Digital Investigation 20 (2017) S83—S91

Contents lists available at ScienceDirect =
DFRWS 2017 EUROPE

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

DFRWS 2017 Europe — Proceedings of the Fourth Annual DFRWS Europe
AFEIC: Advanced forensic Ext4 inode carving

@ CrossMark

Andreas Dewald * , Sabine Seufert °

2 ERNW Research GmbH, Heidelberg, Germany
b Basys GmbH, Erlangen, Germany

ARTICLE INFO ABSTRACT

Article history:
Received 26 January 2017
Accepted 26 January 2017

In forensic computing, especially in the field of postmortem file system forensics, the reconstruction of
lost or deleted files plays a major role. The techniques that can be applied to this end strongly depend on
the specifics of the file system in question. Various file systems are already well-investigated, such as
FAT16/32, NTFS for Microsoft Windows systems and Ext2/3 as the most relevant file system for Linux
systems. There also exist tools, such as the famous Sleuthkit (Carrier), that provide file recovery features
for those file systems by interpreting the file system internal data structures. In case of an Ext file system,
the interpretation of the so-called superblock is essential to interpret the data. The Ext4 file system can
Data recovery mainly be analyzed with the tools and techniques that have been developed for its predecessor Ext3,
Open source because most principles and internal structures remained unchanged. However, a few innovations have
Tool been implemented that have to be considered for file recovery. In this paper, we investigate those
changes with respect to forensic file recovery and develop a novel approach to identify files in an Ext4 file
system even in cases where the superblock is corrupted or overwritten, e.g. because of a re-formatting of
the volume. Our approach applies heuristic search patterns for utilizing methods of file carving and
combines them with metadata analysis. We implemented our approach as a proof of concept and in-
tegrated it into the Sleuthkit framework.
© 2017 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Digital forensics
Ext4 file system

Introduction however will not be able to recover file system metadata and on the

other hand (besides specific techniques for some specific file types)

Data reconstruction plays an important role in the field of hard
disk forensics (Casey, 2011) and it is specific to the used file system
(Carrier, 2005). The Ext file system family is encounter as the
standard file system on Linux and Android systems (Fairbanks et al.,
2010). This paper illustrates an approach that enables recon-
structing data without information from the superblock or the
group descriptor table of the Ext4 file system.

Motivation

The Ext4 file system is a widely used file system, which is
nowadays not only standard among Linux distributions, but is also
used on mobile devices (Fairbanks et al., 2010). Ext4 and its pre-
decessors save the metadata in the so-called superblock or the
group descriptor table. Without these metadata structures it is
difficult to interpret the file system correctly and to reconstruct the
data. Of course, the remains the option of file carving, which

* Corresponding author.
E-mail address: research@andreasdewald.de (A. Dewald).

http://dx.doi.org/10.1016/j.diin.2017.01.003

is not able to cope with file fragmentation. The aim of this work is to
reconstruct data without using metadata structures even in the
case of overwriting or modifying the superblock through, for
instance, overformatting. For previous Ext versions there are ap-
proaches which use the available contents of the metadata struc-
tures (Pomeranz). For example, on the Ext3 file system indirect
block pointers in inodes — data structures where metadata is to be
found on individual files — are saved on content data blocks. By
dereferencing these block pointers, it is possible to reconstruct file
contents. Referencing to the data contents on the Ext4 file system is
handled differently, hence other techniques become necessary.
Such a technique is introduced in this paper.

Contributions

This paper introduces an approach which was developed for
finding and recovering files from an Ext4 file system. Moreover, the
central metadata structures of the file system, such as the super-
block and the group descriptor table, do not need to be available for
our approach to work. Thus, a possible use case for our approach is

1742-2876/© 2017 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:research@andreasdewald.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2017.01.003&domain=pdf
www.sciencedirect.com/science/journal/17422876
www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2017.01.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2017.01.003
http://dx.doi.org/10.1016/j.diin.2017.01.003

S84 A. Dewald, S. Seufert / Digital Investigation 20 (2017) S83—S91

when parts of the hard disk are overwritten or overformatted
resulting in loss of the original metadata structures. In order to
reconstruct files on the file system, we use search patterns, as it is
known from file carving. However, instead of carving for specific
file types, we carve for inodes. As there are no real magic bytes for
an inode that can be used for simple carving, we build more
complex patterns that identify valid inodes, what to the best of our
knowledge has not been done so far. Carved potential inodes are
then analyzed and the according files are recovered. By this means,
our approach combines techniques form both, file carving, and
metadata analysis. This way, not only the file content, but also the
original file name and path can be reconstructed. We implemented
our approach as a module for the Sleuthkit (Carrier), which is
released open source along with this paper (Dewald and Seufert,
2017), where usage and configuration information is included, too.

Outline

After we discussed related work in the next section, in Section
Ext4 file system novelties, we explain the novelties of Ext4
compared to Ext3. Section Methodology explains the methodology
and implementation of our approach, which is thoroughly evalu-
ated in Section Evaluation. We conclude our paper in Section
Conclusion.

Related work

Brian Carrier (2005) describes in his book different partition and
file systems. Carrier introduces different methods and tools to
support the forensic analysis of the different file systems. The
Sleuthkit (Carrier) is one of his developments, which provides
various command line tools for digital forensics. On the one hand,
we complement the work of Carrier, by highlighting the novelties
in Ext4, and on the other hand, we implement a prototype of our
introduced approach for Ext4 analysis as a plugin for the Sleuthkit
Framework.

In his paper, Craiger (2005) describes digital forensic procedures
for recovering data from Linux systems. He emphasizes the
recovering of deleted and hidden files, data from volatile memory
and files with modified extensions.

Fairbanks et al. (2010) compare the Ext4 file system with its
predecessor from a forensic perspective, whose results we revisit in
this paper. In another paper Fairbanks (2012) thoroughly describes
the Ext4 file system and introduces the upgrade compared to Ext3.
Moreover, the paper documents especially low-level features such
as extents, HTrees and flex groups. Lee and Shon (2014) introduce
procedures for recovering deleted files through metadata struc-
tures on Ext2 an Ext3 file systems and compare these with existing
methods. Narvdez (2007) describes a procedure to reconstruct files
from an Ext3 file system using the journal.

The work of Pomeranz illustrates an approach to data recovery
on Ext2 and Ext3 file systems that enables the recovery of user data
by using indirect block pointers. The author exploits the fact that,
typically, the first 48 KiB of a file content are not highly fragmented.
Consequently, the first 12 block pointers are usually sequentially

numbered, which similar to our approach applies some kind of
specific carving. However, this particular search pattern cannot be
applied to Ext4 file systems because normally (as we explain later)
extent structures are used instead of indirect block pointers in or-
der to reference file content. Nevertheless, the procedure used in
our approach is similar to the one mentioned above.

Ext4 file system novelties

In this section, we summarize the relevant information about
Ext4, as they are given in Ext4 disk layout (2016). The general layout
of Ext4 is very similar to Ext3, but has changed in some ways that
we want to focus on now. The Ext layout, in general, is based on
sequential blocks of 1024, 2048 or 4096 bytes that are numbered
and grouped together in block groups.

Each block group contains metadata that documents its inner
structure. The general layout of all block groups is identical and is
illustrated in Fig. 1. The superblock contains many essential meta-
data of the file system, such as the number and size of blocks,
number of inodes and reserved blocks, for example. The following
group descriptor table contains one group descriptor per block
group in the file system and the block bitmap stores the free/used
state of each block in the block group in a single bit each. Similarly,
the inode bitmap stores the free/used state of each inode (entry) in
the inode table. The rest of the block group consists of consecutive
data blocks that are used to store data.

Inodes

In all Ext file systems, almost all file/directory metadata, such as
timestamps, access rights, references to data blocks for example,
are stored in the inode of the file (file names, for example, are not,
although they are not always considered as metadata). Inodes are
numbered, starting with inode number 1 and stored in the inode
table of their respective block group.

In Ext4, for the sake of compatibility with prior versions, only
few changes to the inode structure have been implemented. For
example, some of the formerly unused space has been used to
introduce new attributes, as shown in Table 1 (To recall the full
original structure of Ext3 inodes, refer to Table A.9 in Appendix A).

To provide backwards compatibility, the concept of (single/
double/triple) (in)direct block pointers to refer to content data
blocks is still supported in Ext4. However, this concept is only used,
when a old Ext3 file system is converted to Ext4. In all other cases,
Ext4 uses an entirely new concept for data block references, which is
called Extents, which are able to address more storage and allow for
bigger files. Further, so called inline files and inline folders can be
stored directly in the space for extended attributes. Fig. 2 illustrates
exemplary how data blocks of a file are referenced by extents:

The inode of the example-file on the left side of the figure has 60
bytes to store its extent structure. The size of one extent entry is 12
bytes, thus there can be 5 extent entries stored directly. Each extent
structure starts with an extent header with a size of 12 bytes as well.
For completeness, the detailed structure of a extent header is shown
in Table A.6 in Appendix A. The extent header is followed by extent

super- | group block |[inode- inode- data data

block |descriptor |bitmap |bitmap| table block block
table

Block O Block N

Fig. 1. General block group layout.

A. Dewald, S. Seufert / Digital Investigation 20 (2017) S83—S91 S85

Table 1
Additional inode attributes in Ext4.
Offset Length Description
36 4 0S specific
40 60 Indirect block pointers or extent
Data structure
116 12 0S specific
128 2 Additional size for inode
130 2 Upper 16 bit of inode checksum
132 4 Additional bits ctime
136 4 Additional bits mtime
140 4 Additional bits ctime
144 4 Cr(eation) time
148 4 Additional bits crtime
152 4 Upper 32 bit version number

nodes, that can be either inner nodes of the extent tree (extent in-
dexes) and point to other extent headers, or leaves (extents) that
point to data block runs. For completeness, the structure of those
entries is shown in Appendix A in Tables A.7 and A.8.

Flex-groups

Another newly introduces feature of Ext4 is the concept of so-
called flex groups. Flex groups combine multiple block groups to
one single logical block group. Only the first block group holds the
block and inode bitmaps, as well as the inode tables of all the block
groups together.

Methodology

Using a pattern-based file carving method, a search for meta-
data structures of inodes is performed to recover their content data.
The presented approach tries to avoid reading the superblock and
the group descriptor table, because our goal is to recover files from
corrupted or reformatted Ext4 file systems, in which cases those
structured would have been overwritten. Only a minimum of in-
formation about the file system is required for our method to
compute parameters essential for recovery. To this end, we use
carving techniques (with more complex patterns, as there are no
real magic bytes for an inode) to identify potential inodes on a
volume and analyze their metadata structures and handled ac-
cording to their file type. Furthermore, the interpretation of

directory entries allows our approach to recover inode numbers
and file names with their complete file paths for regular files.

In order to provide applicability in various use cases, our
Sleuthkit module that implements our approach supports two
distinct recovery modes: The so called contentdata mode, that
exclusively recovers the content of regular files, for which only the
block size of the Ext4 file system must be provided or detected
correctly. And the metadata mode, that requires more Ext4 pa-
rameters because the necessary inode numbers need to be calcu-
lated by the module. Then, file names with their complete file paths
can be recovered using directory entries in this mode. The pre-
sented method can be divided into the following phases that are
presented in the subsequent sections:

1. Initialization

2. Inode carving

3. Directory tree

4, Regular files

5. Files without content

Initialization

The goal of the initialization is to gather all required Ext4 pa-
rameters. These can be specified by the user or estimated in
accordance to the file system size. The following parameters are of
relevance:

o Offset

o File system size

e Block size

e Inode size

e Inode ratio

o Flex group size

e 64 bit mode

e Sparse superblock

e Number of blocks per block group

o Number of blocks and block groups in the file system
e Number of inodes per block group

e Space for growing group descriptor table

The default values for new Ext4 file systems used by mkfs are
shown in Table A.10 in Appendix A. Furthermore, there are relevant

Inode Extent- data blocks
Extent- Extent- Header
Header Header |
/ Extent —
Extent- _j Extent- B
Index Index
Extent
Extent-
Index
Extent-
Header
Extent
Extent —

Fig. 2. Extent data structure of Ext4.

S86 A. Dewald, S. Seufert / Digital Investigation 20 (2017) S83—S91

values with mkfs defaults that are independent of the file system
size. Those are:

e Number of block groups per flex group (default: 16)
e Block address width (default: 32 bit)
e Usage of sparse superblock (default: activated)

The sparse superblock option causes not every block group to
possess a copy of the superblock. All other necessary values can be
derived from the already presented parameters. Once all parame-
ters are known, the positions and sizes of the inode tables of all
block groups can be computed. Mapping the physical address of an
inode to its inode number can then be performed.

With the number of the block groups and the information about
whether the 64 bit mode is enabled, the size of the group descriptor
table can be calculated. The size of the group descriptor table along
with the superblock adds to the offset to the inode table within a
block group — provided they aren't omitted due to the sparse su-
perblock option. Additional space for a growing group descriptor
table must also be taken into account. Finally, if flex groups are
enabled, the inode and block bitmaps and the inode tables are
grouped at the beginning of a flex group.

Inode carving

Due to the inner structure of an inode, not every 128 byte per-
mutation constitutes a valid inode. For an inode to be plausible and
correct, certain interrelations between its values must be fulfilled.
We made use of this fact to formulate search patterns with which
potential inodes are carved in a byte-wise manner.

The most significant 4 bits of the first 2 byte structure in the
inode indicate its file type. All but two values can be ignored, since
only regular files and directories are relevant for recovery. Search
patterns can also be defined on timestamps, such as a time interval
or their inner consistency. Therefore the different timestamps of a
file can be used, such as modification time (mtime), creation time
(ctime) and deletion time (dtime). That consistency is verified by
the following conditions:

1. mtime < ctime
2. dtime =0 V (dtime > mtime A dtime > ctime)
3. mtime, ctime and dtime must be a valid timestamp

Furthermore, the extent header field must always contain the
magic number 0x£30a. Further, any other inode attribute can be
used for the definition of search patterns, depending on the exact
recovery use case (e.g. access rights, user and group ID). All found
addresses of potential inodes are grouped by their file type (regular
files and directories) and used for future recovery steps.

Directory tree

In this phase, the potential directory inodes are analyzed. To this
end, their extent entries are interpreted in a way analogous to the
content data phase, which is described in Section Regular files.

Directory entries are searched linearly whereby directories not
starting with entries for ‘.’ and ‘.’ can be discarded. The inode
number and file name of a directory entry is saved along with its
parent inode number. This reference pattern constitutes a logical
tree from which the complete file path can be deduced. However,
inode numbers of regular files are not inherently known and the
module must map physical inode addresses to inode numbers as
follows: Using the physical address a of a potential inode, the cor-
responding inode number can be calculated with 453, with s being

the physical address of the beginning of the inode table and i the
size of the inode. Any valid inode number is an integer. Since inode
numbers start with ‘1’, the calculation needs to be extended to
s 4.

l Since the length of the inode table must be a multiple of the
inode size, the end of the inode table e can be calculated by
e =S+ n;pc-i, with n;pc being the number of inodes per block
group. If the size of the flex groups ny is greater than one, the end of
an inode table in the beginning of a flex group can be calculated by
€ =S+ ny-npc-i. With that in mind, the criterion for a physical
address of a valid inode can be described by s < a<s + ny-njpg-i.

As already mentioned, physical addresses a of inodes within an

inode table must fulfill (? + 1) €N. Considering flex groups, the

beginning of an inode table s can only be situated in the first block
group of a flex group. The block group bg, of the address a must be

determined with bg, = \\ﬁJ b being the block size and ngg the

number of blocks per block group. Consequently, another condition
for a valid inode within an inode table is bn—g:eNo.

The beginning address of the computed block group can be
determined by bg,-b-ngs. Between the beginning of an inode table
and this address, there can be a copy of the superblock, the group
descriptor table, its growth blocks and the inode and block bitmaps.
Depending on the flex group size ng the bitmaps contribute an
offset 0; = 2-ng. The combined size of the superblock, the group

descriptor table and its growth space equates to 1 + [waz“—‘ but

is limited to 1024 blocks, with d being the size of a group descriptor
and ng the count of block groups in the file system. This leads to

os:min{1024,l + [dn_bwzﬂ}

The first 1024 bytes of the file system are reserved indepen-
dently of the block size. However, if the block size is 1024 bytes,
that reserved area makes up one whole block shifting all addresses
by one block. This offset is represented by o,. The beginning of the
inode table can thus be computed by Equation (1).

s = (bga-npg + 0s +0; +-0r)-b (1)

With the additional conditions in a<[s,e[and §+ 1N and
bn—g:eNO. Equation (2) describes the mapping of an address to its
inode number:

05 = min{1024,l + P”"#} }
0j = 2'111:
1 if b=1024
0y =
' 0 otherwise (2)

a
bea = L’ : nBGJ

a-s
fla)= (TJF”i,BG'bga + 1)

Using these formulas the mapping from physical addresses to
inode numbers can be performed. Together with the information
gathered from the directory tree, file names can be associated to
inodes. Hence, the metadata mode is able to reconstruct the whole
directory structure of the file system. If a directory is irreparable, its
children's file paths cannot be reconstructed. Then, their content is
saved in files named after their inode addresses.

The contentdata mode cannot map physical addresses to inode
numbers due to the lack of necessary Ext4 parameters. This fact

A. Dewald, S. Seufert / Digital Investigation 20 (2017) S83—S91 S87

excludes the directory tree phase from the contentdata mode. All
recovered files are named after their inode address and saved in a
flat hierarchy.

Regular files

Whether or not the file path has been reconstructed for a given
regular file, its content is now recovered. In Ext4 file systems, file
content is spread across the volume in a way managed by so-called
extents, whereas Ext2/3 file systems use indirect block pointers.
The presented module does not support the latter, which is already
well-covered by older tools, and ignores inline files and directories.

Since the file system journal can contain copies of existing
inodes and because the contentdata mode does not consider inode
table boundaries, duplicate inodes with different physical ad-
dresses can be found. The lack of inode numbers necessitates an
inode equality criterion with which it can be assured that two
compared inodes are the same. Therefore, the file size and the
extent structures of the inodes are compared, as they identify same
content.

Files without content

Similarly to the directory tree phase, this phase is optional and
builds upon the results of the directory tree and content data
phases and is thus only available in the metadata mode. Files found
in the directory tree phase but not in the inode carving phase
cannot be recovered with respect to their content but indeed to
their file name. Hence, they can be written as empty files with their
original name and complete file path. Examples include symbolic
links or device files.

Evaluation

In the previous section, we introduced an approach for recon-
structing inodes based on search patterns of different inode attri-
butes. All inodes that match the patterns are considered potential
inodes and using their extent tree, the file content can be recon-
structed. In this section, we evaluate the quality of each of those search
patterns, as well as the completeness and correctness of our tool.

Dataset

To evaluate our approach and implementation, we built a
dataset with different hard disk images as follows. We used
different file system sizes to cover the different configurations that
occur when formatting volumes of different sizes with default
values. Further, we built test cases where we deleted specific files or
changed file system parameters that might influence the success of
the approach. The entire list is shown in Appendix in Table B.11. For
the images where we deleted files, we distinguished the two cases
where files have been deleted directly vs. moved to trash first.
Further, we produced a case where we deleted all files and copied
new ones on the file system to check whether the former files can
be recovered. We also compared Ext4 file systems with enabled and
disabled journal and deleted files. To create a more realistic
example image, we created one that contains an entire Ubuntu
Linux installation with various files that have been moved, deleted
and modified and also containing symbolic links, device files and
other non-regular file types to cover a broad spectrum. Finally, we
also created images where we overformatted the existing Ext4 file
system with NTFS or again Ext4. For each of those cases, we
compared both, standard and quick formatting. Since the size of an
image is not as important as the configuration via mkfs, the dataset
contains mainly small images.

Search patterns and selectivity

In the first step, we want to check, how well the different pat-
terns perform. For this test, we chose the image with installed
Ubuntu and various cases. We used the Sleuthkit tool fsstat to
provide a ground truth about the number of reserved inodes.
Considering the first 10 inodes to be reserved, there remained
201.269 files, of which we checked how many are regular files and
directories. Table 2 summarizes the number of identified potential
inodes for each pattern, which we discuss in the following sections.

Each pattern is tested on each physical address and can accept or
decline this address as potential inode. Accepted addresses that lie
within an area of an inode table at a valid offset and can be
reconstructed successfully are listed as hits in the table. The refer-
ence for this is the total number of files in the file system
mentioned above. Structures that might be a valid inode, but reside
outside an inode table are called table misses. Those could be false
positives, but could also be copies of inodes for example in the file
system journal. Similarly, address misses are potential inode ad-
dresses that do not lie at a 128 byte inode boundary.

We do not reject both kind of misses in the first place, as they do
not necessarily mean false positives. The sum of hits, t-misses, and
a-misses is the number of accepted addresses for the pattern and
the selectivity of each pattern is this number compared to the total
number of possible addresses. In the next sections, we discuss the
results for each pattern in detail.

Access rights

While for access rights, there is no illegal combination, a search
pattern can either be defined to search for files with specific rights,
or to cover the most common access right combinations. The
pattern can be freely adjusted in the configuration file of our tool,
and the selectivity of the pattern strongly depends on this choice.
For this experiment, we chose the most common combinations of
access rights in a usual Linux system as shown in Table 3.

This pattern accepted only 142.855 valid inodes out of 201.269,
which however contained almost all regular files and folders.

Timestamps

The timestamp pattern consists of two parts: On the one hand,
we validate the inner consistency of the different timestamps as
explained in Section Inode carving, and on the other hand, the
investigator might configure a relevant timeframe for his case. For
this experiment we chose the timeframe from 2015-01-01
00:00:00 GMT to 2016-01-01 00:00:00 GMT, in which the system
was set up and all actions have been performed. Amongst the po-
tential inodes have been 7.140 false positives, so that the number of
hits as shown in Table 2 reduces to 65.170.

With respect to only the inner consistency, we obtained 209.481
hits, 5.708.816 t-misses and 1.416.653.929 a-misses. 8.213 of the
hits have been identified as false positives, however, all other valid
201.264 have been found.

Table 2

Search patterns selectivity. ‘k’ stands for thousand, ‘M’ for million and ‘G’ for billion;
t-miss are table misses and a-miss are address misses. Hits compared to all misses is
the selectivity.

Pattern Hits t-miss a-miss Select
access rights 151 k 1.02 M 99.9 M 0.6%
time interval 723 k 207 k 238 k 0.003%
time consist 209 k 571 M 142G 8.89%
link count 201 k 298 M 7.59 G 47.6%
extent flag 166 k 134 M 328G 20.6%
extent header 166 k 515k 53.2k 0.004%
file type 151 k 451 M 905 M 5.7%

S88 A. Dewald, S. Seufert / Digital Investigation 20 (2017) S83—S91

Table 3

Access right patterns chosen for the experiment.
Owner Group All
r-- r-- r--
w - r-- r--
w - ™w - [--
WX r-x r-Xx
WX rwx r-Xx
WX --- ---
™w - --- ---
WX r-X ---
WX rwx ---

Number of hard links

We check if the internal number of hard link counter of a po-
tential inode is larger than 0. Besides the special inodes 7 and 8,
which have to be counted as false positives, all the 201.269 are
accepted by this check.

Extent flag and header

Although they are very closely related, we evaluated the pattern
for the extent flag and extent headers separately. The extent flag as a
single bit stores only little information compared to the 2 byte magic
number of an extent header. Thus it is not very surprising that its
selectivity is very high. The extent header pattern is the only pattern,
that produces far more table misses that address misses. This is due to
the fact that not only every root node of an extent tree stores an extent
header, but every inner node, too. Thus this pattern also matches
various content data blocks. However, all regular files and folder have
been accepted by this pattern, along with 8.074 false positives. When
deleting a file in Ext4, the extent references are getting zeroed, but
the extent flag and the extent header is not affected, so that inodes of
deleted files are accepted by this pattern, too.

File type

As in our experiment, we restricted ourself to only regular files
and folders, we also adjusted the file type pattern accordingly.
Besides 8.068 false positives, this pattern matches on all 142.919
inodes that we searched for. We want to recall that the type field of
4 bit stores 7 different valid file types, so that there remain 9 illegal
values that allow to exclude false positives even without restricting
reconstruction to specific file types.

Pattern combination

To summarize, the 3 most restrictive patterns in our experi-
ments are the extent headers, timestamp intervals, and access
rights. Because the two last mentioned include some semantic
filtering (that might be very valuable in a real case, but need to be
adjusted to the specific case), we did not include them in the next
experiments to verify the correctness of our tool.

Completeness and correctness

For the evaluation of completeness and correctness of our tool,
we tested and compared both operation modes of our tool. To
identify reconstructed files and verify their correct recovery, we
calculated both, MD5 and SHA256 hashes and compared them to
the list of files that have been originally placed on the hard disk. In
order to be considered correctly recovered, in the contentdata
mode, the files need to be reconstructed with the correct hash
values, while in the metadata mode, besides the hash values, the
file name and path have to be correct, too.

We evaluated two images of two different categories: First, we
evaluated our tool on the real case images to verify correctness and
completeness by comparing the results of our tool the known

ground truth. Second, we wanted to evaluate, if we further can
recover files from file systems that have been overformatted with
our approach. To this end, we evaluated our tool on such cases.

In the next two sections, we present the results of those two
categories. Table B.12 in Appendix B shows detailed information
about the evaluation dataset with the total number of inodes, files
and directories to provide a ground truth on what potentially could
be recovered, for reference.

Real world cases

In case of the Ubuntu_Pics_complete.img, the metadata
mode reconstructed empty files with the correct file names and
paths for all non-regular files, all files and folders that have been
placed correctly, as well as the/1ost+found folder created by the
OS. In the contentdata mode, folders are not reconstructed, but all
the placed files have been recovered correctly (with their inode
address as file name).

For the images floppy.img, small.img, and default.img,
our tools reconstructed all regular files and in the contentdata
mode in addition the journal. Further, files have been recovered
from the journal, which we count as false positives, here.

The image floppy_deleted. img has been created from flop-
py.img by sending all files on the image to trash. Thus, the trash
contains all the original files, as well as metadata files that docu-
ment the original paths and times of deletion, which all have been
recovered by our tool.

We went one step further in the image floppy_deletedTra-
sh.img, that was created from the previous one by emptying the
trash. From the OS perspective, there is no file left on the file system. In
metadata mode, our tool was only able to recover the empty root and
trash folder. However, in the contentdata mode, the tool reconstructed
all the files correctly (of course, without original file names) from
inodes found in the journal, along with 15 duplicates of some files.

In the next step, we deleted all files from all previously
described images (via sending to trash and emptying trash). We
then copied totally different files to the resulting new images. The
metadata mode recovered all newly written files correctly from all
images. In addition, from this image small_newFiles.img, the
contentdata mode was able to recover one file form the original file
system, whose file content has not been overwritten by new files,
and its inode resided in the old journal.

Finally, we evaluated the case Ubuntu_Pics_complete.img,
where the two modes of our tool provided very different results,
because the journal contained lots of copies of changed inodes,
which led to lots of additional files that could have been recovered
in the contentdata mode. On the other hand, the contentdata mode
does not reconstruct multiple empty files (since they look iden-
tical), but the default Ubuntu installation contained lots of empty
files that were not recovered in this mode.

Overformatted file systems

The following test cases are meant to evaluate, if it is possible to
reconstruct files from Ext4 file systems that have been over-
formatted in different ways. As basis for this scenarios, we used the
image small . img, which provides an upper boundary of what files
can be recovered.

First, we overformatted the original file system with Ext4
(small_newExt4.img) and NTFS (small NTFS.img) in full
formatting mode. In those cases, the blocks have been zeroed and
we were not able to recover any files. However, Ext4 as well as NTFS
provide an option for so called fast formatting, where no blocks are
zeroed while formatting and only newly used blocks are over-
written. Table 4 lists the number of identified inodes and files from
the fast overformatted file systems and compared results from both
operation modes.

A. Dewald, S. Seufert / Digital Investigation 20 (2017) S83—S91 S89

Table 4

Number of found inodes after selection of the overformatted dataset.
Image name and mode All inodes Regularfiles Folders
small_fastExt4.img 128 121 7
accepted 171 77
metadata mode 118 5
contentdata mode 119 0
small_fastdiffExt4.img 128 121 7
accepted 228 20
metadata mode 0 0
contentdata mode 125 0
small_fastNTFS.img 128 121 7
accepted 348 94
metadata mode 121 7
contentdata mode 124 0

Table 5

Runtime for analyzing the image and recovering the files.
Image name Amount Size Time
small.img
metadata mode 128 128.5 MB 5.6s
contentdata mode 124 134.1 MB 5.4s
default.img
metadata mode 5102 53 GB 2m 36s
contentdata mode 4868 54 GB 2m 28s

Theimage small_ fastExt4.imghasbeen created by usingthe
same default parameters when overformatting the volume as used
for the original formatting. In this case (and due to this parametri-
zation), in the metadata mode our tool was able to recover all but 3 of
the original files and all but 2 folders. The contentdata mode addi-
tionally recovers the journal from inode 8 as a file.

In case of the image small_fastdiffExt4.img, where
different non-default parameters have been used for reformatting,
none of the original inode table resided in areas that have not been
overwritten, and thus the metadata mode was not able to recover
files. However, the journal has not been overwritten, so that in the
contentdata mode, our tool was able to recover 125 files, of which
52 are totally unmodified. The others have been partly overwritten.

In the image small_fastNTFS. img, the structures that have
been created for the NTFS file system did not overwrite the area of
the original inode tables, so that all inodes have been intact and
both operation modes were able to recover all the original files, of
which only some have modified content, where some blocks have
been used by the new file system.

Runtime performance

Table 5 shows a short runtime evaluation, that shows that both
implemented methods show similar speed, while the contentdata
mode is slightly faster. Both approaches take roughly about 30 s per
GigaByte image size. As all entire image carving approaches the
runtime is linear dependent from the image size.

Conclusion

In the previous sections, we presented an approach which was
developed for the reconstruction of files on Ext4 file systems. This
approach does not require the extraction of the most central met-
adata structures, such as superblocks or group descriptor tables.
Instead, inodes are identified using a search pattern by combining a
file carving method and a type of metadata analysis followed by the
reconstruction of the corresponding files. The proof of concept
implementation resulted in a fully working module for the
Sleuthkit framework released open source along with this paper
(Dewald and Seufert, 2017).

Contribution

It can be concluded from the findings of this work that, by using
the described approach, files can be reconstructed from Ext4 file
systems even without knowledge about the particular structure of
the file system. By separating the inode search from the inode
reconstruction, it is possible to find inodes when there is no given
information about the file system layout available. Neither the file
system size, nor the examined Ext4 file system's offset to the begin
of the partition are necessary in order to locate inodes (and thus
gain first information about potential files).

The effectivity of the different patterns vary depending on the
use case. For instance, deleted files cannot be recovered from a hard
disk if the file system does not use a journal. Similarly, the amount
of restorable files from overformatted disks depends on the specific
circumstances, such as the file system used for overformatting and
the formatting settings. In the content data mode, there is no
possibility to distinct recovered inodes from inode tables and the
file system journal, which leads to duplicate files. However those
can be successfully detected and removed. This way, deleted files
can be reconstructed, if a copy of the corresponding inode is found
in the journal. Reconstruction in metadata mode discards inode hits
that are not within an inode table, thus recovery of deleted files is
not possible in this mode, but this approach leads to less false
positives and is able to recover file names and directory structures
of the files.

Limitations

There are some limitations related to our approach, but also
some that are related to the implementation and can be addressed
by future development. One of these limitations is the dependency
on the standard formatting of the Ext4 file system. This can be
addressed by manually providing the parameters that differ from a
standard configuration. However, we were not able to observe such
a case in the wild, as normally file systems are created by the
standard operating system tools, that to not change such parame-
ters as the number of inodes per inode table or the block size to
other ones as the default values.

One other limitation is that deleted files can only be recon-
structed when the content data mode is used and only on a file
system that keeps a journal. Even in this case, only deleted files that
have their last change documented in the journal can be recovered.

Other limitations result not only from the described approach,
but also from the developed forensic tool. For instance, the file
reconstruction is limited to regular files. By applying the metadata
mode directories can indeed be read and interpreted, however a file
system cannot be completely reconstructed because other file types
are not supported, e.g. symbolic links or device files.

Future work

In future work, we plan to improve the used search patterns and
maybe add further ones that might be helpful in very specific cases.
In order to provide backwards compatibility to Ext2/3 the devel-
opment new search patterns is required, too. Due to the fact that
the extent header pattern is one of the most effective patterns, an
alternative must be found for Ext2/3, where no extents are used.

Likewise, further options for saving content data for recon-
struction should be considered, to maintain compatibility with
systems migrating from Ext3 to Ext4. Not only indirect block
pointers that emerge after the migration from Ext2/3 to Ext4
should be taken into account, but also inline files and directories.

With our current implementation it is not possible to combine
metadata and content data modes. Certainly, it would be desirable

S90 A. Dewald, S. Seufert / Digital Investigation 20 (2017) S83—S91

if outcomes could be generated in a single program run, benefiting
from the advantages of both modes, which currently needs to be
done manually by running the module twice. Thereby, it would be
possible to both generate the directory hierarchy through the
metadata mode and reconstruct files, whose inodes can be found
exclusively in the journal.

Appendix A. Ext structures

Table A.6
Ext4 Extent header in extent tree.
Offset Len. Description
0 2 Magic number (0x£30a)
2 2 Number of valid extent entries after header
4 2 Max. number of extent entries
6 2 Depth of this node in extent tree
8 4 Generation number

Table A.7
Ext4 Extent entry for inner node in the extent tree.

Offset Len. Description

0 4 ID of first block of own tree-part from beginning of the file
4 4 Lower 32 Bit of block address of child entry
8 2 Upper 16 Bit of block address of child entry
10 2 Unused
Table A.8
Ext4 Extent entry for a leaf in extent tree.
Offset Len. Description
0 4 ID of first block of own tree-part from beginning of the file
4 2 Block count covered by this extent
6 2 Upper 16 bit of block address of referenced data blocks
8 4 Lower 32 bit of block address of referenced data blocks
Table A9
Structure of Inodes in Ext2/3, offsets and lengths given in bytes.
Offset Len. Description
0 2 Mode (file type and access)
2 2 Lower 16 bit user-ID
4 4 Lower 32 bit file size
8 4 Atime
12 4 Ctime
16 4 Mtime
20 4 Dtime
24 2 Lower 16 bit group ID
26 2 Link count
28 4 Sector count
32 4 Flags
36 4 Unused
40 48 12 direct block pointers
88 4 1 indirect block pointer
92 4 1 double indirect block pointer
96 4 1 triple indirect block pointer
100 4 Generation number
104 4 Extended attributes (file-ACL)
108 4 Upper 32 bits file size/directory-ACL
112 4 Fragment block address
116 1 Fragment index in block
117 1 Fragment size
118 2 Unused
120 2 Upper 16 bit user-ID
122 2 Upper 16 bit group-ID
124 4 Unused

Table A.10
Default parameters as chosen by mkfs for Ext4.
mkfs Type Parameter Value
floppy (to 3 MiB) block size 1024 Byte
inode size 128 Byte
inode ratio 8192
small (to 512 MiB) block size 1024 Byte
inode size 128 Byte
inode ratio 4096
default (to 4 TiB) block size 4096 Byte
inode size 256 Byte
inode ratio 16,384
big (to 16 TiB) block size 4096 Byte
inode size 256 Byte
inode ratio 32,768
huge (from 16 TiB) block size 4096 Byte
inode size 256 Byte
inode ratio 65,536
Appendix B. Detailed evaluation results
Table B.11
Dataset specification.
Image name GroR3e mkfs-Type
floppy.img 2,3 MB floppy
small.img 230 MB small
default.img 12 GB default
floppy_deleted.img 2,3 MB floppy
floppy_deletedTrash.img 2,3 MB floppy
floppy_newfFiles.img 2,3 MB floppy
small_newFiles.img 230 MB small
default_newFiles.img 12 GB default
default_sameFiles.img 12 GB default
default_withoutJournal.img 6 GB default
Ubuntu_Pics_complete.img 16,0 GB default
small_newExt4.img 230 MB small
small_diffExt4.img 230 MB small
small_fastExt4.img 230 MB small
small_fastdiffExt4.img 230 MB small
small_NTFS.img 230 MB small
small_fastNTFS.img 230 MB small
Table B.12
Evaluation dataset details.
Image name and mode All inodes Regular files Folders
floppy.img 6 4 2
metadata mode 4 2
contentdata mode 6 0
smallimg 128 121 7
metadata mode 121 7
contentdata mode 124 0
default.img 5.102 4.866 236
metadata mode 4.866 236
contentdata mode 4.868 0
floppy_deleted.img 13 8 5
metadata mode 8 5
contentdata mode 9 0
floppy_deletedTrash.img 2 0 2
metadata mode 0 2
contentdata mode 9 0
floppy_newFiles.img 28 25 3
metadata mode 25 3
contentdata mode 27 0
small_newFiles.img 349 340 9
metadata mode 340 9
contentdata mode 355 0
default_newrFiles.img 9.062 7.773 1.289
metadata mode 7.773 1.289
contentdata mode 7.664 0
default_withoutJournal.img 2 0 2
metadata mode 0 2
contentdata mode 0 0
Ubuntu_Pics_complete.img 201.269 127.159 15.760
metadata mode 127.159 15.760
contentdata mode 168.035 0

A. Dewald, S. Seufert / Digital Investigation 20 (2017) S83—S91 S91

References

Carrier, B. The sleuth kit, TSK. http://www.sleuthkit.org/sleuthkit/ (Online).

Carrier, B., 2005. File System Forensic Analysis, vol. 3. Addison-Wesley Reading.

Casey, E., 2011. Digital Evidence and Computer Crime: Forensic Science, Computers
and the Internet. Academic Press.

Craiger, P., 2005. Recovering digital evidence from linux systems. In: Advances in
Digital Forensics. Springer, pp. 233—244.

Dewald, A., Seufert, S., 2017. Ext4 file recovery. (Accessed 5 January 2017), URL
https://www1.cs.fau.de/content/ext4-file-recovery.

Ext4 disk layout, 2016. (Accessed 26 December 2016) URL https://ext4.wiki.kernel.
org/index.php/Ext4_Disk_Layout.

Fairbanks, K.D.,2012. An analysis of ext4 for digital forensics. Digit. Investig. 9, S118—S130.

Fairbanks, K.D., Lee, C.P., Owen III, H.L., 2010. Forensic implications of ext4. In:
Proceedings of the Sixth Annual Workshop on Cyber Security and Information
Intelligence Research, ACM, p. 22.

Lee, S., Shon, T., 2014. Improved deleted file recovery technique for ext2/3 fil-
esystem. J. Supercomput. 70 (1), 20—30.

Narvdez, G., 2007. Taking advantage of ext3 journaling file system in a forensic
investigation. SANS Institute Reading Room.

Pomeranz, H. Ext3 file recovery via indirect blocks.

http://www.sleuthkit.org/sleuthkit/
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref2
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref3
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref3
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref4
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref4
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref4
https://www1.cs.fau.de/content/ext4-file-recovery
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref7
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref7
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref8
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref8
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref8
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref9
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref9
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref9
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref10
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref10
http://refhub.elsevier.com/S1742-2876(17)30027-0/sref10

	AFEIC: Advanced forensic Ext4 inode carving
	Introduction
	Motivation
	Contributions
	Outline
	Related work

	Ext4 file system novelties
	Inodes
	Flex-groups

	Methodology
	Initialization
	Inode carving
	Directory tree
	Regular files
	Files without content

	Evaluation
	Dataset
	Search patterns and selectivity
	Access rights
	Timestamps
	Number of hard links
	Extent flag and header
	File type
	Pattern combination

	Completeness and correctness
	Real world cases
	Overformatted file systems

	Runtime performance

	Conclusion
	Contribution
	Limitations
	Future work

	Appendix A. Ext structures
	Appendix B. Detailed evaluation results
	References

