Digital Investigation 20 (2017) S92—S98

journal homepage: www.elsevier.com/locate/diin

Contents lists available at ScienceDirect =
DFRWS 2017 EUROPE

Digital Investigation

DFRWS 2017 Europe — Proceedings of the Fourth Annual DFRWS Europe

Selective deletion of non-relevant data

@ CrossMark

Christian Zoubek * *, Konstantin Sack >

2 Department of Computer Science, Technische Hochschule Niirnberg Georg Simon Ohm, Nuremberg, Germany
b Department of Computer Science, Friedrich Alexander Universitdt Erlangen-Niirnberg (FAU), Erlangen, Germany

ARTICLE INFO

Article history:
Received 26 January 2017
Accepted 26 January 2017

Keywords:

Digital forensic
Image

Wiping

Private personal data
Computer forensic
Selective deletion

ABSTRACT

In crime investigation, especially in computer crime investigations, seizure and analysis of digital evi-
dence is a de facto standard procedure. To prevent alterations on the original digital evidence a so called
(bitwise) image is created. In this image all data contained on the digital evidence is stored, even non-
relevant content or content with the risk of associated privacy violations. In countries with an elaborate
protection of private personal or confidential data, this data has to be securely deleted from the image.
Facing the rising request for a selective deleting functionality, common problems, limitations and re-
quirements for a tool selectively deleting non-relevant data are outlined in this paper. For demonstration
purposes, a prototype as a plugin for the Digital Forensics Framework (DFF) was implemented. The
design of the implementation, some considerations as well as a comparison between a commercial tool
and the evaluation of the implemented wiping strategy are presented.

© 2017 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
Motivation

In a 2.0 environment with an increasing IT-knowledge of
users and the trend of digitalization, electronic data has become
a significant role in today's life. From the point of view of crime
investigators, evidence in different forms can be found on dig-
ital media like computers, mobiles or USB-sticks. In addition to
the rising challenge of mass data, law enforcement agencies
have to face more specialized defense lawyers and prosecutors.
During a criminal investigation process, even in investigations
that are of non-electronic nature, the search and seizure of
digital devices is a standard procedure. In regard to the forensic
soundness of the digital evidence, best practice guides like “The
Good Practice Guide for Computer-Based Electronic Evidence”
were introduced to forensic practitioners. The creation of a so
called image (bitwise copy) of the original digital evidence has
become common.

* Corresponding author.
** Corresponding author.
E-mail addresses: christian.zoubek@th-nuernberg.de (C. Zoubek), konstantin.sack@
fau.de (K. Sack).

http://dx.doi.org/10.1016/j.diin.2017.01.006

Legal considerations

The idea behind the tool, which is proposed in Section
Implementation, is based on German laws limiting the access and
usage of information, for example the data privacy law (corre-
sponding to the data protection act 1998 [UK], different information
privacy and data protection laws in the US or Article 8 of the Euro-
pean Convention on Human Rights (ECHR) providing the right to
respect “private and family life, his home and his correspondence”).
Especially German law enforcement has strict legal specifications
about the seizure of data and its utilization for criminal investigations.
Content of data that leads to knowledge about one's way of life are
prohibited to be utilized. §100a of the German code of criminal pro-
cedure (German: Strafprozessordnung) states in subparagraph 4, that
recordings of such data are mandatory to be deleted immediately and
that both, the obtainment and its deletion, are to be documented.

This is derived by the so called “Elfes-Urteil”, a decision made by
the German Federal Constitutional Court (German: Bundesverfas-
sungsgericht) in 1957. It strictly states that one's data is part of a
human being's inviolable dignity and freedom (Moser-Knierim,
2014). In consequence, law enforcement is forced to spare non-
relevant data blocks to a case when imaging a suspect's volumes.
As this guideline can hardly be executed in reality, the selective
deletion approach provides a possibility to fulfill the legal
requirement afterwards.

Even though this legal requirement is expected to be fulfilled, its
implementation is not yet actively pursued. If asked, the typical

1742-2876/© 2017 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:christian.zoubek@th-nuernberg.de
mailto:konstantin.sack@fau.de
mailto:konstantin.sack@fau.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2017.01.006&domain=pdf
www.sciencedirect.com/science/journal/17422876
www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2017.01.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2017.01.006
http://dx.doi.org/10.1016/j.diin.2017.01.006

C. Zoubek, K. Sack / Digital Investigation 20 (2017) S92—S98 S93

answer of local German criminal investigation offices is, that there
exists no established tool that is yet able to selectively delete data,
neither during acquisition nor afterwards (Lg frankfurt, 2004; fiir
den Datenschutz, 2012). The main argument to not implement
this feature is that the deletion of content always modifies images.
As the modification of evidence damages the integrity of the very
same and thus applicability in court may be endangered.

Expectations to a selective deletion tool

For a secure deletion of objects, a lot of specialized wiping tools
exist. Carrier describes their function as: ‘Most wiping, or “secure
delete” tools operate in the content category and write zeros or
random data to the data units that a file allocated or to all unused
data units’ (Carrier, 2005). Garfinkel stated, that tools which over-
write information are the ‘oldest and most common forms of anti-
forensic tools’ (Garfinkel, 2007). Besides the functionality to over-
write entire media or individual files, the possibility to delete
metadata as a possible source for creating timelines about the
user's activity should be given (Garfinkel, 2007). In the context of
personally identifiable information, Pan et al. claimed, that ‘Meta-
data can provide a place for sensitive data to reside, but it is not
particularly easy to remove’ (Pan et al., 2010). Following these
opinions, we believe that forensically sound deletion tools should
include the possibility to securely delete all remaining associated
information, for instance meta information given by file tables
corresponding to the deleted files. On top of that, a detailed report
or log file helps to a) document the deletion of selected files and b)
to authenticate the integrity and the provenance of the image and
the remaining files. Following the NIST Special Publication 800-88
(NIST, 2014) the presented deletion tool operates with a single
overwrite mechanism.

Related work

Castiglione et al. (2011) drafted an approach for the ‘Automatic,
Selective and Secure Deletion of Digital Evidence’. They proposed
different methods for the wiping implementation in regard of
leaving possible traces for digital investigations by anomalies or
suspicious patterns on the disk. By defining the wiping of the
physical locations of the data, the removal of associated metadata
and ‘unwanted’ or ‘suspicious’ traces as theoretical necessity, their
case study only faced the deletion of the physical locations.

In contrast to a selective deletion, Stiittgen et al. (2013) designed
a DFF module for the creation of selective images. Contrary to full
bitwise copies, the selective imaging allows the creation of partial
images with only selected data. The main difference between this
approach and ours is that selective imaging is done during the
acquisition process, while the selective deletion is done after the
imaging process.

Short introduction of tool

The tool for a selective deletion is realized as a plugin for the
Digital Forensics Framework." As the tool was intended to investi-
gate whether technically a secure selective deletion is possible, this
plugin is bounded to NTFS as the only file system. Currently only
raw images are supported.

This tool only provides a technical solution to the deletion
process and therefore is limited in its support for the investigator in
some ways. First, the search of sensitive data is done manually by

! Tool and a brief manual can be found here: https://wwwlinformatik.uni-
erlangen.de/content/selective-deletion.

the investigator. The authors don't know of any possible way to
automatically detect such data. Yet this question is out of the scope
of this paper.

Second, the tool works at file system level. If routines of an
operating system shadows certain data or meta data, this tool
cannot directly find corresponding entries. Using the Matcher-
module, which is described later in greater detail, 1:1-copies of files
are able to be detected in an automatic fashion. Hence, slightly
changed data still needs to be detected by the user.

Outline

The focus of this paper lays on the implementation of a forensi-
cally sound selective deletion tool for images of NTFS’-partitioned
disks. Precise criteria for forensically sound deletion and provenance
verification techniques will be defined in Section Expectations to a
selective deletion tool and further described in Section Selective
deletion. Section Implementation points out specific functions of
the implementation. In Section Evaluation the functions are tested
and compared to these of an existing forensic tool (X-Ways Foren-
sics). Section Conclusion and future work finally concludes the paper.

Selective deletion

For forensic purposes it is essential to define a proper under-
standing of the irrecoverable deletion of data objects. By using the
deletion method of common operating systems (Windows or OS X),
only the entry in the file allocation table (Master File Table for NTFS
— Inode-table for Ext) is deleted or marked with an unused flag.
The data itself still resides on disk until the space is reused by the
system. This type of deletion is not proper for forensic use, because
data content could be recovered easily using open source tools like
the forensic suite Autopsy.

Additionally, reformatting hard disks usually just rewrites
partition tables. In consequence, data of former formats is still in
place and will remain until newer formats overwrite these certain
blocks. So called file-carvers yield the possibility to detect and carve
remnants. As those file-carvers miss the opportunity to recover
meta data corresponding to the installed file system, a file carver
cannot find out whether carved data belongs to the latest format or
an older, unknown format.

To counter the latter case, some tools exist that clear whole
formats or disks by overwriting all data with random numbers or
zeros. There are also numerous tools to erase individual files more or
less securely. These tools commonly operate in the content category
(Carrier, 2005). All blocks that are allocated as content of data are
located and wiped by overwriting them with nonsense data.

Still, this method is not forensically save enough. Depending on
the used file system most of a file's metadata still remains on disk.
Even if all data content is securely erased, metadata still yields in-
formation about the user. For instance, a suspect went on a vacation
some time before seizure, took some pictures of visited places and
saved these on their hard disk. Structurally saved directories and
unique names like “Vacation 2016 — Lake Constance” give enough
information about one's private life. Correctly interpreting the
already discussed “Elfes”-decision of the German Federal Consti-
tutional Court examining, saving or in any other way utilizing such
data is prohibited, exceptionally said data is case relevant.

In file systems like NTFS the file's metadata is saved in special
data structures with some of it located directly in the $MFT> the
heart of the file system. Selective deletion in NTFS proves difficult as

2 Microsoft's New Technology File System.
3 For this paper the main focus was Microsoft's NTFS.

https://www1.informatik.uni-erlangen.de/content/selective-deletion
https://www1.informatik.uni-erlangen.de/content/selective-deletion

S94 C. Zoubek, K. Sack / Digital Investigation 20 (2017) S92—S98

wiping the data may leave the file system in a corrupt state. Hence
the modification of affected data structures is the better choice. To
enhance the access time to files, modern file systems usually sort
file names in a B-tree.

In NTFS, the B-trees of all the directories are saved in data
structures that are separated from the file's content. Each node of
the B-tree is represented by a so called cluster of a specific size (see
Fig. 1 as a simple example of a B-tree). Within such a cluster, the
filenames indicate the position of each entry within the tree. A flag
within an entry declares whether a subtree is attached to the entry.
The B-tree has to be balanced and sorted, hence the entries in a
subtree are always lexicographically smaller than the parent entry.
For example, in Fig. 1 the 2nd leaf holds entries lower than the
corresponding head entry, in this case 11.

Just clearing a filename may impact the tree in such a way that a
whole subtree may be irrecoverable. For instance, wiping entry 11,
the 2nd leaf would not be recoverable anymore, as no entry in the
head points to this leaf. The algorithm used find entries in a B-tree
is now forced to descend at entry 16 for every entry with a number
between 5 and 16. As entry 16 only points to the third leaf, only
these entries can be found. Hence entries 6,7,8,9 and 10 cannot be
found by this routine anymore.

In Section Implementation a possible solution for a more secure
deletion is shown. Here the deletion-module finds the greatest
value in the left subtree to overwrite entry 11.

Another major aspect of a valid selective deletion is integrity.
Just wiping and clearing case irrelevant data is not enough. As ev-
idence may be needed in court, the investigator has to guarantee
the integrity of the remaining data. A change could lead to a false
interpretation of data, either positively or negatively for the
suspect.

Two approaches that complement each other are presented in
greater detail in Section Implementation. First, all changes in data —
both deletion and modification — are documented. The resulting
log file keeps every alteration of hardware blocks with the exact
address. The alteration is linked to the deleted file.

The other approach uses Merkle trees to verify the integrity of
remaining data. Two trees are to be created, one before the selected
deletion process and the other right afterwards. By comparing both
trees, differences indicate modifications of hardware blocks. When
matching the difference of both trees with the log file received in
the first step, alterations of the same hardware blocks are to be
received. If the results differ, an undocumented alteration can be
assumed. Hence the integrity of this image cannot be guaranteed
anymore.

To summarize aforementioned problems, the forensically
sound implementation of a selective deletion tool should at least
be able to

o detect all blocks of content of data and completely erase them
o find corresponding metadata and delete it

o leave the file system in a working state

e meticulously document every modification and deletion

e ensure integrity of remaining data

s]

[12314] [678910] [12131415][17 18 19

Fig. 1. Exemplary B-tree with overall 19 entries.

Implementation

The prototypical implementation is realized as a plugin to the
Digital Forensics Framework (DFF), which is an open source forensics
toolkit.* For popularity reasons NTFS is one of the most analyzed file
systems in digital forensic examinations, therefore the decision to
implement a selective deletion to handle that file system was made. In
this paper, NTFS is only explained rudimentary. Special data structures
(e.g. fixup values), run lists, attributes, structure of MFT-entries, virtual
and logical clusters and many more to consider when modifying a
NTFS would push the boundaries of this paper. Those are explained in
great detail in literature like Carrier (2005). The plugin for a selective
deletion tool is divided into five modules, whereas some modules are
not necessary for a selective deletion but are an addition for an
investigator to help find all files. The modules are named as follows

Selector
Matcher
Carver-Cleaner
Hashcalculator
Deletion module

The Selector module interprets existing partition tables, NTFS-
partitions and spans the corresponding directory structures. In addi-
tion, this module is able to carve the MFT for files which were only
deleted by unsetting the in use flag. The Matcher supports the user to
find duplicates and files linked to the same data content. The third
module is used after the execution of a carving tool. Files, that do not
belong to installed partitions, are flagged accordingly. The purpose of
the Hashcalculator is to verify the integrity of remaining data after a
selective deletion. The main functionality of the prototype is realized
in the deletion module. Each directory and file is checked whether it is
tagged for deletion. If so, data and corresponding metadata is deleted
in a way, that the rest of the partition is still consistent and usable.

To ensure a forensically sound process, the main modules pro-
duce logfiles including integrity information like the path of the
deleted data objects and the memory area according to the con-
taining partition.

Hashcalculator

The function of the Hashcalculator Module is to ensure the
integrity of the court exhibit (digital evidence). To obtain the
forensically soundness, a Merkle tree (Merkle, 1982) with user
defined options for the block size and the number of children per
node in the tree structure is used in combination with the calcu-
lation of MD5 hash values. A Merkle tree, also called hash tree,
calculates hash values out of blocks. Then, a predefined number of
hash sums is grouped together to calculate a new hash value out of
these hash values. This is done subsequently until only one hash
value, the so called top hash, is reached.

For the correctness of the hash calculation the module spans an
entire balanced tree. The minimal height of the tree is calculated
using Eq. (1). The result of the equation is used in Eq. (2) to
determine the amount of zero blocks needed to be added to finally
balance the tree

image size
log1o (block size)

tree height = logo(children per node)

: (1)

4 The source can be found here: blind review.

C. Zoubek, K. Sack / Digital Investigation 20 (2017) S92—S98 S95

#leaves = (children per node)"e® height (2)

The tree is saved in a tuple of XML-files.” With the calculation of
hash trees before and after the deletion process, a user is able to
easily identify modified blocks. The user compares hash values of a
certain level across both trees. Different values indicate that data in
the range of the affected block is modified. The descension to the
following subtree, holding the modified block, further narrows the
range to search.

Matcher

The matcher module carries out two functions. One is an
expansion of the forensics application of a secure deletion in a
manner to leave a coherent file system after deletion. In NTFS, like
in most modern file systems, it is possible to use more than one
hard link to specific data content. A hard link connects MFT entries
with corresponding data blocks. Using several hard links to the
same data blocks counters copying the very same content to
different locations. Hence it increases performance and HDD life-
time. Hard links don't necessarily use the same file name to con-
tent, as data content and metadata are strictly separated.

In the context of a selective deletion this yields an issue. If an
investigator wants to delete a specific file while he missed
another hard link that points to the very same file content,
zeroing the content corrupts the file system in some way. Drivers
are still able to see the hard link (including all of the metadata
like file name and ownership) but are unable to open the specific
file. In tests, the operating system popped up an error message
notifying the user about a corrupt I/O-device. The matcher
module can counter this by detecting these cases and flagging
them appropriately so that a user is able to find such double
pointers.

Another function of this module is to find real duplicates of files.
This is important, because it is more and more common to save
data, especially if sensitive, in more than just one location. With the
sheer amount of data a volume is able to hold today, there is a
chance that the user of this plugin may miss all duplicates of a file.
To aid the user, a block hasher is integrated to this module. It cal-
culates hash values of a certain number of blocks of files that are
flagged to be deleted. These blocks are then compared to blocks of
all files with the very same file size. In cases, in which both files are
identical the duplicate is flagged accordingly.

Additionally to flagging all duplicates and hard link copies, this
module saves detailed information in a log file. The log file allows a
user to reconstruct as to why the algorithm flagged individual files
as duplicate.

Carver-Cleaner

The Carver-Cleaner-module is not mandatory if only a selective
deletion is wanted. It implements the requirement made by the
Elfes-decision (see Section Introduction) to spare private data. With
carvers, the possibility to find data of older formats arises. Unfor-
tunately, also many so called false positives may be found. After the
application of such a carver, this module probes data sections of
carved files against information found in existing MFTs.

The algorithm checks whether data blocks of carved files over-
lap with blocks marked by entries of the MFT. If only one block
overlaps, the deletion of it could corrupt the file system, hence only
files without overlapping content is marked accordingly. This way,

5 Extensible Markup Language.

false positives and data belonging to file systems are spared. A
possible damage to the file system is avoided.

Deletion

The main functionality of the whole plugin is implemented in
the Deletion-module. As metadata and content of data is separated,
this module is divided into two parts. The first part just wipes
content by zeroing corresponding blocks. The second one decides
whether data in metadata is wiped or modified in a way that a file
system stays intact. For example, a modification is applied when
changing B-tree structures.

As the DFF is a forensics toolkit, it is prohibited to modify images
directly. To enforce this rule, volumes in DFF are always mounted
read-only. The first step to allow modification is to obtain the origin
path by using DFF-call-routines. Following this, the correct path to the
image is handed to C++ routines to open the path with write access.

A synchronization of pointers to data is additionally needed to
prevent alteration of wrong sections in the volume. The deletion is
done recursively. The root directory is the starting point of this
algorithm. Here, the algorithm descends recursively to subfolders.
In each directory, entries marked as delete are further inspected.

Every block of data or metadata corresponding to a file/direc-
tory, that is declared to be deleted, is located and saved in an in-
ternal data structure. This data structure saves, which block is to be
deleted and which block needs modification. After inspecting a
whole directory, it is checked whether any file or sub directory was
changed in the process. The latter case implies an update of the
current directory's B-tree.

Updating the B-tree proves partially difficult (see Section
Selective deletion). If done improper, a whole subtree in NTFS's
internal representation of a B-tree could be lost. In consequence,
some or all files cannot be found by interpreting the B-trees as
designated. Therefore, this algorithm first checks, whether corre-
sponding entries in the B-tree are at leaf level or node level.

The first case is fairly easy to solve:

remember the size of entry

temporarily save everything after the entry to the end of the leaf
overwrite the deleted entry with saved entries

after the last entry, overwrite data of the size of the deleted
entry with zeros

The other case implicates some specialties. At first, the greatest
value in the left sub tree is identified by recursively descending the
tree. This entry is locally saved and temporarily deleted by calling
the aforementioned routine. Depending on the size difference be-
tween the saved entry and the one to be deleted, the marked entry
is overwritten by the saved entry. If the subtree is obsolete after
deletion, the child-flag in the corresponding entry is deleted.

Some more specialties are to be considered regarding NTFS. Each
cluster is only of specific size, therefore under- or overflows are
possible. Updating data fields about the sizes used within a cluster
and updating fixup values is also mandatory. How to possibly
implement solutions to these problems would push the boundaries
of this paper. These can be directly found in the source code.

When modifying data on the image, a critical section occurs. In a
perfect scenario, changing content, metadata and B-tree updates
would be applied in parallel and without interruptions. As com-
puters and programs could crash, this module tries to keep the
critical section as small as possible. Hence before changing a file or
a directory, all needed alterations are booked in a data structure
before. If all modifications within a directory are booked, the
application of these are done at once. Even though a critical section
still exists, it is far smaller than applying alterations immediately.

S96 C. Zoubek, K. Sack / Digital Investigation 20 (2017) S92—S98

One thing to mention is that the gapless documentation of every
modification and deletion of data still yields information about the
user. As already mentioned in Section Introduction, §100a of the
German code of criminal procedure forces a documentation, which
keeps information about obtainment and deletion of data. For this
paper the selective deletion and the integrity of remaining data was
the focus. Hence the question, how deep documentation about the
deletion process may go, is not answered. Here the deletion of
every single file is documented by the whole path and the corre-
sponding data blocks. Considering the Elfes decision such docu-
mentation may already hurt one's basic human rights, see Section
Introduction.

Evaluation

Two different test scenarios built the basis to evaluate the pro-
totype. The first scenario is used to verify the proper functioning,
while the second scenario points out the benefits of the imple-
mentation in comparison to an existing deletion function used by
the forensic tool X-Ways Forensics.

For the first scenario seven test cases were designed, which
cover a small variety of typical use cases:

e standard allocations of data on devices (e.g. saving of picture
files)

o non-standard allocations like resident files®

o reformatted devices with data transparent to the new format

Two of them are especially eligible to show that due to the
reconstruction of B-Trees even deletion in system folders is possible
without creating any inconsistent state of the device. In all test
cases the proper function of the selector, matcher, Carver-cleaner
and deletion module could be verified. Deleting a whole user
directory on a boot device forces a windows routine to recreate the
user directories temporarily. A popped up message at startup in-
forms the user accordingly. Even though the user was created
temporarily, there was no evidence that this windows routine
could recover any deleted file. Hence we assume that the selective
deletion works proper in this case, but there is additional future
work to do underpin this assumption.

The second scenario is used to compare this implementation
with a widely used forensic tool, which also allows the selective
deletion of files. A USB-stick with a capacity of 3.6 GB and a NTFS
served as a basis. Some logical folders and files were created for
testing purpose. The tasks for the forensic software X-Ways Fo-
rensics and our implementation was to delete a folder including all
child objects. Furthermore a jpg-file and all of its hash-similar du-
plicates on the device were to be found and deleted. To point out
the enhancement of this prototype, the first step is to show the
basic deletion function of X-Ways 18.9 (X.-G. AG, 2016).

For a selective deletion in images in X-Ways the image needs to
be added to a case. To delete a file the file is to be “excluded”. The
same applies to folders with the option of recursive exclusion of
all child objects. Finding duplicates is an embedded function in X-
Ways which works either with Hash/Photo-DNA-criteria or by
name of the object. Unfortunately every duplicate has to be
marked as “to be excluded” manually. A deletion of the objects is
achieved by the creation of a new image of the device omitting the
excluded files.

X-Ways offers an option to mark the first bytes of the data
content of excluded files user-defined watermarks. The rest of the
file is deleted by zeroing all allocated blocks. However all the data's

6 In NTFS small files are directly allocated to the MFT.

metadata including names, mac-times and other information
remain on the new image. Fig. 2 exemplifies the deletion process in
X-Ways (File A and B are to be deleted). With only the file content to
be deleted, X-Ways doesn't touch the $MFT. Furthermore X-Ways
doesn't create a dedicated report including the listing of the
excluded data object; a log-report with information concerning the
image creation itself is generated.

The comparison between X-Ways and this DFF plugin is done by
the following setup. Three hash-wise identical files called kipo1.jpg
in three different subfolders on the device are to be wiped. Addi-
tionally a whole directory is deleted recursively so that all files and
subdirectories within are cleared.

The verification of the deletion processes was done by using FTK
Imager 3.4.0.5 (Ftk Imager, 2016) and Hex-Editor MX (nexsoft.de,
2016). With both tools the physical sectors of all affected files and
folders (including child-objects) were checked to be zero. To cross-
check the deletion function of X-Ways a user defined watermark
was written to all overwritten lead bytes of the wiped physical
sectors in a second test. A post-mortem carving analysis using the
forensic tool FTK 5.6.1.55 (Forensic toolkit, 2016) finalized the
verification process. As a result of X-Ways' implementation all
metainformation and system structures of the deleted files and
folder remained on the disk, while all data content itself was irre-
coverably removed.

To underline the innovation of the proposed implementation
the same test scenario was applied to the proposed prototype. After
selecting one occurrence of kipo1.jpg the matcher module marked
the duplicates in all other folders with a separate log file high-
lighting correlating files. By tagging the marked files and the folder
as “delete”, the deletion module was executed. This module pro-
duces a detailed log file about the selective deletion as well. It in-
cludes a list of all deleted files/directories, modified physical
locations and information about corresponding B-tree updates. In

Original Disk
MBR boot free File A File B free FileC contents free l.'".maF
partition MFT other titioned
sector space content content space content : space
table files space
| Partition |
Cleansed Image of the Disk: grey = wiped, excluded areas (X-Ways Forensics)

MBR | poot free | FileA FileB free | FileC | MM g | UMPAT
partition MFT other titioned
sector space | content content space ' content) space
table files space
| Partition |

selective deletion image of the Disk: grey = wiped, excluded areas; checkered = modified MFT

MBR boot free File A FileB free FileC contents free n.u‘lpar
partition other titioned
sector space | content content space | content 5 space
table files space

\ Partition \

Fig. 2. Comparison between the original image, the cleansed image (x-ways) and our
implementation.

Logfile for selective deletion of IMG: /home/ks/Kuh_Image/Image_Kuh.@@l

Issuing deletion/change for: @: NTFS kuh/UGl/nicht-sichtbar/kipol.jpg
Delete 32768 bytes at: 1069548544 (Nonresident Attributes (like DATA))
Change 1024 bytes at: 1@873789952(MFT - unset 'used'-flag; @'ed resident

attributes + reset fixups)

Issuing deletion/change for: @: NTFS kuh/UGl/nicht-sichtbar/
Change 4096 bytes at: 160768(B_Tree update)
Change 56 bytes at: 187378012B(B_Tree update -- MFT_Entry Index_Root)

Fig. 3. Snippet of the log file created by the deletion module.

C. Zoubek, K. Sack / Digital Investigation 20 (2017) S92—S98

Fig. 3 a snippet of the log file is shown. The modification of B-tree
entries within the MFT is shown by the checkered background in
Fig. 2.

Fig. 4 illustrates the change of the file's data content. Like the
other tool, this prototype wipes content data by overwriting
everything with zeros.

The second benefit of our implementation is presented in Fig. 5.
In contrast to X-Ways our implementation not only wipes the
physical location of the selected file's content, but furthermore
deletes the corresponding MFT-entry. As a MFT would be corrupt if
a whole entry is just wiped, the header still remains almost the
same. Only data describing the MFT entry itself (e.g. used size of
entry) are modified accordingly.

Another difference between the commercial tool and the pro-
posed one is the handling of directory entries. As already described
B-trees are saved in data structures that are not directly connected

3fc00400
3fcee410
3fc00420
3fcee43e 00
3fcee44e
3fc00450
3fc00460
3fc0470
3fc0e480
3fc00490
*

3fc004ce
3fcee4de
*

300500

ds
60
2a
00
28

ff
00
00
00
00

00 10
ff el
00 08
01 1b
00 00
00 00
00 00
54 20
01 o1
01 o1

4a
00
00 0
00
00
00
00
76
01
01

01
00
00
00
31
00
61
00
01
01

60
4d
01
46
02
60
6e
db
01
01

00
2e

00
4e
01 01

01
01

01
01

db 00
01 o1

43
01

01
01

01
01

01 01 01

(a) Content of file before

01 01 01 01 ff 00 11 08 01 2a 01

deletion

Fig. 4.

4000bc00
4000bc10
4000bc20
4000bc30
4000bc40
4000bc50
4000bc60
4000bc70
4000bc80
4000bc90
4000bca0
4000bcbo
4000bcce
4000bcdo
4000bce®@
4000bcfo
4000bd00
4000bd10

46
01
00
02
00
60
60
20
00
00
00
24
60
60
00
09
70
01

49
00
00
00
00
a7
a7
00
00
00
00
00
a7
a7
00
03
00
00

4c
01
00
00
00
al
al
00
00
00
00
00
al
al
00
6b
67
00

45
00
00
00
00
08
08
00
00
00
00
00
08
08
00
00
00
00

30
38
00
00
00
43
43
00
06
00
00
00
43
43
00
69
00
00

(a) Hexdump of original MFT

00
00
00
00
00
6a
6a
00
01
00
00
00
6a
6a
00
00
00
00

3
01
00
00
00
dl
dl
[
00
00
02
01
di
dl
00
70
00
o1

00
00
00
00
00
01
01
00
00
00
00
00
01
01
00
00
00
00

4f
21
00
00
00
4f
a7
00
00
00
00
a7
a7
80
00
00
00
00

80
00
00
00
00
63
al
00
00
00
00
al
al
00
00
31
00
00

00
00
00
00
00
10
08
00
00
00
00
08
08
00
00
00
00
00

00
00
2e
60
18
3f
43
00
00
70
18
43
43
00
00
2e
48
00

00
04
00
00
00
ff
6a
00
00
00
00
6a
6a
00
00
00
00
00

00
00
00
00
00
cf
dl
00
00
00
01
dl
dl
00
00
6a
00
00

00
00
00
00
00
01
01
00
00
00
00
01
01
00
00
00
00
00

|FILE@...CO...

Deletion of file kipol.png. Data

597

to a file's content. To span a directory a driver reads such data
structure. In consequence, changes made in this data structure may
lead to a damaged file system. In Fig. 6 the update of a B-tree is
shown. Just wiping could yield a corrupt file system as mentioned
in Section Selective deletion. Hence, the presented algorithm
modifies the corresponding cluster in a way that the whole direc-
tory is still readable. As presented in Fig. 6, the appropriate data
sections are overwritten by moving the rest of the cluster.

While X-Ways creates an additional (skeleton) image as output,
our implementation directly deletes the desired parts in the orig-
inal image. The correctness of our implementation is verified using
the same tools, FTK Imager and Hex-Editor MX. The Hex-Editor was
used to prove that the physical sectors of the three files and the
folder (including all child-objects) were overwritten with zeros.
Furthermore using the Hex-Editor it was verified that B-trees and
entries in the MFT were adapted appropriately. A last verification,

3fC00400 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
*

3fc01400

(b) Content of file after deletion

content is wiped.

4000bce0
4000bc10
4000bc20
4000bc30
*

4000c000
4000c010
4000c020
4000c030
4000c040
4000c050
4000c060
4000c070
4000c080
4000c090
4000c0a0
4000c0b0
4000c0c0
4000c0d0
4000c0e0
4000cofo
4000c100

45
00
00
00

43
58
03
00

45
00
00
00
00
08
08
00
00
00
00
00
08
08
00
00
00

c5
58
03
10
48
00
20
00
00
30
54
20
20
00
20
6f
80

s Clins T8 i

00
6a
6a
00
03
00

(b) Entry is zeroed partially. MFT-entry-header remains intact!

Fig. 5. Change in MFT. The entry corresponding to the file kipol.png is zeroed. The corresponding MFT entry starts at 0x4000bc00 and is followed by the next entry at 0x4000c000.

The deleted MFT entry remains intact.

0002770
00027800
00027810
00027820
00027830
00027840
00027850
00027860
00027870
00027880
00027890
00027820
000278b0
000278c0
000278d0

(a) Hexdump of original B-tree where kipol.png resided

0002770
00027800
00027810
00027820
00027830
00027840
00027850
00027860
00027870
00027880
00027890
00027820
000278b0
000278¢0
000278d0

09
50
68
20
20
00
20
6f
30
24
00
49
2f
of
61

46
47
54
ab
ab
00
00
32
00
00
42
ad

69
4a
00
43
43
00
00
2e
00
00
a7
43
00
65
64

6a
50
00
d1
di
00
00
6a
01
01
cf
d1
00
75
31

(b) Modified B-tree.

00
00
00
01
01
00
00
00
00
00
01
01
00
00
00

00
00
00
49
6a
92
23
00
00
8e
8e
70
00
00
00

33
00
00
eb
ab
00
6b
67
60
ad
ad
67
00
65
4a

00
-]
00
38
08
00
00
00
00
08
08
00
00
00
00

2e
00
00
3f
43
00
69
4a
00
43
43
00
00
65
50

-
.
|
Q.. -
/Jg.....|
de
6e

00 |
la.n.d.1..

..N.e.u.s.e.e.l.|
.J.P.G. |

Fig. 6. Change when B-tree is updated. The change is made where the dumps are highlighted. Entries after the deleted entry are moved to its location.

S98 C. Zoubek, K. Sack / Digital Investigation 20 (2017) S92—S98

that all metainformation and system structure of the deleted files
and folder were irrecoverable deleted from the disk, was made
using FTK for a post-mortem carving analysis.

Conclusion and future work

A practical approach to selectively delete data objects in a
forensically sound manner was presented. In addition to existing
wiping tools, this tool is able to fulfill legal requirements in regard
to non-relevant data for an investigative case the way it was
requested by Castiglione et al. (2011) and other mentioned privacy
laws. Not only the data content itself is securely erased, but also all
metadata, which may contain information about the user or the
files, is irrecoverably deleted. The gap between the legal request for
a selective deletion method and official statements, that no foren-
sically sound tools might exist, can be closed with the proposed
approach. The provenance of authenticity and integrity of the
original device respectively the remaining files in the image, is kept.
By continuous logging of every single step in the deletion process, a
perfect proven documentation is guaranteed. While the presented
implementation focuses on NTFS-structured devices or their cor-
responding images, support for other file-systems like (ex)FAT, Ext
or HFS is imaginable and technically realizable in the future. To face
critical appraisals of selective deletion it is clearly stated that the
approach presented here provides a forensically sound deletion
process for data objects. The correct handling depends on the user,
which means: even if a selective deletion method exists, there is no
guarantee to catch all non-relevant data because the selection is
still made by a human.

Acknowledgments

We'd like to thank Felix Freiling and Tobias Zoubek for review-
ing the final draft of this paper. Furthermore we thank Peter
Trommler for his support and precious feedback. Additionally we
wish to thank the reviewers for their helpful evaluation.

References

AccessData, Forensic toolkit (2016).

AccessData, Ftk Imager (2016).

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley.

Castiglione, A., Cattaneo, G., De Maio, G., De Santis, A., 2011. Automatic, selective
and secure deletion of digital evidence. In: BWCCA 11 Proceedings of the 2011
International Conference on Broadband and Wireless Computing, Communi-
cation and Applications, pp. 392—398.

D. B. L. fiir den Datenschutz, Priifbericht quellen-tkii, Tech. rep. (2012).

Garfinkel, S., 2007. Anti-forensics: techniques, detection and countermeasures. In:
2nd International Conference on i-Warfare and Security, p. 77.

Lg frankfurt, beschl. v. 20.7.2004 — 5/30 artw 3/03, 5-30 artw 3/03, stv 2005, 79, 80
(2004).

Moser-Knierim, A., 2014. Der schutz der freiheit vor neuen herausforderungen. In:
Vorratsdatenspeicherung. Springer, pp. 207—213.

nexsoft.de, Hex-editor mx (2016).

N. L. of Standards, T. (NIST), 2014. Nist Special Publication 800-88: Guidelines for
Media Sanitization. Tech. Rep. Revision 1.

Pan, Y., Stackpole, B., Troell, L., 2010. Computer forensics technologies for personally
identifiable information detection and audits. ISACA 2.

R. C. Merkle, Method of providing digital signatures, uS Patent 4,309,569 (Jan. 5
1982).

Stiittgen, J., Dewald, A., Freiling, F.C., 2013. Selective imaging revisited. In: IT Se-
curity Incident Management and IT Forensics (IMF), 2013 Seventh International
Conference on, IEEE, pp. 45—58.

X.-W. AG, X-ways forensics (2016).

http://refhub.elsevier.com/S1742-2876(17)30030-0/sref1
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref2
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref2
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref2
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref2
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref2
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref6
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref6
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref9
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref9
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref9
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref11
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref11
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref12
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref12
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref13
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref13
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref13
http://refhub.elsevier.com/S1742-2876(17)30030-0/sref13

	Selective deletion of non-relevant data
	Introduction
	Motivation
	Legal considerations
	Expectations to a selective deletion tool
	Related work
	Short introduction of tool
	Outline

	Selective deletion
	Implementation
	Hashcalculator
	Matcher
	Carver-Cleaner
	Deletion

	Evaluation
	Conclusion and future work
	Acknowledgments
	References

