Digital Investigation 28 (2019) S3—S11

Contents lists available at ScienceDirect =
DFRWS 2019 EUROPE

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

On the feasibility of binary authorship characterization N

Check for
updates

Saed Alrabaee * ™', Mourad Debbabi °, Lingyu Wang °

@ Information Systems & Security, United Arab Emirates University, United Arab Emirates
b Computer Security Laboratory, Concordia Institute for Information Systems Engineering, Concordia University, Canada

ARTICLE INFO ABSTRACT

Article history: This work aims to develop an automatic tool that can perform the laborious and error-prone reverse
engineering task of binary authorship characterization, i.e., determining clues related to the author(s) of
a piece of binary code. Software code written by human programmers reflects the author's educational
background, level of expertise, and coding traits. Accordingly, these may be characterized by identifying
meaningful features and examining them. Binary authorship characterization reveals information that
can be extremely useful for security applications such as digital forensics, malware triage, and binary
vulnerability tracking. This paper proposes a system, BinChar, that capture various aspects of author
style, including code trait characteristics, code structure characteristics, and code behavior characteris-
tics. For the purpose of detection, a Convolutional Neural Network (CNN) is used. The results generated
by the CNN are evaluated more precisely using Bayesian calibration. We tested BinChar in identifying
the characteristics of the authors of program binaries. Also, we applied it to almost 500 GB of malware
samples provided by the Kaggle Microsoft Malware Classification Challenge, to demonstrate that Bin-
Char is an appropriate tool for characterizing malware families. As an illustration, we report a case study
in which we determine the author characteristics of the Mirai botnet and compare them with the author
characteristics of 360,000 malware samples.

© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

When analyzing malware binaries, reverse engineers often pay
special attention to their characterization for several reasons. First,
reports from anti-malware companies indicate that finding the
similarities between malware code characteristics can aid in
developing profiles for malware families (Technigal report and
Resource, 2012). Second, recently released reports by Citizen
team (Big Game Hunting, 2015; Citizen Lab, 2015) show that mal-
ware binaries written by authors having the same origin share
similar characteristics. Third, many malware packages could have
been written only by authors with a special level of expertise and
special knowledge for dealing with specific resources; an example
is SCADA system malware. This insight provides a critical clue for
the extraction of information about the functionality of a malware
binary. Fourth, although obfuscation techniques may be applied
before the malware is released and may modify the code signifi-
cantly, it is still desirable to determine which obfuscation

* Corresponding author.
E-mail address: salrabaee@uaeu.ac.ae (S. Alrabaee).
! Majority of the work was conducted during Saed's work at University of New
Haven.

https://doi.org/10.1016/j.diin.2019.01.028

techniques and tools have been used. Last, clustering binary func-
tions based on a common origin may help reverse engineers
identify the group of functions that belong to a particular malware
family or decompose the binary based on the origin of its functions.

The ability to conduct these analyses at the binary level is
especially important for security applications because the source
code for malware is not always available. However, in automating
binary authorship characterization, two main challenges are typi-
cally encountered: the binary code lacks many abstractions (i.e.,
function prototypes) that are present in the source code; and the
time and space complexities of analyzing binary code are greater
than those of the corresponding source code. Although significant
efforts have been designed to develop automated systems for
source code authorship characterization (Caliskan-Islam et al.,
2015; Frantzeskou, 2004; Taylor et al., 2008; Woldring et al.,
2016), these often depend on features that will likely not be pre-
served in the strings of bytes representing executable file after the
compilation process, such as variable and function naming, original
control and data flow structures, comments, and space layout.

To the best of our knowledge, there have been no attempts to
characterize the authors of program binaries. Nonetheless, a few
approaches to binary authorship attribution have been proposed,
but they typically use machine learning algorithms to extract
unique patterns for each author and then compare a given target

1742-2876/© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:salrabaee@uaeu.ac.ae
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2019.01.028&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2019.01.028
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2019.01.028
https://doi.org/10.1016/j.diin.2019.01.028

S4 S. Alrabaee et al. / Digital Investigation 28 (2019) S3—S11

binary against such patterns to identify the author (Alrabaee et al.,
2014; Alrabaee et al., 2018; Caliskan-Islam et al.; Meng, 2016;
Rosenblum et al., 2011).

These approaches cannot be applied directly to binary author-
ship characterization because of the following limitations: the
chosen features are generally not related to author style but rather
to functionality; they are not applicable to real malware; and
dealing with the binary authorship characterization problem re-
quires that the chosen features have the power to detect, for
example, author styles, the compilers used, the free packages
reused, the functionality, the implementation frameworks, and the
binary timestamps. More recently, the feasibility of authorship
attribution for malware binaries was discussed at the BlackHat
conference (Big Game Hunting, 2015). It was concluded that a set of
features can be employed to group malware binaries according to
authorship characterizations. However, the process is not auto-
mated and requires considerable human intervention.

System overview. To address the aforementioned limitations,
this paper presents an innovative system, BinChar, that describes
the characteristics of programmers according to their educational
background, level of expertise, and coding traits. To achieve this, we
have defined a new set of features that extracts authorship attri-
bution characteristics. These features are extracted from different
levels: the level of the basic blocks, the level of the function bodies,
the program level, and the file level. Based on them, our system is
able to detect structural, optimization, knowledge, expertise, and
code trait characteristics, and also overall characteristics that is
resulted from the aforementioned characteristics together. All the
extracted features are passed to the CNN. We observe note some
attractive characteristics of neural networks such as they can learn
end-to-end, where each stage is trained simultaneously to achieve
the end goal (Shin et al., 2015). Also, the nodes of CNN can act as
filters over the input space and can discover the strong correlation
in the binary code (lab, 2014). Third, CNN is considered a fast neural
network in classification process when it is compared with other
neural networks such as recurrent neural network (Wei et al.,
2016). The results obtained from CNN is passed to Bayesian cali-
bration to precisely check the correctness of CNN.

Contributions. Our contributions are summarized below.

o We designed a new set of features that make BinChar accurate and
efficient, enabling it to characterize the authors of program bi-
naries with high speed while tolerating the noise injected by code
transformations arising from the use of different compilers and
optimization speed levels. The experimental results show that our
system is able to cluster the samples according to similarities in
authorship characteristics with a precision of over 95%.

o We investigated the effectiveness and the power of CNNs in the
context of binary authorship characterization. To the best of our
knowledge, this is the first work in which CNNs are used for
binary authorship characterization. Further improvement is
achieved by performing Bayesian calibration, which reduces the
rate of false positives to 0.02%.

e We used BinChar to extract author characteristics from Mirai
botnet binaries and compared the results with those for 360,000
malware samples collected from various sources. Finally, we
report the authorship characteristics common to the Mirai
botnet and other families.

Preliminaries
Threat model

BinChar is designed to assist, instead of replacing, reverse

engineers in various use cases of characterizing the author of pro-
gram binaries, such as forensic analysis (e.g., linking a new malware
to previously known malware or malware author(s), clustering a
group of malware based on common characteristics, and finding
co-authorship for the malware binary code (e.g., to determine
“influencers” in the code community), and software copyright
infringement analysis (e.g., detecting borrowed code fragments
inside a program binary based on authorship characteristics).
Therefore, the focus of BinChar is not on general reverse engi-
neering tasks, such as unpacking and de-obfuscating malware
samples (although BincChar leverages some existing tools to de-
obfuscate and unpacked such binaries), but rather on detecting
and determine authorship characteristics clues such as using
advanced resources, particular compiler, os, specific code traits,
memory allocation habits, c&c commands, etc. We just pay atten-
tion to the author characteristics which can be common among
different set of authors). Moreover, the authors of a specific mal-
ware family, they have to share common knowledge and expertise
to deal with a particular environment (Nagano and Uda, 2017;
Wagner et al., 2017). In designing the features and methodology of
BinChar, we have taken into consideration some potential coun-
termeasures. In particular, BinChar assumes the adversary may
attempt to evade detection through the following.

e The adversaries may apply refactoring techniques, e.g., when a
malware author aims to defeat forensic analysis by modifying
his/her own code, or when an adversary attempts to modify
borrowed code written by other authors in order to evade
copyright infringement detection.

e The adversaries may apply obfuscation techniques on binary
files to alter its syntax, e.g., when a malware author wants to
defeat anti-virus signature-based detection.

e Since a program can be significantly altered by simply changing
the compilers or their settings, the adversary may make such
changes to evade detection.

We will show in later sections how BinChar may survive the
aforementioned threats. Simply, the features of BinChar have been
designed to determine binary authorship characteristics at multiple
abstraction levels, which makes it harder for adversaries to evade
system detection (Big Game Hunting, 2015). In addition, an oper-
ational solution is to customize and enrich the list of features
employed by BinChar based on the actual use case and learning
data, which will not only make it much more difficult for adver-
saries to hide all of their binary code characteristics such as code
traits, but will also improve accuracy.

Usage scenarios

The interest of the BinChar framework is to determine the
authorship characteristics of an anonymous piece of binary code.
Additionally, given code that is written by multiple authors, it is
required to determine which characteristics (e.g., coding habits) of
the code are attributed to which author. It is assumed that a set of
binary code samples is available, where the code is either labeled
with an author(s) from a set of known candidate authors, or from
other unknown authors. Given an anonymous piece of binary code,
BinChar converts the code into a set of features that are conse-
quently used to attribute the author(s) according to their charac-
teristics. BinChar also labels the compiler-related functions in
addition to discovering the reused functions and third-party li-
braries. This is useful for a number of applications, as listed in what
follows.

Software Infringement. A set of candidate authors is clustered
based on previously collected malware samples, online code

S. Alrabaee et al. / Digital Investigation 28 (2019) S3—S11 S5

repositories, etc. There are no guarantees that the anonymous
author is one of the candidates, as the test sample may not belong
to any known authors. However, it is not our intention to identify
the author, but rather to characterize the author. Finally, it may be
suspected that a piece of code is not written by the claimed author,
but yet there are no leads as to who the actual author may be
(Caliskan-Islam et al., 2015). For this reason, we may compare the
programs written by the claimed author and measure the degree of
similarity in terms of binary code characteristics.

Forensic Investigation. FireEye (Moran and Bennett, 2013)
discovered that malware binaries share the same digital infra-
structure and code (for instance, the use of certificates, executable
resources and development tools). FireEye investigators eventually
noticed that malware binaries of the same previously-discovered
infrastructures are written by the same group of authors. In such
cases, training on such binaries and some random authors’ code
may offer vital assistance to forensic investigators. In addition,
testing recent pieces of malware binary code using confidence
metrics would verify if a specific author is the actual author.

System overview

The architecture of BinChar is illustrated in Fig. 1. As shown, the
four main components are: (i) Preprocessing component where
PEfile (file, 2012) is employed to check if the binary file is packed. If
it is packed, the corresponding unpacker, such as UPX, is used to
unpack the binary file and pass the unpacked binary file to the
disassembler tools such as IDA Pro (HexRays, 2011). (ii) Feature
extraction which deals with a different set of features that are
related to the authorship characterization. This component is able
to accept either an executable file or an assembly file as input. In the
case of executable file, BinChar converts executable file to a gray-
scale image. Then numerous features are extracted from this im-
age. After that we rank these features by employing mutual infor-
mation. These top ranked features are passed to detection
component. Also, BinChar uses executable file as input to LLVM in
order to optimize the code and compare it with the original
executable. In the case of assembly file, BinChar extracts the
following static features: (1) merging Annotated Control Flow
Graph (ACFG) with Data Flow Graph and the new graph is
decomposed then into graph truss. (2) We extract the longest path
and then apply statistically analysis it. (4) Strings are extracted that
can disclose the binary provenance such as the source compiler.
The extracted featured are hashed by LSH algorithm. (iii) The fixed
size of hashes resulted by LSH are passed to the third component.
The CNN is trained by set of fixed size of hashes. Once we have a
target binary, CNN will return a set of candidates according to the
training hashes. These candidates are passed to Bayesian model
calibration to seek to provide users with accurate probabilities that
a given binary file. This component is used to identify the author of
program binary if the characteristics are the same. (iv) The final
component represents the outputs of BinChar. BinChar clusters
function or programs together according to the similarity of the
author's characteristics of the binary code. Standard clustering al-
gorithm (k-means) (Farnstrom et al., 2000) is used for this purpose.

As shown in Fig. 1, the author repository is connected to this
component since our features can reveal a significant information
such as the compilers, resources used, level of expertise, education
background, API calls, and some code traits like the way of
configuration.

BinChar: design overview
In this section, we describe our system in detail.
Feature engineering

Optimization characteristics

We designed a set of features based on existing tools (Tate et al.,
2009; Tristan et al., 2011; Schkufza, 2015; Sharma, 2016). We
leveraged these tools to construct a data flow graph incorporating
data and control dependencies. The graph reveals the inline func-
tions, making it easy to count them. Then we constructed a se-
mantic graph and normalized it by applying the rules introduced in
(Tristan et al., 2011); these are related to code optimization. The
first rule is constant folding. For instance, the 3-node subgraph
representing the expression 1 + 4 is rewritten into a single node to
represent the value 5. The second rule concerns side effects. The
authors of (Tristan et al., 2011) employ state variables to detect the
dependencies between instructions. They define a state variable for
memory states: every instruction contains of a memory register
and its usual parameters. This additional register forces a de-
pendency between, for example, a load instruction and the pre-
ceding store instructions (Tristan et al., 2011), retaining all the
relevant information about each register. The third rule concerns
aliasing information that relaxes the strict ordering of instructions
imposed by the transformation. For instance, the pointers in LLVM
returned by alloc never alias with one another. Hence, if two load
instructions from a memory involve a store to the same pointer,
then the load can be simplified to a single instruction. The fourth
rule deals with loops. The authors came up with a method for
placing gates within looping control flow, including breaks, con-
tinues, and returns from within a loop. Once all the rules were
applied, we conducted statistical analyses to compare the original
code with the optimized code, including the mean, variance,
standard deviation, and mean square error.

Structural characteristics

This subsection will show the merging of the Annotated Control
Flow Graph (ACFG) with the Data Flow Graph (DFG) into a single
graph, the “author style” graph. The reasoning underpinning this
merger is that the ACFG may offer insight into the implementation
of the task by the author, and the DFG will show the ways in which
the author has manipulated variables and will also show how they
have employed small functions, which the compiler generally
inlines while optimizing.

Author Style Graph. We constructed a semantic control flow graph
named the Annotated Control Flow Graph (ACFG). This represents an
abstracted form of the CFG, with multiple criteria informing the

o UnPackers Optimization ‘ CNN
= . g -
mﬂﬁ" @ Structural 2 | Candidates ||
S | Expertise |3 | Calibration |
. (e 5 23
. 8‘ Ja ksta b ‘ Overa ” ‘ o | Filtered Candidates ‘
. Disassembled a

Code 2)Functions

3 Characteristics

4) Classification 5 Clustering

Fig. 1. BinChar architecture.

S6 S. Alrabaee et al. / Digital Investigation 28 (2019) S3—S11

generalization of specific types of features from the CFG. There
follows a summary of the building process for the ACFG. The system
has an input of a cFG and calculates how frequently opcodes occur
in the instruction groups. It then assigns assembly instructions to
one of six categories (Rahimian et al., 2015), illustrated in Table 1.

The resulting ACFG describes structural characteristics. The next
step is to complement it with the Data Flow Graph (DFG). Then,
data flow dependencies can be incorporated to make it possible to
use coarse reasoning about the program control flow and data
dependencies to infer how the author manipulates program vari-
ables and how variable relations are built. Let R, /W, denote reg-
isters or memory that are read or written by instruction . If i; and
i, are instructions belonging to I, then we define the following
possible dependencies: i; writes something which will be read by
iy; i; reads something before i, overwrites it; and i; and i, both
write the same variable. Recognizing that the ACFG and DFG pro-
vide complementary views about the implementation of a specific
task by emphasizing different aspects of the underlying authorship
characteristics, we combine them into a joint data structure to
facilitate more efficient graph matching between different binary
codes to help identify similarities in authorship characteristics. The
result is the Author Style Graph (ASG).

Definition 1. The Author Style Graph G = (N,V,{,y,0,Aw) is a
directed attributed graph, where N is a set of nodes, VC (N x N)is a
set of edges and (is an edge labeling function which assigns a label
to each edge: { — v, where v is a set of labels. Finally, ¢ is a data
dependency function which labels each node n ¢ N based on the
data dependency rules function A.

Expertise characteristics

Typically the path in the CFG has been shown as a robust feature
(Huang et al., 2017). Further, to find matched paths can be
considered as an alignment problem where dynamic programming
can be applied (Huang et al., 2017). Longest path reflects the author
traits in implementing tasks or using nested loops. Thus, we choose
the longest path. We use depth first search to traverse the CFG, and
then choose the path with the largest number of nodes. Once the
longest path is constructed, we extract two categories of features:
statistical features (cyclomatic complexity) and dynamic features
(execution traces).

Cyclomatic complexity (McCabe, 1976) computes the quantity of
linear independent paths to represent the complexity of a code in
the form of a graph metric. The complexity C of the longest path of
CFGis as follows: C = E + N + 2P, where E is the edge quantity, N is
node quantity, and P is the quantity of connected components in
the longest path.

Overall characteristics

The binary file is converted into a set of bytes, and the set is then
transferred to a matrix. This is a two-dimensional matrix with the
width fixed at d; to be more precise, the first d bytes are placed on
the first row of the matrix, with the nth group of d bytes moving to
the nth matrix row. This methodology has similarities with the

Table 1

Patterns for annotation (Rahimian et al., 2015).
Feature Description Example
DTR & STK Data Transfer and Stack push, mov, etc
ATH & LGC Arithmetic and Logical add, xor, etc
CAL & TST Call and Test call, cmp, etc
REG & MEM Register and Memory esi, [esi+4]
REG & CONST Register and Constant esi, 30
MSC Milestones MEM and Const

techniques for visualizing malware outlined in (Kirat et al., 2013;
Nataraj et al., 2011, 2013).

Feature hashing

As our tool employs a number of features that have been
extracted using different formats (instruction traces, graphs,
numeric, etc), we chose LSH so that features could be unified prior
to them being fed into CNN. minhash (with K unique hash func-
tions) are employed as a signature set for the introduction of used
features, and the minhash values will be divided by LSH to form a
signature matrix of I bands, each containing r rows (Karbab et al.,
2016). For calculation of the quantity of minhash values for a
particular band, the number of minhashes is divided by the number
of bands (K/I). The number of rows and the number of featured
minhash signatures will be equal.

System detection
Convolutional Neural Network

Convolutional Neural Networks (CNNs) are one type of Neural
Networks that have shown efficiency in various areas such as image
processing. Generally, each input node is connected to each output
node in the next year. In CNN, it is not the case where convolution is
used over the input layer to compute the output. This process leads
in local connectivity, each input region is connected to a node in the
output. Many filters are applied at each layer and combine their
results. After convolution step, the subsequent step is called ReLU
which stands for Rectified Linear Unit and is a non-linear operation.
Its output is given by: Output = Max(zero, Input). This step is used
to replace any unwanted features by zero. The purpose of ReLU is to
introduce non-linearity in CNN. This operation is called activation
function. Besides, there are other layers are called pooling layers.
These layers are inserted periodically between convolution layers.
The main goal of pooling layers is to reduce the spatial size of the
representation, to minimize the number of parameters and
computation in the network, and also to dominate overfitting.
Finally, the last layer is then a classifier that uses these high-level
features. It has been show that CNN can be more accurate and
efficient to train if they contain shorter connections between layers
close to the input and those close to the output (Huang et al.).
Consequently, we have adopted their CNN algorithm for binary
authorship characterization. Their algorithm follows a feed-
forward fashion by connecting each layer to every other layer.
Where the inputs used for each layer, are the feature-maps of all
preceding layers. Besides, its own feature-maps are used as inputs
into all subsequent layers (Huang et al.). This has one main
advantage by alleviating the vanishing-gradient problem.

Let us examine a feature vector vy, which we transfer via a
convolutional network. This network comprises L layers, all of them
implementing nonlinear transformations T; in which the layer is
indexed by I. H; may be rectified linear units(ReLU) (Glorot et al.,
2011; Maas et al., 2013). The output of the it" layer is denoted as v;.

Identity function. For traditional CNN forward networks, the I
output layer as input to (I + 1)!, which creates this layer transition:
v; = Hj(vi_1). A skip connection with a transition layer is added in
order to bypass the non-linear transformation and create an
identity function: v; = H;(vj_1) + v;_1. This process has the advan-
tage that there is a direct flow gradient between later layers and
earlier layers via the identity function.

Dense connectivity. Improvements should be made regarding
the way information flows between layers to make it more accurate
and efficient. We therefore have employed the algorithm proposed
by (Huang et al.). This introduces a direct connection between any

S. Alrabaee et al. / Digital Investigation 28 (2019) S3—S11 S7

layer and every subsequent layer. Thus, the i" layer is in receipt of
the feature-maps for every preceding layer, vg, ---,v;_1, as input: v; =
Hi([vo,v1,"*",vi_1]), where [vg,v1, ---, v;_1] refers to the merging of the
feature-maps created in layer O, ---,i — 1.

Activation function. To achieve this purpose we have used a
rectified linear unit (ReLU) (Maas et al., 2013). Separate computa-
tions are undertaken for each layer within this unit. If this unit was
absent, the layer would be an affine function.

Pooling layer. This means that pooling the layers that are
responsible for changing the size of feature-maps is an important
element of convolutional networks. To allow for pooling in the
network, it is divided into different dense components following
the architecture in (Huang et al.). The layers and their connectivity
are illustrated in Fig. 2. As Fig. 2 shows, transition layers exist be-
tween blocks that are responsible for pooling and convolution. Our
model employs the same settings employed by (Huang et al.). A
batch normalization layer is employed with a 1x1 convolutional
layer and then a 2x2 average pooling layer (Huang et al.).

Calibration model

Motivated by (Kolosnjaji et al., 2016), we are interested in using
their Bayesian calibration model. The main goal of this model is to
deliver users with accurate probabilities that a given file is how
similar to another file. This calibration model combines our firs
probability threshold value (represented as the ratio of author X to
all other authors in our dataset) and the other information about
our CNN's error profile against test data. In what follows we briefly
introduce our adapted model for adjusting the CNN similarity score
to reflect the true author label score, given this qualitatively
assumed ratio of author to all other authors.

Considering 0 < ¢ < 1 be some score given by the CNN, which
indicates the degree to which a CNN measures a binary how similar
is to other author of program binaries, with 0 being completely not
related to any author, and 1 being certainly related to that author.
Our goal is to convert this number into a “calibration” score, which
will provide the user a measure of how likely that the author of
target binary is accurately related to the authors of candidates. To
achieve this, we define the calibration score as the probability that
the author of program binary will accurately related to the resulted
candidates by CNN, P(R = x;|C = c), given the score ¢, and list of
candidates R = xq,X3,"X;,Xj, 1, "Xk, where K is the threshold value
that represents the number of candidates. By using Bayes’ law we
have:

P(xlc) = % _

p(clx)P(x;)
p(clx;)P(x;) + p(clu)P(u)

where p is the pdfs, we suppose that pdfs for the list of candidates
and target scores for CNN, p(C = c|R = u), where u is the set of all
candidates except the target file, which means u = {x1,x,--x;,X;, 1,

]
Pl Dense Block
P\

p
o
I
o
g
y

le]
2
O] >
c
o
=

L]
UONN[OAUO

W0 R
PR
b 3@\ oi“’ W

X} - X
In order for the probabilities to total 1, a constraint is employed
that provides a final value for a recalibration score, related to PDFs
and the probability of the target author being in the list of candi-
dates. Our problem is defined through the CNN's predicted PDF for
target binary and candidate list u. For deriving the PDFs, we
employed a non-parametric approach, such as the kernel density
estimator (KDE) (Saxe and Berlin, 2015), with a value of PDF being
approximated given C through a weighted neighborhood average.
As the pdfs may only assume values in [0,1], mirroring of the
samples to the left of 0 and the right of 1 takes place, prior to the
computation of the estimated pdf value for a specific point.

Clustering similar functions

For the clustering process, we use a standard clustering algo-
rithm (k-means) (Farnstrom et al., 2000) to group functions with
similar author characteristics attributes (vy,, ...,vn,) into k clusters
S$=5S1,....,S and (k < |Fp,| + |Fp,|) to minimize the intra-cluster
sum of squares. For more details, we refer the reader to
(Farnstrom et al., 2000).

Evaluation

In this section, we present the evaluation results for the possible
use cases described earlier in this paper. Section 5.1 shows the
setup of our experiments and provides an overview of the data we
collected. The main results on authorship attribution character-
ization and identification are then presented. Also, we have studied
the impact of different CNN parameters on the BinChar accuracy.
Finally, BinChar is applied to real malware binaries and the results
are discussed.

Implementation environment

The described binary feature extractions are implemented using
separate python scripts for modularity purposes, which altogether
form our analytical system. For CNN setup, we first use a convo-
lution with 16 output channels is performed on the input feature
vectors before the first dense block. We use kernal size 3 x 3 for
convolutional layers. We follow zero-padded for inputs to keep the
feature-map size fixed (Huang et al.). We use 3 x 3 convolution
followed by 4 x 4 average pooling as transition layers between two
contiguous dense blocks. Further, the global average pooling is
excuted at the end of the last dense block. Then a softmax classifier
is attached. The feature-map sizes in the two dense blocks are
128 x 128, and 64 x 64, respectively.

Dataset

The used dataset is consisted of several files from different
sources, as described below: i) GitHub (The GitHub repository,
2016); ii) Google Code Jam (The Google Code Jam, 2008—2015);
and iii) a set of known malware files representing a mixture of 1500

Candidates

LE4

Dense Block

Fig. 2. Our CNN architecture with deep DenseNet (Huang et al.) with two dense blocks.

S8 S. Alrabaee et al. / Digital Investigation 28 (2019) S3—S11

different families including the nine families provided in Microsoft
Malware Classification Challenge (Big Game Hunting, 2015). Sta-
tistics about the dataset are provided in Table 2.

Dataset compilation

The ultimate dataset is compiled with different compilers and
compilation settings to measure the effects of such variations. We
use g++, Clang, GNU Compiler Collection's gcc, ICC, as well as
Microsoft Visual Studio (VS) 2010, with different optimization
levels.

Accuracy

The purpose of this experiment is to evaluate the accuracy of
characterizing the author of in program binaries.

Evaluation Settings. The method used in this evaluation em-
ploys random subset testing as well as standard ten-fold cross-
validation, on the basis of the experiment: To classify the whole
data set, we have employed ten-fold cross-validation. We under-
took evaluation of the BinChar system by employing the datasets
referred to in Section 5.2. The data is separated at random into ten
sets, with one set being kept as the testing set, with the other nine
being training sets. BinChar For comparison with extant method-
ologies, we apply precision recall R and P measures. As the target
application domain for BinChar is far less sensitive to false negatives
than to false positives, the following F-measure is employed:

., P.R
1=2PR
BinChar Accuracy. We first investigate the accuracy of our
proposed system in identifying the author of program binaries
based on author characteristics. The results are reported in Table 3.
The highest accuracy obtained by our tool is 0.94 when all char-
acteristics components are together. Further, we can observe that
the expertise characteristics return the highes accuracy of 0.93. This
is due to the fact that the author may use his expertise to imple-
ment a specific task. For instance, the author may use specific
package or advance resources to reduce the execution time. As
mentioned earlier, we use static and dynamic feature to detect the
author expertise characteristics. However, the optimization char-
acteristics return an accuracy of 0.81. Here, we optimize the original
code and then we compare them in terms of statistical analysis. We
observe through our experiments if the author tries to optimize the
written code, then these characteristics may not help fully to
identify the characteristics of the author.

(1)

False positive rate

We investigate the false positives in order to understand the
situations where BinChar is likely to make incorrect attribution
decisions. The average of false positive rate is 0.02%. It is very low
and could be neglected. The reason behind the low false positive
rate is that BinChar uses stratified detections system. We have
observed that the false positives rate for google dataset is the

Table 2
Statistics about the binaries used in the evaluation.

Source # of authors # of programs # of functions
GitHub 3550 12,910 4,900,0000
Google Jam 16,000 55,550 10,965,120
Malware 1500 360,000 45,650,214
Total 21,050 428,460 61,515,334

Table 3

F-result.
Characteristics Prec. Rec. Fy
Structure 0.95 0.87 0.91
Optimization 0.84 0.79 0.81
Knowledge 0.92 0.88 0.90
Expertise 0.97 0.9 0.93
Overall 0.89 0.86 0.87
BinChar 0.98 0.91 0.94

highest rate and we believe the reason behind this is that each
programmer should follow the standard coding instructions which
restrict him/her to have their own code traits.

Authorship clusters

For the verification of how effective BinChar is, we tested against
a cluster of real-world malware data sets. BinChar has been applied
to nearly 500 GB of samples of malware supplied by the Kaggle
Microsoft Malware Classification Challenge (BIG, 2015) (Big Game
Hunting, 2015), the aim of which is the prediction of malware
family classes. Because of the way malware operates, the authors’
identities are not known. It is recognized that attack operations are
difficult to attribute and do not often come to court, even when
there is clear evidence present (Big Game Hunting, 2015; Techniqal
report and Resource, 2012). This makes it extremely difficult to
establish a level of truth that can be regarded as entirely reliable.
Because of this, BinChar regards each family as having an author(s)
that share a number of characteristics. The statistical basis is out-
lined in Table 4. The functions are labeled by employing extant
tools: IDA and pro and Paradyn are used to label library-related
functions, and the BinComp (Rahimian et al., 2015) tool is used to
label functions related to compilers. The samples have different
varieties of the same basic malware and so we can make the
assumption that each variation displaying similar characteristics
was created by the same author(s). The BinComp tool (Rahimian
et al., 2015) is used to obtain the number of compiler functions,
and the fifth column illustrates the number of library functions
obtained using F.LIR.T technology (HexRays, 2011) and Paradyn.
Looking at Table 4, it is clear that there is quite a high percentage of
compiler functions, e.g. the percentage of compiler functions in the
Lollipop family is 30%.

Cluster Quality. One of the greatest challenges was to calculate
how reliable the results obtained by the use of a clustering algo-
rithm were (Bayer et al., 2009). To make this calculation, we can
either calculate how many clusters there are, how many samples
each cluster has on average, and relative sums for all pairwise
distances for a cluster; alternatively a few clusters can be selected
and the fact that there are similar samples in these clusters can be
manually verified. Given that we had access to used samples we
verified the correctness of the clusters manually.

Table 4
Characteristics of malware datasets (AF): Assembly Functions (CF): Compiler Func-
tions (LF): Library Function.

Malware # of variants # of BF # of CF # of LF
Ramnit 4 5285 1601 50
Lollipop 3 3510 1054 100
Kelihos 2 1924 847 74
Vundo 4 7923 2410 219
Simda 2 2100 689 105
Tracur 2 1657 787 100
Obfuscator.ACY 3 2762 986 310
Gatak 2 2054 860 174

S. Alrabaee et al. / Digital Investigation 28 (2019) S3—S11 S9
Table 5
Clustering results based on the features used in existing systems (TC): the total number of clusters (CC): the percentage of correct clusters (WC): the percentage of wrong
clusters.
Malware Optimization Structural Knowledge Expertise Overall BinChar
TC CcC wC TC CcC WwC TC CcC wC TC cC WwC TC cC wC TC cC wC
Ramnit 145 60% 13% 110 47% 25% 208 58% 17% 150 61% 12% 210 75% 22% 345 82% 10%
Lollipop 90 75% 18% 185 59% 28% 220 72% 21% 178 74% 25% 198 68% 20% 295 78% 18%
Kelihos 41 88% 8% 17 90% 4% 75 54% 25% 80 75% 19% 76 80% 17% 145 89% 14%
Vundo 200 62% 14% 89 48% 38% 384 79% 24% 215 82% 18% 289 72% 27% 544 90% 7%
Simda 52 64% 21% 41 92% 5% 109 82% 19% 77 81% 14% 100 67% 24% 124 84% 15%
Tracur 44 89% 9% 53 83% 12% 124 51% 40% 68 79% 14% 80 87% 11% 105 82% 10%
Obfuscator.ACY 30 78% 21% 45 74% 24% 89 89% 11% 114 80% 17% 97 75% 15% 109 84% 14%
Gatak 29 67% 20% 51 87% 12% 79 78% 16% 105 84% 12% 98 80% 17% 127 89% 10%
Table 6

Subset of characteristics found by BinChar in certain malware families (v) means the characteristic is found in Mirai botnet and it is found in that malware family, whereas (x)

means the characteristic is found in Mirai botnet and it was not found in that malware family.

Characteristics Ramnit Encpk Kelihos

Zaccess

Vobfus Sality Gatak Asterope Turla

Error messages

Control commands
Preference in keywords
Reusing free code

Using specific API

Using specific encryption
Modifying constants

Dynamic memory allocation
Runtime protection strategies
Compiler security features
Files vs memory

Global variables vs. local variables
Accessing closed files
Accessing freed memory
Function overloading
Parameter ordering

XX X X U X X X XX X X
XAUX AN UK X XX XX XX
CUX X OUX XXX X XS

XXX AN XA X XS

R IR T N N N N AT
NOUX X X ALK XXX XX
XX X X UK X QNN X X X

XX UK XU X X XX X XXX
WX WX X LN X X X X X | X X

X X % X% %

The correctness of clusters

For the assessment of the quality of the results for the cluster
algorithm, two metrics were introduced, wrong clusters (WC) and
correct clusters (CC). The aim of CC is to discover how accurate the
clustering algorithm is at making distinctions between samples
with varied author characteristics. WC aims to measure percent-
ages for custom functions of various classes in the same cluster.

Following on from this, we applied our tool to cluster functions
in accordance with similarities in authorship characteristics,
employing the standard k-mean as previously described. We then
undertook manual analysis of the clusters obtained so that they
could be classified as either CC or WC, as illustrated by Table 5. By
analyzing the clusters we obtained, we discovered a different group
of characteristics, which included means of configuration, habits of
memory allocation, employment of security rules, employment of
variables, etc.

Characterizing the Mirai Botnet

One challenge in applying BinChar to real world malware is the
lack of ground truth concerning the attribution of authorship due to
the nature of malware. Also, whether a malware package is created
by an individual or an organization is generally unconfirmed. Those
limitations partially explain the fact that few research efforts have
been seen on this subject. We present in this section a case study by
applying BinChar to Mirai botent and compare the extracted char-
acteristics with 360,000 samples collected from various databases
where 40% of these samples were packed and obfuscated and we
unpacked them in our security laboratory. Some of our samples
include Bunny, Babar, Stuxnet, Flame, Duqu, Zeus, Citadel,
zaccess, encpk, sality, etc.

An overview. Mirai is a DDoS botnet that has discovered by

MalwareMustDie team in August 2016. It has been considered as
one of the biggest DDoS attacks on Internet which causes to shut
down a major parts of Internet. It has been created using ELF bi-
naries. The statistics of Mirai binaries is introduced in Table 7. As
shown in Table 7, the samples have different platform architectures
such as MIPS and PowerPc. BinChar can handle multiple architec-
tures since it uses some features (Optimization characteristics and
Overall characteristics) that are cross-architecture independent.

Findings. Our tool is able to find some authorship characteris-
tics links between Mirai botnet and very few sample from our
dataset. BinChar extracts various characteristics that are related to
the author(s) of Mirai botnet. It finds the following: the use of all
capital letters for config in XML; the use of a common approach to
managing functions; the characteristics of opening and terminating
processes; the passing of primitive types by value, but the passing
of objects by reference; the use of network resources rather than
file resources; creating configurations using mostly config files; and
the use of semaphores and locks. More specifically, we have found
different set of characteristics.

Table 6 presents examples of authorship characteristics. It can
be seen that certain characteristics, such as expertise characterises

Table 7

Statistics about the Mirai binaries used in the case study.
Sample Size (KB) No. of binary functions Platform
File1.ARM.ELF 1.14 12 ARM
Mirai.arm 5 79 ARM
File2.MIPS.ELF 4 19 MIPS
mirai.sh4 3 11 SuperH
mirai.sparc 3 13 SPARC
mirai.x86 7 31 x86
mirai.ppc 3 14 PowerPC

S10 S. Alrabaee et al. / Digital Investigation 28 (2019) S3—S11

Table 8
The number of extracted features from Mirari botnet (@) means that cannot be
extracted.

Table 9

Similarity between authorship characteristics found in Mirai botnent and charac-
teristics found in malware binaries.

Sample Characteristics Bunny Babar Stuxnet Flame Zeus Citadel Mirai
Structure Optimization Knowledge Expertise Overall Bunny - 61% 14% 8% 11% 13% 1.2%
File ARMLELF 450 180 ° ' 3800 Babar o1% o % 0% 2% 8% 209%

o Stuxnet 14% 9% — 74% 19% 10% 0.96%

Mirai.arm 721 225 [] [] 3400 o o o o o, 9
. Flame 8% 10% 74% — 14% 6% 0.71%
File2.MIPS.ELF 400 190 ° ° 2900 . . N .

o Zeus 11% 2% 19% 14% — 80% 0
mirai.x86 950 428 215 147 4500 - ! : . . N .
mirai.ppe 145 175 ° ° 3010 Citadel 13% 8% 10% 6% 80% — 0.09%
miraisparc 200 215 ps ps 3700 Mirai 1.2% 2.09% 0.96% 0.71% 0 0.09% —
mirai.sh4 315 160 [] [] 3150

including control command strings and dynamic memory alloca-
tion. Also, some examples on knowledges characteristics including
the use of API calls, runtime protection strategies, etc. We have
found another characteristics that belong to code traits such as
accessing closed files or modifying constants. We studied the
number of features extracted from Mirai botnet samples (Table 8).
For example, the number of features that are related to structure
characteristics authors is 175 extracted from mirai.ppc. As shown,
there are some features could not be extracted from files that are
not x86-based architecture. We leave this issue for future work
venue. We have studied the impact of each authorship character-
istics on accuracy (Fig. 3). For example, the F; score is 0.7 between
Mirai.x86 and Ramnit when we compare them based on the
knowledge characteristics. While the average F; score is 0.42 be-
tween Ramnit and Mirai.x86. As shown, the highest F; score is 0.83
between Mirai.x86 and Vobfus when we compare them based on
optimization characteristics.

Measuring the degree of similarity between ground truth
datasets and malware binaries. As another verification of the
correctness of the findings, we measured the degree of similarity
between the Mirai Botnet here and other datasets for which we
have the ground truth (e.g., Google code jam) to see how likely such
a degree of similarity could come from shared authorship charac-
teristics. The goal of computing the degree of similarity is to
determine whether the authorship characteristics found in the
Mirai botnet are present to the same degree in conventional bi-
naries, which will reveal whether these characteristics are indeed
specific to malware writers. To provide an even more convincing
verification, we computed the similarity scores between related
Mirai botnet samples and the rest of the available dataset. BinChar
found a similarity of 7% with those characteristics in the Google
code jam dataset and 17% with those characteristics in the Github
dataset. We believe that one of the main reasons for the high
similarity is that the programmers participating in the Github may
have greater expertise, more extensive background knowledge, and
better skills than the programmers who participate in Google code
jam.

1
[JOptimization [Structure Il Knowledge MM Expertise M Overall

F1-measure
o o o
r o

o
N
T

0 L1
Ramnit Encpk Kelihos Zaccess Vobfus Sality
Malware Family

Gatak Asterope Turla

Fig. 3. The F1 score between Mirai.x86 and the malware families in Table 6.

Measuring similarity between authorship characteristics in
malware binaries. In this section, the goal is to assess the similarity
between malware binaries by reporting the similarity in terms of
authorship characteristics (Table 9).

We compare similarity between the author characteristics
extracted from Mirai botnet to different sets of real malware: i)
Bunny and Babar; ii) Stuxnet and Flame; and iii) Zeus and
Citadel. These malware are selected based on researchers’ claims
that each of these pairs of malware originates from the same set of
authors (Techniqal report and Mcafee, 2011; Techniqal report and
Resource, 2012; Big Game Hunting, 2015). We observed that the
similarity between the authorship characteristics found in Mirai
botnent and characteristics found in malware binaries is very low.
For instance, the similarity between Mirai and zeus is 0. In the
meantime, our tool is able to find common authorship character-
istics among other malware families. For example, the similarity
between Bunny and Babar is about 60%. This finding supports the
claim that this pair originates from the same set of authors (Big
Game Hunting, 2015).

Limitations and concluding remarks

Our work has certain limitations. First, the system is unlikely to
remain accurate if the authors used advanced obfuscation tech-
niques to evade detection. Second, although we have tested our
work on relatively large datasets, our dataset can still be enriched in
terms of both scale and scope. Third, the features used by BinChar
are static-based; as such, BinChar cannot detect characteristics that
require dynamic features. Fourth, there is a room for performance
improvement by including some techniques such as Map-reduced
methods. Finally, since BinChar currently supports the x86 ISA,
other ISAs such as ARM should also be considered. Our future work
aims to extend BinChar to tackle these limitations.

To conclude, we have presented the first known effort on
characterizing the author of binary code based on personnel char-
acteristics. Previous existing works have only employed artificial
datasets, whereas we included more realistic datasets. We also
applied our system to known malware. In summary, our system
demonstrates superior results on more realistic datasets and real
malware and can detect the presence of multiple authors.

Acknowledgments

The authors thank the anonymous reviewers for their valuable
comments. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of the sponsoring organizations.

References

Alrabaee, S., Saleem, N., Preda, S., Wang, L., Debbabi, M., 2014. Oba2: an onion
approach to binary code authorship attribution. Digit. Invest. 11, S94—S103.
Alrabaee, S., Shirani, P,, Wang, L., Debbabi, M., Hanna, A., 2018. On leveraging coding

http://refhub.elsevier.com/S1742-2876(19)30039-8/sref1
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref1
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref1
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref2

S. Alrabaee et al. / Digital Investigation 28 (2019) S3—S11 S11

habits for effective binary authorship attribution. In: European Symposium on
Research in Computer Security. Springer, pp. 26—47.

Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E., 2009. Scalable,
behavior-based malware clustering. NDSS 9, 8—11.

Big Game Hunting: Nation-State Malware Research, 2015. BlackHat. https://www.
blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-
The-Peculiarities-Of-Nation-State-Malware-Research.pdf.

A. Caliskan-Islam, F. Yamaguchi, E. Dauber, R. Harang, K. Rieck, R. Greenstadt, A.
Narayanan, When Coding Style Survives Compilation: De-anonymizing Pro-
grammers from Executable Binaries, arXiv preprint arXiv:1512.08546.

Caliskan-Islam, A., Harang, R., Liu, A. Narayanan, A. Voss, C., Yamaguchi, F.,
Greenstadt, R, 2015. De-anonymizing Programmers via Code Stylometry.
USENIX.

Citizen Lab, 2015. university of Toronto, Canada. https://citizenlab.org/.

Farnstrom, F., Lewis, J., Elkan, C., 2000. Scalability for clustering algorithms revisited.
ACM SIGKDD Explorations Newsletter 2 (1), 51-57.

PEfile, 2012 accessed on Nov, 2016. http://code.google.com/p/pefile/.

Frantzeskou, G., 2004. Source Code Authorship Analysis for Supporting the Cyber-
crime Investigation Process, pp. 470—495.

Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. In:
Proceedings of the Fourteenth International Conference on Artificial Intelli-
gence and Statistics, pp. 315—323.

HexRays: IDA Pro, 2011. https://www.hex-rays.com/products/ida/index.shtml.

G. Huang, Z. Liu, K. Q. Weinberger, L. van der Maaten, Densely Connected Con-
volutional Networks, arXiv preprint arXiv:1608.06993.

Huang, H., Youssef, A.M., Debbabi, M., 2017. Binsequence: fast, accurate and scalable
binary code reuse detection. In: Proceedings of the 2017 ACM on Asia Confer-
ence on Computer and Communications Security. ACM, pp. 155—166.

Karbab, E.B., Debbabi, M., Alrabaee, S., Mouheb, D., 2016. Dysign: dynamic finger-
printing for the automatic detection of android malware. In: Malicious and
Unwanted Software (MALWARE), 2016 11th International Conference on. IEEE,
pp. 1-8.

Kirat, D., Nataraj, L., Vigna, G., Manjunath, B., 2013. Sigmal: a static signal processing
based malware triage. In: Proceedings of the 29th Annual Computer Security
Applications Conference. ACM, pp. 89—98.

Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C., 2016. Deep learning for classification
of malware system call sequences. In: Australasian Joint Conference on Artificial
Intelligence. Springer, pp. 137—149.

lab, L., 2014. Deep Learning Tutorial Release 0.1. university of Montreal. http://
deeplearning.net/tutorial/deeplearning.pdf.

Maas, A.L, Hannun, AY. Ng, A.Y., 2013. Rectifier Nonlinearities Improve Neural
Network Acoustic Models. I[CML.

McCabe, TJ., 1976. A complexity measure. IEEE Trans. Softw. Eng. SE-2 (4), 308—320.

Meng, X., 2016. Fine-grained binary code authorship identification. In: Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, pp. 1097—1099.

Moran, N., Bennett, J., 2013. Supply Chain Analysis: from Quartermaster to Sun-
Shop, vol. 11. FireEye Labs.

Nagano, Y., Uda, R, 2017. Static analysis with paragraph vector for malware
detection. In: Proceedings of the 11th International Conference on Ubiquitous
Information Management and Communication. ACM, p. 80.

Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B., 2011. Malware images: visual-
ization and automatic classification. In: Proceedings of the 8th International
Symposium on Visualization for Cyber Security. ACM, p. 4.

Nataraj, L., Kirat, D., Manjunath, B., Vigna, G., 2013. Sarvam: search and retrieval of
malware. In: Proceedings of the Annual Computer Security Conference (ACSAC)
Worshop on Next Generation Malware Attacks and Defense. NGMAD.

Rahimian, A., Shirani, P,, Alrbaee, S., Wang, L., Debbabi, M., 2015. Bincomp: a
stratified approach to compiler provenance attribution. Digit. Invest. 14,
S146—S155.

Rosenblum, N., Zhu, X., Miller, B.P,, 2011. Who wrote this code? identifying the
authors of program binaries. In: Computer Security—ESORICS 2011. Springer,
pp. 172—189.

Saxe,]., Berlin, K., 2015. Deep neural network based malware detection using two
dimensional binary program features. In: Malicious and Unwanted Software
(MALWARE), 2015 10th International Conference on. IEEE, pp. 11-20.

Schkufza, E., 2015. Stochastic Program Optimization for X86 64 Binaries. Ph.D.
thesis. STANFORD UNIVERSITY.

Sharma, R., 2016. Data-driven Verification. Ph.D. thesis. Stanford University.

Shin, E.CR,, Song, D., Moazzezi, R., 2015. Recognizing Functions in Binaries with
Neural Networks. USENIX.

Tate, R., Stepp, M., Tatlock, Z., Lerner, S., 2009. Equality saturation: a new approach
to optimization. In: ACM SIGPLAN Notices, vol. 44. ACM, pp. 264—276.

Taylor, Q.C.,, Stevenson, J.E., Delorey, D.P., Knutson, C.D., 2008. Author entropy: a
metric for characterization of software authorship patterns. In: Third Interna-
tional Workshop on Public Data about Software Development ((WoPDaSD08),
p. 6.

Techniqal Report, Mcafee, 2011. www.mcafee.com/ca/resources/wp-citadel-trojan-
summary.pdf.

reportTechniqal report, Resource 207: Kaspersky Lab Research proves that Stuxnet
and Flame developers are connected, http://www.kaspersky.com/about/news/
virus/2012/.

The GitHub Repository, 2016. https://github.com/.

The Google Code Jam, 2008-2015. http://code.google.com/codejam)/.

Tristan, J.-B., Govereau, P., Morrisett, G., 2011. Evaluating value-graph translation
validation for llvm. ACM Sigplan Not. 46 (6), 295—305.

Wagner, M., Rind, A, Thiir, N., Aigner, W., 2017. A knowledge-assisted visual mal-
ware analysis system: design, validation, and reflection of kamas. Comput.
Secur. 67, 1-15.

Wei, Y., Xia, W,, Lin, M., Huang, J., Ni, B., Dong, J., Zhao, Y., Yan, S., 2016. Hcp: a
flexible cnn framework for multi-label image classification. IEEE Trans. Pattern
Anal. Mach. Intell. 38 (9), 1901—-1907.

Woldring, D.R., Holec, P.V., Hackel, BJ., 2016. Scaffoldseq: software for character-
ization of directed evolution populations. Proteins: Structure, Function, and
Bioinformatics 84 (7), 869—874.

http://refhub.elsevier.com/S1742-2876(19)30039-8/sref2
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref2
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref2
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref3
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref3
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref3
https://www.blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-The-Peculiarities-Of-Nation-State-Malware-Research.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-The-Peculiarities-Of-Nation-State-Malware-Research.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-MarquisBoire-Big-Game-Hunting-The-Peculiarities-Of-Nation-State-Malware-Research.pdf
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref6
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref6
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref6
https://citizenlab.org/
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref8
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref8
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref8
http://code.google.com/p/pefile/
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref10
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref10
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref10
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref11
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref11
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref11
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref11
https://www.hex-rays.com/products/ida/index.shtml
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref14
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref14
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref14
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref14
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref15
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref15
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref15
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref15
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref15
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref16
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref16
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref16
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref16
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref17
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref17
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref17
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref17
http://deeplearning.net/tutorial/deeplearning.pdf
http://deeplearning.net/tutorial/deeplearning.pdf
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref19
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref19
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref20
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref20
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref21
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref21
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref21
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref21
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref22
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref22
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref23
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref23
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref23
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref24
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref24
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref24
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref25
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref25
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref25
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref26
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref26
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref26
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref26
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref27
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref27
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref27
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref27
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref27
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref28
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref28
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref28
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref28
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref29
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref29
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref30
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref31
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref31
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref32
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref32
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref32
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref33
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref33
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref33
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref33
http://www.mcafee.com/ca/resources/wp-citadel-trojan-summary.pdf
http://www.mcafee.com/ca/resources/wp-citadel-trojan-summary.pdf
http://www.kaspersky.com/about/news/virus/2012/
http://www.kaspersky.com/about/news/virus/2012/
https://github.com/
http://code.google.com/codejam/
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref38
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref38
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref38
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref39
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref39
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref39
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref39
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref40
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref40
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref40
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref40
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref41
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref41
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref41
http://refhub.elsevier.com/S1742-2876(19)30039-8/sref41

	On the feasibility of binary authorship characterization
	Introduction
	Preliminaries
	Threat model
	Usage scenarios
	System overview

	BinChar: design overview
	Feature engineering
	Optimization characteristics
	Structural characteristics
	Author Style Graph

	Expertise characteristics
	Overall characteristics

	Feature hashing

	System detection
	Convolutional Neural Network
	Calibration model
	Clustering similar functions

	Evaluation
	Implementation environment
	Dataset
	Dataset compilation
	Accuracy
	False positive rate
	Authorship clusters
	The correctness of clusters

	Characterizing the Mirai Botnet
	Limitations and concluding remarks
	Acknowledgments
	References

