in use and to extract the results of the function. This
approach is feasible only when a known library is used in
order to set the breakpoint to the right address and to parse
the parameters correctly (Bremer, 2015). However, if mal-
ware is compiled statically and an unknown TLS imple-
mentation is used or the function symbols are removed it is
not easy to dynamically find the point in code where the
master secret is stored and accessed.

Key extraction

The extraction of cryptographic keys from main mem-
ory is an important task in computer forensics in order to
decrypt encrypted information (Maartmann-Moe et al.,
2009). If the position of a key in a memory dump is not
known, heuristics help to identify potential keys. Shamir
et al. (Shamir and Someren, 1999) described theoretical
approaches to find RSA cryptographic keys efficiently in
gigabytes of data by using stochastic information. Klein
(2006) used a different approach. He is searching for



Table 3
Comparison of different approaches to decrypt TLS communication.

Solution Approach Stealthiness PFS Key renegotiation Server & client Session resumption

TLSkex VMI based ✓ ✓ ✓ ✓ ✓

ssldump Requires private RSA key ✓ ✗ (✓) (✓) (✓)
sslstrip Removes encryption partially ✗ N/A ✗ ✗ N/A
sslsniff SSL proxy with fake certificate ✗ ✓ ✓ ✓ ✓

B. Taubmann et al. / Digital Investigation 16 (2016) S114eS123S122
sequences of the ASN.1 encoding which is commonly used
to store the keys. Unfortunately, this approach is only
feasible for finding RSA keys. It does not work for finding
DH or ECDH keys as there is no standardized way to store
them.

An approach to find symmetric AES and DES keys in
main memory was described by Halderman et al. (2008).
They do not search for an implementation specific structure
but they are searching for byte sequences with a potential
key and its corresponding key schedule. As they are using
this approach on corrupted main memory snapshots
gained with cold boot attacks, they also implemented a
heuristic that is able to identify a key schedule with flipped
bits.

To our best knowledge, there has been no work that
extracts the master secret of a specific TLS connection in
main memory. By using the master secret, the key extrac-
tion routine of TLSkex is independent of the utilized cipher
suite and cryptographic parameters.
1 http://www.fim.uni-passau.de/sis/.
Virtual machine introspection

In order to extract the key of a TLS encrypted connection
from a virtual machine we need to access and interpret the
memory of it. Therefore, we have to bridge the semantic gap
problem: reconstructing high level state information from
low level data-sources (Garfinkel and Rosenblum, 2003).
This problem can be divided into the weak and the strong
semantic gap problem (Jain et al., 2014). There has been
much research in the past years and the weak semantic gap
problem can be considered ‘‘a solved engineering problem’’

(Jain et al., 2014; Dolan-Gavitt et al., 2011).
Additionally, we can divide between active and passive

VMI methods. For example parsing the process structure of
an operating system is a passive method (Schuster, 2006).
In contrast, the continuous tracing of system calls is an
active method (Pfoh et al., 2011).

Volatility (Volatility Foundation, 2015) and Rekall (2015)
are the most known frameworks for doing VMI and inter-
preting the memory of operating systems such as Win-
dows, Linux and MacOS X. LibVMI (2015) is a library that
abstracts the interface for accessing the memory of virtual
machines of different hypervisors like XEN (Xen, 2015) and
KVM (2015). It also supports events (e.g., memory access or
interrupts) in order to dynamically trace memory access or
the execution of instructions at runtime. However, it does
not come with functions that allow taking differential
snapshots of a process or to parse the kernel task structure
of Linux processes in order to extract the memory map-
pings and open network connections.
Conclusion

TLSkex is a VMI based solution that extracts the master
secret of TLS connections of virtual machines. The master
secret can be used to derive the symmetric keys of TLS
session in order to decrypt them. Thereby, TLSkex is inde-
pendent of the cryptographic algorithms or the key ex-
change algorithm. Thus, this approach even works when a
PFS key agreement algorithm such as DH or ECDH is used.
As this approach is so general, it can be extended to other
cryptographic protocols such as the key exchange mecha-
nism of SSH (Ylonen and Lonvick, 2006).

We have also shown, how differential snapshots and
heuristics can be used to enhance the process of extracting
cryptographic keys from main memory.

In contrast to other solutions, TLSkex does not modify
or weaken the security of TLS connections (see Table 3).
Thus, TLSkex can be considered as a stealthy approach for
finding session keys and decrypting TLS connections. Only
the delay of some network packets e those that contain a
CSP TLS record e may be noticeable to monitored appli-
cations. This can be improved by better key extraction
heuristics and a faster implementation. Moreover, TLSkex
can also be used for TLS sessions that use a session state
ticket without capturing the key negotiation process of
previous sessions. Finally, TLSkex can be used to extract the
key material either from a server or a client application.

TLSKex is above all a tool that allows its user to extract/
access the information from a communication secured by
the TLS protocol. The described traffic decryption method
has the only objective to provide a mean that eases the
investigation of eventual security incidents within a target
virtualized environment. However, we cannot guaranty
that all TLSKex users take profit from using the tool only for
ethical purposes, since acceding encrypted information
may also hide a malicious attempt to break the confiden-
tiality of data. In all cases we believe that, in order to
comply to privacy rights, all cloud customers should always
acknowledge that their communications might be the ob-
ject of analyze and decryption for security purposes and
further investigations. But it remains the sole responsibility
of the cloud provider to prove or justify the legal relevance
and legitimacy of such use and provide official documen-
tation of used methods.

We are planning to release a revised version of TLSkex
under an open source license on our website.1

http://www.fim.uni-passau.de/sis/


B. Taubmann et al. / Digital Investigation 16 (2016) S114eS123 S123
Acknowledgments

The research leading to these results was supported by
the “Bavarian State Ministry of Education, Science and the
Arts” as part of the FORSEC research association.

References

Bahram S, Jiang X, Wang Z, Grace M, Li J, Srinivasan D, et al. DKSM:
subverting virtual machine introspection for fun and profit. In: Reli-
able distributed systems, 2010 29th IEEE symposium; 2010. p. 82e91.
http://dx.doi.org/10.1109/SRDS.2010.39.

Balzarotti D, Cova M, Karlberger C, Kirda E, Kruegel C, Vigna G. Efficient
detection of split personalities in malware. In: Proc. of the network
and distributed system security symposium, NDSS; 2010.

Bremer Jurriaan. Transparent MITM with cuckoo sandbox. 2015. http://
jbremer.org/mitm/ [accessed 02.10.15].

Butler M. Finding hidden threats by decrypting SSL, A SANS analyst
whitepaper. SANS Institute; 2013. http://www.sans.org/reading-
room/whitepapers/analyst/finding-hidden-threats-decrypting-ssl-
34840 [accessed 19.08.15].

Dolan-Gavitt B, Leek T, Zhivich M, Giffin J, Lee W. Virtuoso: narrowing the
semantic gap in virtual machine introspection. In: Proceedings of the
2011 IEEE symposium on security and privacy, SP'11. Washington, DC,
USA: IEEE Computer Society; 2011. p. 297e312.

Garfinkel T, Rosenblum M. A virtual machine introspection based archi-
tecture for intrusion detection. In: Proc. network and distributed
systems security symposium; 2003. p. 191e206.

Heckel PC. Use SSLsplit to transparently sniff TLS/SSL connections e
Including non-HTTP(S) protocols. 2013. http://blog.philippheckel.
com/2013/08/04/use-sslsplit-to-transparently-sniff-tls-ssl-
connections/ [accessed 19.08.15].

Halderman J, Schoen SD, Heninger N, Clarkson W, Paul W, Calandrino JA,
et al. Lest we remember: cold boot attacks on encryption keys. In:
Proc. of the 17th USENIX Security Symposium; 2008.

Homan J. How to decrypt OpenSSL sessions using wireshark and SSL
session identifiers. 2013. http://www.cloudshield.com/blog/
advanced-malware/how-to-decrypt-openssl-sessions-using-
wireshark-and-ssl-session-identifiers/ [accessed 02.10.15].

Iveson S. Using ssldump to decode/decrypt SSL/TLS packets. 2014. http://
packetpushers.net/using-ssldump-decode-ssltls-packets/ [accessed 19.08.15].

Jain B, Baig M, Zhang D, Porter D, Sion R. Sok: introspections on trust and
the semantic gap. In: Security and privacy (SP), 2014 IEEE sympo-
sium; 2014. p. 605e20.

Klein T. All your private keys are belong to us e Extracting RSA private
keys and certificates from process memory. 2006. http://www.
trapkit.de/research/sslkeyfinder/keyfinder_v1.0_20060205.pdf
[accessed 19.08.15].
Krawczyk H, Bellare M, Canetti R. HMAC: Keyed-hashing for message
authentication. IETF, RFC 2104, 1997. https://tools.ietf.org/html/
rfc2104.

KVM, http://www.linux-kvm.org/ (July 30 2015).
LibVMI, http://libvmi.com/ (July 30 2015).
Maartmann-Moe C, Thorkildsen SE, Årnes A. The persistence of memory:

forensic identification and extraction of cryptographic keys. Digit
Investig 2009;6:S132e40.

M. Marlinspike, sslsniff, http://www.thoughtcrime.org/software/sslsniff/,
[accessed 19.08.15] (2002).

M. Marlinspike, sslstrip, http://www.thoughtcrime.org/software/sslstrip/,
[accessed 19.08.15] (2009).

Pfoh J, Schneider C, Eckert C. Nitro: hardware-based system call tracing
for virtual machines. In: Advances in information and computer se-
curity, Vol. 7038 of lecture notes in computer science. Springer; 2011.
p. 96e112.

Pric JW. Significant SSL performance loss leaves much room for
improvement. NSS Labs Report. 2013. https://www.nsslabs.com/
reports/ssl-performance-problems [accessed 11.08.15].

Raffetseder T, Kruegel C, Kirda E. Detecting system emulators. In: Infor-
mation security, Vol. 4779 of LNCS. Springer; 2007. p. 1e18.

Rekall, Memory forensics analysis framework, http://www.rekall-
forensic.com (January 15 2015).

Salowey J, Zhou H, Eronen P, Tschofenig H. Transport Layer Security (TLS)
Session Resumption Without Server-Side State. IETF, RFC 5077, 2008.
https://tools.ietf.org/html/rfc5077.

Schuster A. Searching for processes and threads in microsoft windows
memory dumps. Digit Investig 2006;3:10e6. URL, http://dx.doi.org/
10.1016/j.diin.2006.06.010.

Shamir A, Someren NV. Playing “hide and seek”with stored keys. In: Proc.
of the 3rd Int. conf. on financial cryptography, FC'99. London, UK, UK:
Springer-Verlag; 1999. p. 118e24. URLhttp://dl.acm.org/citation.cfm?
id¼647503.728464.

Taubmann B, Dusold D, Fr€adrich C, Reiser HP. Analysing malware attacks
in the cloud: a use case for the tlsinspector toolkit. In: 2nd Workshop
on security in highly connected IT systems (SHCIS); 2015.

Tcpdump contributors, TCPDUMP/LIBPCAP public repository, http://www.
tcpdump.org/, [accessed 19.08.15].

Volatility Foundation, Volatility command reference, https://github.com/
volatilityfoundation/volatility/wiki/Command-Reference [accessed
19.08.15].

Wireshark contributors. Wireshark wiki about secure socket layer (SSL).
2015. https://wiki.wireshark.org/SSL [accessed 19.08.15].

Xen, http://www.xenproject.org (July 30 2015).
Guanglin Xu, Peter Klemperer, James Hoe. Improving LibVMI introspec-

tion performance with shared memory snapshots. 2013. http://www.
andrew.cmu.edu/user/guanglin/PDL-presentation.pdf.

Ylonen T, Lonvick C. The secure shell (SSH) transport layer protocol. IETF,
RFC 4253, 2006.

http://dx.doi.org/10.1109/SRDS.2010.39
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref2
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref2
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref2
http://jbremer.org/mitm/
http://jbremer.org/mitm/
http://www.sans.org/reading-room/whitepapers/analyst/finding-hidden-threats-decrypting-ssl-34840
http://www.sans.org/reading-room/whitepapers/analyst/finding-hidden-threats-decrypting-ssl-34840
http://www.sans.org/reading-room/whitepapers/analyst/finding-hidden-threats-decrypting-ssl-34840
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref5
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref5
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref5
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref5
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref5
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref6
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref6
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref6
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref6
http://blog.philippheckel.com/2013/08/04/use-sslsplit-to-transparently-sniff-tls-ssl-connections/
http://blog.philippheckel.com/2013/08/04/use-sslsplit-to-transparently-sniff-tls-ssl-connections/
http://blog.philippheckel.com/2013/08/04/use-sslsplit-to-transparently-sniff-tls-ssl-connections/
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref8
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref8
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref8
http://www.cloudshield.com/blog/advanced-malware/how-to-decrypt-openssl-sessions-using-wireshark-and-ssl-session-identifiers/
http://www.cloudshield.com/blog/advanced-malware/how-to-decrypt-openssl-sessions-using-wireshark-and-ssl-session-identifiers/
http://www.cloudshield.com/blog/advanced-malware/how-to-decrypt-openssl-sessions-using-wireshark-and-ssl-session-identifiers/
http://packetpushers.net/using-ssldump-decode-ssltls-packets/
http://packetpushers.net/using-ssldump-decode-ssltls-packets/
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref11
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref11
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref11
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref11
http://www.trapkit.de/research/sslkeyfinder/keyfinder_v1.0_20060205.pdf
http://www.trapkit.de/research/sslkeyfinder/keyfinder_v1.0_20060205.pdf
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104
http://www.linux-kvm.org/
http://libvmi.com/
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref16
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref16
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref16
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref16
http://www.thoughtcrime.org/software/sslsniff/
http://www.thoughtcrime.org/software/sslstrip/
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref19
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref19
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref19
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref19
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref19
https://www.nsslabs.com/reports/ssl-performance-problems
https://www.nsslabs.com/reports/ssl-performance-problems
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref21
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref21
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref21
http://www.rekall-forensic.com
http://www.rekall-forensic.com
https://tools.ietf.org/html/rfc5077
http://dx.doi.org/10.1016/j.diin.2006.06.010
http://dx.doi.org/10.1016/j.diin.2006.06.010
http://dl.acm.org/citation.cfm?id=647503.728464
http://dl.acm.org/citation.cfm?id=647503.728464
http://dl.acm.org/citation.cfm?id=647503.728464
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref26
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref26
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref26
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref26
http://www.tcpdump.org/
http://www.tcpdump.org/
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference
https://wiki.wireshark.org/SSL
http://www.xenproject.org
http://www.andrew.cmu.edu/user/guanglin/PDL-presentation.pdf
http://www.andrew.cmu.edu/user/guanglin/PDL-presentation.pdf
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref32
http://refhub.elsevier.com/S1742-2876(16)30008-1/sref32

	TLSkex: Harnessing virtual machine introspection for decrypting TLS communication
	Introduction
	TLS internals
	TLS records
	Key negotiation and derivation
	MAC computation
	Session resumption

	Conceptual approach
	Network logging
	Trigger mechanism
	Memory acquisition
	Key extraction

	TLSkex implementation
	Trigger mechanism
	Memory acquisition
	Key extraction
	Network logging & traffic decryption

	Evaluation
	Memory acquisition
	Key extraction
	Network proxy
	Limitations
	Stealthiness

	Related work
	Approaches for decrypting TLS traffic
	Active approaches
	Passive approaches

	Key extraction
	Virtual machine introspection

	Conclusion
	Acknowledgments
	References


