
lable at ScienceDirect

Digital Investigation 20 (2017) S66eS74
Contents lists avai
Digital Investigation

journal homepage: www.elsevier .com/locate/di in
DFRWS 2017 Europe d Proceedings of the Fourth Annual DFRWS Europe
Network forensic investigation in OpenFlow networks with ForCon

Daniel Spiekermann a, *, J€org Keller a, Tobias Eggendorfer b

a FernUniversit€at in Hagen, Germany
b HS Ravensburg-Weingarten, Germany
a r t i c l e i n f o

Article history:
Received 26 January 2017
Accepted 26 January 2017

Keywords:
Virtual networks
Digital investigation
Network forensic
OpenFlow
* Corresponding author.
E-mail addresses: daniel.spiekermann@fernuni-h

joerg.keller@fernuni-hagen.de (J. Keller), tobias.eg
(T. Eggendorfer).

http://dx.doi.org/10.1016/j.diin.2017.01.007
1742-2876/© 2017 The Author(s). Published by Elsevie
licenses/by-nc-nd/4.0/).
a b s t r a c t

To resolve the challenges of forensic investigation in virtual networks, we present a new forensic
framework called “Virtual Network Forensic Process”. Based on this framework we present the design,
implementation and workflow of ForCon d a forensic controller to implement network investigation in
OpenFlow controlled networks using Open vSwitch. Current trends bear out that virtualization tech-
niques are no longer limited to computers as virtual machines. Thus cloud service providers try to offer
greater value to their customers by implementing virtual networks and storage. Virtual environments
have the same requirements for forensic investigation, however to fulfil these new tools and workflows
to resolve new challenges like virtual machine migration or user customization are needed. ForCon uses
dislocated agents in the network to monitor the virtual environment for changes and adapt the installed
capture process without the need for any further interaction by an investigator. Thus, the network
forensic investigation in virtual networks becomes flexible and valid evidence of the network data is
gathered.
© 2017 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

With the virtualization of computers, providers began to change
their processes and infrastructure in their datacenters. The virtu-
alization provides higher flexibility, improves the automation of
installation, configuration and provisioning of services and offers
new possibilities and cost reduction at the same time. Aspects like
security, network management and customer requirements were
difficult to satisfy with virtual computers only.

The next step in the evolution of datacenters was the imple-
mentation of virtual networks, which resolved the issues in the
virtual environment and improved the cumbersome manual
administration of network devices.

The virtualization of networks offers a logical implementation of
separated networks, each isolated from the others. The isolation of
the networks is independent of the underlying physical network,
all data is still transmitted over the physical network switches,
routers and cable connections. But with the use of new network
protocols like Virtual eXtensible LAN (VXLAN) (Mahalingam et al.,
2014), Stateless Transport Tunneling (STT) (Davie and Gross,
2014) or Network Virtualization using Generic Routing
agen.de (D. Spiekermann),
gendorfer@hs-weingarten.de

r Ltd on behalf of DFRWS. This is
Encapsulation (NVGRE) (Garg and Wang, 2015) different imple-
mentations of tunneling and encapsulation techniques enable the
creation of separate logical networks, using the same underlying
physical infrastructure. Therefore these logical networks are called
overlay network. Anderson et al. (2005) characterizes overlay
networks as follows:

With virtualization, nodes can treat an overlay as if it is the native
network, and multiple overlays can simultaneously use the same
underlying overlay infrastructure.

Despite all these changes in the infrastructure of the datacenter
or the implementations of the networks, the need for investigations
in networks still exists. Digital investigation methods are used to
solve crimes committed with computers (Garfinkel, 2010) and to
analyse unusual behaviour in digital systems like computers, net-
works or mobile phones. Digital investigation in virtual environ-
ments faces issues like data location, lifecycle of virtual machines
(VMs), multitenancy and a valid chain-of-custody (Spiekermann
et al., 2015), but this wide area of forensic in cloud-computing
environments is still being researched (Dykstra and Sherman,
2013 or Ruan et al., 2013). Additionally network forensic in-
vestigations needs to resolve different arising issues like VM
migration, user customization of the assigned virtual systems or the
lack of physical network interface cards (NIC) (Spiekermann and
Eggendorfer, 2016a). The area of network forensic investigation in
an open access article under the CC BY-NC-ND license (http://creativecommons.org/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:daniel.spiekermann@fernuni-hagen.de
mailto:joerg.keller@fernuni-hagen.de
mailto:tobias.eggendorfer@hs-weingarten.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2017.01.007&domain=pdf
www.sciencedirect.com/science/journal/17422876
www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2017.01.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2017.01.007
http://dx.doi.org/10.1016/j.diin.2017.01.007


1 Virtual local area network.
2 E. g. implemented by IEEE 802.1q.
3 E. g. the Rapid Spanning Tree Protocol (RSTP).

D. Spiekermann et al. / Digital Investigation 20 (2017) S66eS74 S67
these environments is still under-explored, so this paper presents a
framework for digital investigation in virtual networks and an
implementation developed by the authors called Forensic
Controller (ForCon) to provide a valid and consistent capture pro-
cess in virtual networks.

The development of ForCon is based on a detailed analysis of
new challenges in the virtual networks a forensic investigator is
faced with. VMs are migrated from one host to another, or users
customize their internal logical network which changes the
encountered installation and prevents the further capture of
network packets. We assume that these changes do not have to be
malicious by the customer, more likely the change in the network is
initiated by the cloud environment. These changes occur without
any administrative input by the cloud service provider (CSP), only
because of reaching predefined usage limits of the hardware re-
sources like cpu-time or storage capacity.

Based on this assumption we discovered the need of imple-
menting a new forensic framework to describe the network
forensic investigation in virtual networks. Current frameworks
exhibit a static implementationwith only one identification process
at the beginning of the investigation. We argue that this limited
identification at the beginning is not sufficient in virtual networks.
Even the migration of the target VM requires a renewed identifi-
cation of the updated location of the VM. This led to the evolution of
our framework called Virtual Network Forensic Process (VNFP),
which implements a repetition of different tasks to ensure the
consistent capture process.

The rest of this paper is structured as follows: Section Related
work lists previous and related works related to virtual networks,
network forensics and digital forensics in virtual environments.
Section Virtual networking describes the different implementa-
tions of virtual networks, with a focus on software defined net-
works and network function virtualization. Network forensic
investigation, the limitations of the current techniques and the
virtual network forensic process framework are described in Sec-
tion Network forensic investigation. In Section ForCon the imple-
mentation of ForCon is explained in detail. Section Evaluation
provides an initial evaluation of our prototype. Section Conclusion
concludes and gives an outlook to future work.

Related work

ForCon implements a workflow for network forensic investiga-
tion in virtual networks. Each of the current techniques is based on
the capture, record and the subsequent analysis of the obtained
data (Lazzez, 2013; Pilli et al., 2010a; Hunt and Zeadally, 2012 or
Corey et al., 2002). Khan et al. (2016a) presents an overview of
current research, taxonomy and open challenges of network
forensics.

The process of a digital investigation is separated in different
stages leading the investigator from the initial start to the
concluding reporting of the analysis. Different frameworks describe
this process for network forensic investigation. The first framework
for network forensics was presented in Palmer (2001). Pilli et al.
(2010b) lists 10 frameworks and summarizes the different phases,
which led to the development of the generic framework for
network forensics. Rasmi et al. (2013) lists current frameworks for
network forensic investigation.

ForCon is a tool to analyse, monitor, identify, capture and, if
necessary, adapt the network forensic process in OpenFlow net-
works. OpenFlow is explained in detail in McKeown et al. (2008)
and Azodolmolky (2013), the evolutionary change of networks by
Software Defined Networks (SDN) and the notability of OpenFlow is
discussed in Kreutz et al. (2015). The proposed agents of ForCon
interact with Open vSwitch as the involved vswitch. The
implementation of Open vSwitch (OVS) is described in Pfaff et al.
(2015), the communication between Open vSwitch and the SDN
controller is handled with the OpenFlow protocol.

Different research is done in the field of using OpenFlow as a
controlling unit for network traffic to implement IT security ap-
proaches or forensic investigations. Achumba et al. (2015) uses
OpenFlow as a virtual appliance to implement a security moni-
toring interface. Bates et al. (2014) implements a security infra-
structure based on OpenFlow by using middleboxes to monitor and
analyse the transmitting network traffic. Khan et al. (2016b) pro-
poses with a framework named FML, a forensic management layer
to analyse the controlling tiers in SDN. Bremler-Barr et al. (2014)
steers traffic by communicating with the native controller to
implement deep-packet-inspection of network data.

Virtual networks raise different issues for digital investigation,
which are discussed in great in Spiekermann and Eggendorfer
(2016b) and E. T. S. I (2016). Most of the common tools are imple-
mented to extract network information, not to capture all trans-
mitted data transferred from or to a suspicious system. ForCon
provides an entire packet capture process targeted to one system
using distributed agents. A similar approach is discussed in Ren and
Jin (2005), which uses agents to capture all traffic in a local net and
transmit it to a network forensic server. ForCon extends this scope
by following the target system and capturing only the relevant data
without capturing all network traffic in the whole segment.

Virtual networking

The implementation of VMs in a datacenter infrastructure poses
new problems to the provider. The administration of new VMs, the
reconfiguration of running VMs or resource management of the
hardware used was getting easier and more flexible. But the
isolation of VMs of different customers or the interconnection be-
tween VMs of the same customer still requires a cumbersome and
error-prone manual administration like reconfiguring current ac-
cess control lists (ACL), VLAN1-tagging or routing information.

The limitation of current network infrastructures impedes the
implementation of highly dynamic, flexible, secure and automated
environments that might reduce the costs and provide a custom-
izable network. These limitations are based on the one hand on the
deployed network protocols like VLAN, which limits the number of
different, logically separated networks, or spanning-tree-protocols,
which reduce the number of usable interconnections between
switches to only one, even if more linkswere available. On the other
hand, the installed network devices do not provide interfaces,
which allow the automated configuration of the connected devices
based on previously defined rules or by analysing states depending
on the current network situation.

These circumstances led to the development of new network
protocols like Virtual eXtensible LAN (VXLAN), Stateless Transport
Tunneling (STT) or Network Virtualization using Generic Router
Encapsulation (NVGRE), and to the implementation of new para-
digms like Software Defined Networks (SDN) and Network Func-
tion Virtualization (NFV).

Network protocols

The new network protocols try to eradicate different limitations
of currently used network protocols like VLAN2 or spanning-tree-
protocols.3 These implementations do not provide enough



Fig. 1. VXLAN encapsulation.

D. Spiekermann et al. / Digital Investigation 20 (2017) S66eS74S68
flexibility, which is needed in virtual environments or have a
limited hardware utilization.

VXLAN tries to increase the number of possible separated
subnets in the datacenter from 212 to 224 by using an extended, 24
bit long tag in the ethernet frame. All hosts with the same tag-id
belong to the same layer2-subnet. The implementation of VXLAN
facilitates the spreading of this subnet all over the physical
infrastructure. If one host wants to communicate with another
host located in the same subnet but on another physical host in
the datacenter, the network packet is encapsulated via VXLAN.
This process of encapsulating is divided in the trailing VXLAN-
header, a new UDP-header and then a new header with IPv4 or
IPv6 to transmit the encapsulated packet to the next VXLAN
tunnel endpoint (VTEP). Fig. 1 shows the encapsulated network
packet.

The VTEP decapsulates and forwards the packet to the given
destination of the original ethernet frame.

Other protocols like STT4 or NVGRE5 work in a similar way but
provide the same generic technology of transmitting network
packets inside other protocols, even with different means to attain
the same goal.

Software defined networks

SDN provide a new flexibility in the design of networks. The
main idea behind the development of SDNwas the improvement of
testing new network protocols on existing network devices
without threatening the current network configuration. SDN pro-
vides different advantages like:

� Separation of control and forwarding plane
A network switch uses an internal flow-table to forward the
incoming network packets to the correct destination (e.g. only
one port or by flooding the packet to all ports). This flow-table is
a vendor-specific implementation, which decides the correct
destination of network packets by using an internal table. This
process is implemented at the control plane. The fast processing
of the network packets to the correct output is performed by the
forwarding or data plane.
By decoupling these two planes and moving the forwarding
plane to a separate device, the network management gets more
centralized, which might reduce the error-prone and time-
consuming manual configuration of each network switch.

� Centralized configuration
This separation of planes and moving the forwarding plane to
the SDN controller offers a centralized configuration of all con-
nected switches. By configuring different rules for packet pro-
cessing, the SDN controller transmits these rules to all
connected switches. If a switch is not able to forward a network
packet by its known rules, it forwards the packet or packet in-
formation to the controller. The controller analyses this data and
informs the involved switch of the further processing of this
kind of packets.
4 Which uses an encapsulation with TCP.
5 Implemented with an encapsulation with GRE.
� Programmability of the network
The central configuration improves the management of the
devices. The communication between the SDN controller and
the switch is realized by the southbound-API, the communica-
tion between the SDN controller and the higher applications is
implemented with the northbound-API. These APIs provide the
programmability of the network. Implementations of different
applications, which act on the higher layer via the northbound-
API, control the forwarding of network packets.

The most relevant protocol of the southbound-API is OpenFlow
(Braun and Menth, 2014). The development started at Stanford
University in 2008 (McKeown et al., 2008). OpenFlow enables the
programmability of the network by providing an interface between
a central network controller and the connected ethernet switches.
These so-called OpenFlow-switches do not use an internal ruleset
to forward the packets any more. Instead they use the central
controller by transmitting packet information to the controller,
which analyses this information and transmits the valid rule to the
OpenFlow-switch. The communication protocol for exchanging this
information is OpenFlow.

Network function virtualization

Network function virtualization (NFV) is another branch of vir-
tual network implementations. In contrast to SDN there is no new
protocol or technique to implement virtualization in networks, but
different services like switching, routing, firewalls or intrusion
detection service (IDS) which are typically realized by separated
hardware devices are now provided as virtual appliances. These
virtual appliances might be executed on standard hardware, which
provides new advantages like vendor independence, cost reduction
or improved orchestration of these devices.

OVS (Pfaff et al., 2009) is an implementation of an ethernet
switch implemented in software. OVS provides layer2-switching,
VLAN tagging or quality-of-service and runs on current linux sys-
tems. OVS is frequently used in virtual environments to realize the
interconnection of VMs. Cloud environments like OpenStack
(Sefraoui et al., 2012) use OVS as a virtual switch (vswitch), which
interconnects the VMs independent from the hypervisor used.

Network forensic investigation

Network forensics is the science of digital investigation in net-
works (Pilli et al., 2010a). The network forensic investigation (NFI)
is separated in two phases, which are classified as online and off-
line. The online phase comprises the capture and recording of
relevant network packets, the subsequent analysis of this data is
performed in the offline phase.

The recording of the data depends on the encountered network
infrastructure (Nelson et al., 2014). Depending on the implementa-
tion, three different techniques to retrieve the data are common:

� TAP
A tap is a special network device, which is interleaved in the
connection between a system of interest and the next network
component. The tap duplicates the transferred data and trans-
mits it to the receiver and additionally to a second output.

� SPAN
A span-port (or port-mirror) on a physical switch is a specially
configured port which enables the mirroring of all received and
transmitted data of the given port to another output port.

� Bridge
If it is not possible to configure a port-mirror and taps are not
available, the third technique is to interleave a specially



Fig. 2. Virtual network forensic process framework.

D. Spiekermann et al. / Digital Investigation 20 (2017) S66eS74 S69
configured system which acts nearly invisible in the network
and stores all traversing network packets.

All three aforementioned possibilities are well-defined for the
use in traditional networks, which have a static wiring without
changing the hardware frequently. The captured data is stored on a
separate storage medium, which is able to handle all incoming
packets and write them to disk fast enough to avoid bottlenecks
concerning storing and receiving new files.

After capture and recording of the relevant network data, the
subsequent analysis entails the detailed investigation to reveal who
has communicated with whom, how long this communication took,
when it was performed and possibly which data was transferred.

Challenges

Different problems exist for network forensic investigation in
virtual networks. Spiekermann and Eggendorfer (2016b) presents
different problems of digital investigation in virtual networks,
separated in online, offline and organizational problems.

There are two main critical problems, that impede the network
forensic investigation.

� Migration
Migration describes the process of moving a VM from one
physical host to another (Clark et al., 2005). If this happens, the
used network connections, connected links and switch ports get
invalid and are reconfigured on the new physical host.

� Customization
The customization process defines the change of the network or
system implementation employed by the user without any
additional influence by the CSP. The rate of possible changes
depends on the environment and is typically predefined by the
CSP. If the logical network of a VM is reconfigured by the
customer, it might happen that the installed capture process
fails and the recorded data gets incomplete.

Current processes in the online phase use static workflows and
tools, which are designed and implemented for traditional net-
works. The static implementations fail when investigating virtual
networks. These networks are defined by a highly flexible context,
with VMs migrating from one physical host to another or a cus-
tomization of the logical networks by the customer without any
further administrative help of the provider.

The current recording techniques require a static wiring to
get all incoming or outgoing packets from the suspicious system. As
long as this wiring is not changed, the recording and capture pro-
cess will retrieve all network packets.

If the suspicious system is migrated to another physical host, the
capture process fails, the now used NIC has changed, which requires
a manual and cumbersome reconfiguration of the recording tech-
nique, e.g. disconnecting the current switch ports, reconfiguring the
port-mirror on another switch, delete the port-mirror on the now
unused switch and reconnect the storage systemwith the new NIC.

But the migration process of the suspicious system is unpre-
dictable. Based on external events like high performance demands
of other VMs, installed on the same compute node, or a hardware
failure, the migration of the VMs might be started without any
further interaction by the provider.

New NFI framework

The current NFI process is defined by a NFI model which de-
scribes different tasks, performed sequentially without any adap-
tation within a phase. Some models like the Generic Network
Forensic Process model (GNFP) (Pilli et al., 2010a) describe a revi-
sion of tasks, activated by new information, which lead to a com-
plete new capture process. Adeyemi et al. (2012) analyses 23
different frameworks, which are designed for digital or network
forensic investigation. But none of these frameworks are valid for
the digital investigation in virtual networks. Some phases are still
valid like the identification, record, storage and analysis of the
network data, but there is no phase to recognize the critical actions.

Therefore the network forensic investigation process is not
divided in four parts any more. The network forensic investigation
process in virtual networks has to be extended to implement a
subroutine of monitoring and adapting the capture process to
guarantee a valid capture file, even with migration or custom-
ization. Fig. 2 illustrates the new process called Virtual Network
Forensic Process (VNFP).

VNFP uses well-known and proved concepts of other digital
forensic framework models. Phases like capture, recording or
analysis are adopted from the GNFP. In addition to these reused
models the phases monitoring, evaluation and adaptation are new
in this model.

� Monitoring
The aim of the monitoring phase is to implement an option to
observe the network environment and send out an information
about the change.

� Evaluation
Not all changes pertain the running investigation process. By
analysing the occurring events only relevant changes are
noticed which instigate the subsequent adaptation.



Table 1
ForCon protocol message types.

Type Identifier Task

Informational I Transmission of identifiers
Flow request F Command to extract flows
Manipulation M Command to manipulate flows
Update U Update the information
Connection C Successfully connected to ForCon
Monitoring X Relevant event occurred
Delete D Command to delete the forensic flows
Tunnel T Create tunnel between involved vswitches

Fig. 3. ForCon architecture.

D. Spiekermann et al. / Digital Investigation 20 (2017) S66eS74S70
� Adaptation
If the change of the network pertains the record process, an
adaptation of this process is initiated. This adaptation has to edit
the current capture process (e. g. by deleting the current
installation and inserting new rules, filters or parameters or by
reconfiguring the running process). If the changes of the
network structure are too comprehensive, a restart with the
new identification is necessary.

After adapting the capture process, the monitoring process is
started again to monitor the network environment repetitive.

ForCon

The challenges discussed in Section Challenges arise from the
evolution of highly dynamic, flexible and customizable virtual
networks, which impede the network forensic investigation with
current processes and techniques. These techniques are inflexible
and rigid, as they are not focused on investigation in this fast-
moving environment.

To achieve a successful digital investigation with a valid capture
file, the capture process has to be flexible as well, which led to the
need to virtualize the whole capture process.

The development of the tool ForCon was driven by the need to
implement a capture process which is able to monitor the virtual
environment and to provide a fast and valid reaction towards
network changes.

The multitude of different implementations of virtual networks
limits the possible approaches to a predefined environment. We
analysed the OpenFlow protocol in combination with vswitches
running with OVS, because it is widely used in practice.

Implementation

ForCon is implemented in Python and needs no additional setup
routine on a given virtual or physical machine in the network.
ForCon has a command-line interface. By passing the appropriate
parameters ForCon controls its distributed agents to monitor the
environment, ensuring a stable and correct forensic process. The
parameters are

� Valid identifier of the suspicious VM6

� Port number listening for connections

ForCon uses a special message format, called ForCon Protocol
(FCP), which implements seven different message types as
described in Table 1.

These message types are exchanged with two types of agents,
which implement different tasks of monitoring and manipulating
of network flows. ForCon uses the management network of the
environment to communicate with the agents, the customer
network is not swayed by these messages.

There are two types of agents to fulfil the capture process.

� SDN agent
These agents run on the compute nodes which host the different
VMs and provide the connection to the vswitches. Each agent of
a compute node analyses the installed vswitches and the con-
nected devices of each vswitch. These information of the con-
nected devices are transmitted via the Informational-message to
ForCon. If necessary, ForCon informs the agent tomanipulate the
flows of the system, submitted within a Manipulation-message.
6 This can be a mac-address, VID (VLAN-Identifier) or a combination.
� Mirror agent
Mirror agents run on physical hosts which connect the capture
system to the network. This connection is based on an OVS
instance, which is initiated without any further links to other
systems. This guarantees the correct isolation of the capture
system. If a Tunnel-message is received, the Mirror agent ex-
tracts the information of the tunnel endpoint and creates a
tunnel with a VXLAN-encapsulation from the OVS instance to
the transmitted destination vswitch. Only now the capture
system is connected via the tunnel to the network. By manip-
ulating the flows, the mirrored data is transmitted from the
target system via the tunnel to the capture system. If the
network topology changes, the Mirror agent has to dismantle
the current tunnel and reconstruct another tunnel to the new
involved vswitch. The use of tunnels based on VXLAN facilitates
the installation of the capture system somewhere in the
network. Because of this, only one mirror agent is needed to
perform the network forensic investigation in the network.

Fig. 3 describes the architecture with ForCon running in a
network with two SDN controllers managing three vswitches. SDN
agents are marked in green (in the web version), the mirror agent is
marked in red.

After initializing all information, ForCon is waiting for a
connection (via a Connection-message) of an agent which is
signalized by the IP-address of the agent.

Connection from Agent 172.16.40.129 established

ForCon orders the installed flows of the switches installed on
the compute node via a Flow-Request-message. The agents receive
the message and transmit the information to ForCon.7
7 In this example the Informational-message uses a format with vswitch-identi-
fier-SEPARATOR-source-mac-address-SEPARATOR-destination-mac-address.



D. Spiekermann et al. / Digital Investigation 20 (2017) S66eS74 S71
[172.16.40.1] ->F
Received F > extract Flows

I;s1;00:00:00:00:00:01;00:00:00:00:00:03

I;s1;00:00:00:00:00:03;00:00:00:00:00:01

I;s1;00:00:00:00:00:03;00:00:00:00:00:02

I;s1;00:00:00:00:00:04;00:00:00:00:00:03

ForCon analyses the information and, if necessary, sends a
Tunnel-message to the mirror agent running on a separated host
and the involved SDN agent.

T;172.16.12.140;brmon;172.16.12.129;s1

The mirror agent establishes a tunnel connection to the vswitch
on the submitted IP-address and the vswitch used. In this example
a tunnel between themirror agent running on the system identified
by the IP-address 172.16.12.140 creates the tunnel on the vswitch
named brmonwith the target 172.16.12.129. The SDN agent running
on 172.16.12.129 creates the tunnel on vswitch s1 vice versa.

After exchanging these messages, the tunnel between the
vswitch connected to the target VM and the vswitch connected to
the capture system is established. The next step is to manipulate
the assigned flows.

Initial capture

To capture the data of the suspicious system, all flows containing
information of the target system have to be manipulated.

The manipulation of the flows is initiated by a Manipulation-
message, transmitted from the server to the agent. This message
contains the valid identifier of the target system, which facilitates
the receiving agent to manipulate the flows.

Received M -> M;00:00:00:00:00:03;s1

As described in Section Software Defined Networks, the struc-
ture of OpenFlowmessages is pre-defined, but each controller uses
vendor specific additional information. In our research, we use
Floodlight and Ryu as the central SDN controllers and analyse the
structure of the messages to find coinciding elements.

There are two types of flows that have to be manipulated to
gather all network data of the suspicious system. The incoming
packets with the destination address of the target system are
defined as Ingress, all data leaving the target system are defined as
Egress data.

To capture the ingress data, the flow manipulation is easier, it is
sufficient to add the id of the tunnel interface as an additional
output port to the action part.

cookie¼0x0, duration¼11965.378s, table¼0,

n_packets¼10120,n_bytes¼975632,priority¼1,

in_port¼1,dl_dst¼00:00:00:00:00:03

actions¼output:2

is manipulated to

cookie¼0x0, duration¼1362.132s, table¼0,

n_packets¼10120, n_bytes¼975632,priority¼2,

in_port¼1,dl_dst¼00:00:00:00:00:03

actions¼output:2,99

Additionally the priority field is incremented to guarantee the
use of this flow.

The capture of the egress data is more complicated because of
the lack of usable information. Because of this, ForCon adds addi-
tional flows to the flow-table which use the identifier8 as source.
Now the agent adds a flow for each mac-address found in the same
8 In this example we use the mac-address as the valid identifier.
layer2-broadcast domain, which uses the mac-address of the sus-
picious VM as source and the mac-address found as destination,
and inserts the current output port for the destination and addi-
tionally the output port to the capture system.

cookie¼0x0, duration¼1604.682s, table¼0,

n_packets¼0, n_bytes¼0,

priority¼2,dl_src¼00:00:00:00:00:03,

dl_dst¼00:00:00:00:00:01

actions¼output:1,output:99

cookie¼0x0, duration¼1604.690s, table¼0,

n_packets¼0, n_bytes¼0,

priority¼2,dl_src¼00:00:00:00:00:03,

dl_dst¼00:00:00:00:00:02

actions¼output:2,output:99

cookie¼0x0, duration¼1604.699s, table¼0,

n_packets¼0, n_bytes¼0,

priority¼2,dl_src¼00:00:00:00:00:03,

dl_dst¼00:00:00:00:00:04

actions¼output:4,output:99

Each new flow is tagged with an incremented priority to ensure
the use of this flow instead of using an original flow inserted by the
SDN controller. This implementation guarantees that every packet
to or from the suspicious system is copied to the capture system,
too.

Monitoring

The initial capture implementation realizes the first step to re-
cord all relevant network data to or from the suspicious system. But
the dynamic nature of the virtual environment results from the
possibility to migrate VM from on host to another or by the cus-
tomization of the infrastructure. This leads to the need of a moni-
toring process after implementing the initial capture process.

This monitoring process is not limited to only one physical host,
because the migration process of a VM is typically not predictable.
So each compute node in the datacenter is a possible host for the
VM to be moved to.

ForCon provides the monitoring of the compute nodes by using
its distributed SDN agents, each SDN agent has to monitor the
compute node it is assigned to. If the suspicious VM is migrated, the
central SDN controller has to change the relevant flows on the
involved vswitches. The SDN agent on the prior compute node
recognizes the change, and aMonitoring-message is sent to ForCon.
ForCon reacts to this change by sending out an Update-message to
all connected SDN agents in the network.

The monitoring of the SDN agent depends on the installed
vswitch. In our approach, the agents are responsible for OVS, so it is
possible to use given monitoring implementations of OVS. Infor-
mation of network changes are provided in several ways. They are
logged in various locations of the installation of the infrastructure
or are provided by APIs. The relevant information can be extracted
from

� Logfiles of
e compute node
e vswitch
e cloud controller
e SDN controller

� Database of the vswitch
� Controller-to-vswitch communication
� Monitoring method



Table 2
Evaluation of ForCon

Scenario Pt Pc Duration

No manipulation 174,772 174,772 4.1 s
Cpu load 174,772 174,772 4.4 s
CAM 174,772 174,772 4.2 s
Network usage 174,772 174,772 4.4 s

D. Spiekermann et al. / Digital Investigation 20 (2017) S66eS74S72
The logfiles are typically vendor specific, which leads to a
difficult and cumbersome analysis of the structure. Each update or
newer version of the software may invalidate the previous analysis.
The controller-to-switch communication transfers all relevant data
between SDN controller and vswitch, but the communication is
encrypted and realized with a so-called secure channel (McKeown
et al., 2008). The database of the vswitch stores all relevant infor-
mation for a consistent workflow (Pfaff and Davie, 2013). The
extraction of relevant information is a possible way to retrieve the
data, but to notice the changes, lots of entries of the database have
to be stored duplicated in a special data structure of the agent.

Because of this, the SDN agent of ForCon uses a monitoring-
method provided by OVS. This method is used by a connecting
listener, which gets information about changes of the OVS database
(OVSDB). With this implementation a timely reaction of changes in
the network is possible.

After initializing, the SDN agent connects to the monitor-
method of the running vswitch-instance. After connecting, the
agent gets all information submitted to the monitor method. This
comprises keep-alive messages, which are sent periodically be-
tween vswitch and controller to inform about the availability. The
agent has to parse the variety of messages to filter out the relevant
events. If a possibly relevant event occurs, the SDN agent checks the
significance. If the message notifies about a port-deletion of the
targeted system, a migration might start, and ForCon gets informed
by the agent with the Monitoring-message, which is sent to the
controller.

Changes

The Update-message from ForCon causes the agents to extract
all connected local vswitches again and transmit all extracted in-
formation again back to ForCon. ForCon analyses this data and in-
forms the newly involved agent about the needed manipulation via
a Tunnel-message and a Manipulation-message. The other agents
get the Delete-message to remove themanipulated flow entries and
to delete the tunnel between the storage system and the former
vswitch.

Evaluation

To demonstrate the correct capture of all relevant data, we
evaluated ForCon in different scenarios. At first we validated For-
Con in a separate testbed which consists of three compute nodes
hosting the VMs, a cloud controller running OpenStack with
Neutron as the controlling unit for the network infrastructure. Ryu
was installed as the SDN controller which interacts with OVS in-
stances running on the compute nodes. ForCon was imported to
this testbed and started with the mac-address of a running VM as
the initial parameter. The agents extracted the flows and informed
ForCon to analyse the data. ForCon identified the VM and instructed
the involved agent to manipulate the flows. The captured data was
recorded with the capture system running on a separate host. After
that the target VM was migrated manually to another host. The
agent of the prior host noticed this change and informed ForCon
about the need of a update of the network status. ForCon informed
all agents to extract the flows again, identified the VM successfully
and reconfigured the capture process.

Different values might affect the mirroring and capture process
and might hamper the further investigation. We assume the
following three parameters as the most relevant.

� Cpu load
A high cpu loadmight hamper the process by discarding packets
which leads to an incomplete capture file.
� Number of entries in the CAM
The content addressable memory (CAM) stores the mapping of
port and mac-address. If the CAM has to handle lots of entries,
the search for the correct ports might take longer. Additionally,
the flow manipulation might be affected by this elongation.

� High network utilization
The hosting system has to manage all network traffic by calcu-
lating the relevant checksums, port mappings and the transfer
of packets from or to the VMs. An increase of the overall network
usage might slow down this calculation process, whereby the
capture process might be constrained.

We adjusted the values with common tools and scripts, i. e. the
cpu load is manipulated with the linux tool stress and the high
network usage is performed with by using the tool iperf. The high
number of entries in the CAM table is simulated by configuring
hundreds of vNICs inside the hosting system. The values are grad-
ually increased to examine a possible disruption of the capture
process.

We captured the network traffic on the suspicious and the
capture system simultaneously to compare the entire number of
captured packets. By using predefined network captures with a
known number of packets we were able to validate ForCon.

We injected six different capture files in the testbed, each con-
taining a defined number of network packets. Table 2 lists the
average values of a total of three runs with of 174,772 network
packets transmitted from or to the target system. The overall
duration of processing the packets slowed down, but no packets got
lost. The column Pt lists the number of packets captured on the
target system and the column Pc lists the number of packets
received by the capture system.

The successful capture of all packets depends on different cir-
cumstances. ForCon uses only one mirror port installed on a special
vswitch managed by the mirror agent. Therefore known problems
such as a loss of performance while increasing the number of
vswitches as discussed in Ohira (2014) do not eradicate the ForCon
process. The implementation in software manages the entire pro-
cess of forwarding, therefore the system knows how and whereto
the packets have to be forwarded. Even if the calculation takes
longer, the cpu achieves the valid transmission to all given
destinations.

ForCon manipulates only flows which are relevant for the cap-
ture process and ignores flows assigned to other systems. This
limitation provides the fast processing of submitted flows via the
Informational-message.

The evaluation demonstrates the correct processing of network
packets, even in environments with a high utilization. Being still a
proof-of-concept ForCon provides a valid process of capturing
network packets of a given target VM.

Conclusion

Network forensic investigation in virtual networks has several
issues. Most critical are techniques like migration and user cus-
tomization, which change the circumstances for the capture pro-
cess. New network protocols impede the subsequent offline



D. Spiekermann et al. / Digital Investigation 20 (2017) S66eS74 S73
analysis of the captured data, because of the lack of usable tools.
To implement a successful investigation, we first examined

current network forensic frameworks to determine the ability to
apply one of the proved frameworks in virtual networks. Current
frameworks describe the need of identification, capture, record and
analysis. But the critical actions require additional steps with a
repetition of defined tasks. These tasks have to cover the moni-
toring and identification of the changes, and the adaptation to the
changed environment. None of the analysed frameworks provide a
suitable model, so we presented VNFP as a new forensic framework
for investigation in virtual networks. This framework implements
three additional phases named monitoring, evaluation and adap-
tation to handle the flexible behaviour in virtual networks.

Based on VNFP we developed ForCon as an implementation of a
specialized OpenFlow controller. ForCon is able to implement a
network forensic investigation in OpenFlow networks by extracting
and analysing the valid flows installed on the layer2-switches.
Based on submitted parameters ForCon is able to find the suspi-
cious target system in the virtual environment and to configure
flow entries, which mirror all relevant data to a given destination.
To realize this workflow, ForCon uses two different types of
distributed agents running on the physical hosts. One type of agents
extracts the information of connected VMs and the flows of each
vswitch and transfers this information to ForCon. ForCon gathers all
data from the connected agents and informs the agent which
monitors the vswitch with the suspicious target system. This agent
manipulates the flows tomirror all incoming and outgoing network
traffic to the capture system. The capture system is connected via
the second type of agent, which establishes a tunnel between the
target vswitch and the prepared vswitch interconnected with the
capture system, which stores all incoming traffic.

If an event occurs in the network (e. g. a migration or custom-
ization by the user), the central OpenFlow controller is informed
and manipulates the assigned flows. The distributed agents notice
this change of flows and transmit the new data to ForCon. ForCon
checks whether this change is relevant and informs the involved
agents to adapt their settings if necessary.

This separation of tasks and central information treatment
provides a fast and easy to review workflow, which implements a
fully automatic network forensic investigation in virtual networks.
The agent-based implementation allows an adaptation for other
vswitches. We use OVS as the running vswitch system, other
implementations of vswitches can be monitored and configured by
implementing a special agent which is able to communicate with
the vswitch-API.

ForCon was evaluated and validated in different simulated sce-
narios. Hereby the valid processing was demonstrated. Running
ForCon in highly loaded systems does not affect the overall load, at
the same time the manipulation and mirroring actions of ForCon
are not pertained by this utilization. As a further improvement, the
overall speed might be increased by using a filter mechanism
processed by the distributed agents, but this requires an adapted
implementation which still needs to be evaluated.

ForCon implements successfully the three new stepsMonitoring,
Evaluation and Adaptation of VNFP, which eradicates the possible
breakdown of a running capture if a VM migrates or is customized.

Even being a proof-of-concept, ForCon is the first implementa-
tion which guarantees a valid packet capture process in virtual
networks. With the submitted parameters like mac-address or
VLAN-tag, it is able to find, monitor and follow the target system
and mirror all assigned network traffic to a capture system. A
validation in a separate testbed approved the valid workflow of
ForCon. Nevertheless a detailed validation in networks with more
hosts, higher throughput and different configurations should be
pursued to ensure the process of identifying the target VM,
installing the needed recording and capturing process and, if
necessary, adapting this installed capture process.

This capture system is connected via the so-called Mirror-agent
within in VXLAN-tunnel to the relevant vswitch, where the target
VM is connected.

Future implementations of ForCon should provide a dynamic
choice of possible tunnel implementations like GRE or VLAN, which
offers an additional benefit to guarantee a valid capture.

Virtual networks do not only interconnect VMs or establish an
internet connection to the web, they also provide a connection to
storage subsystems (Wu et al., 2010). A customer of a virtual
environment is not limited to use only a VM, the provider supplies
storage capacity, which might be accessed without the use of a VM.
If a customer uses this kind of object storage, ForCon is not able to
monitor this traffic because of the lack of OpenFlow connections
andmissing valid parameters to detect the connection. Futurework
has to be done to implement a network forensic investigation to
storage-as-a-service environments.
References

Achumba, I.E., Okafor, K.C., Ezeh, G.N., Diala, U.H., 2015. Openflow virtual appliance:
an efficient security interface for cloud forensic spyware robot. Int. J. Digit.
Crime Forensics (IJDCF) 7 (2), 31e52.

Adeyemi, I.R., Razak, S.A., Azhan, N.A.N., Identifying Critical Features for Network
Forensics Investigation Perspectives. CoRR.

Anderson, T., Peterson, L., Shenker, S., Turner, J., 2005. Overcoming the internet
impasse through virtualization. Computer 38 (4), 34e41. http://dx.doi.org/
10.1109/MC.2005.136.

Azodolmolky, S., 2013. Software Defined Networking with OpenFlow. Packt Pub-
lishing Ltd.

Bates, A., Butler, K., Haeberlen, A., Sherr, M., Zhou, W., 2014. Let SDN be your eyes:
secure forensics in data center networks. In: Proceedings of the NDSS Work-
shop on Security of Emerging Network Technologies (SENT 14).

Braun,W., Menth, M., 2014. Software-defined networking using openflow: protocols,
applications and architectural design choices. Future Internet 6, 302e336.

Bremler-Barr, A., Harchol, Y., Hay, D., Koral, Y., 2014. Deep packet inspection as a
service. In: Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies. ACM, pp. 271e282.

Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.,
2005. Live migration of virtual machines. In: Proceedings of the 2nd Conference
on Symposium on Networked Systems Design & Implementation, vol. 2. USE-
NIX Association, pp. 273e286.

Corey, V., Peterman, C., Shearin, S., Greenberg, M.S., Van Bokkelen, J., 2002. Network
forensics analysis. IEEE Internet Comput. 6 (6), 60e66.

Davie, E.B., Gross, J., April 2014. A Stateless Transport Tunneling Protocol for
Network Virtualization. https://tools.ietf.org/html/draft-davie-stt-00.

Dykstra, J., Sherman, A.T., 2013. Design and implementation of frost: digital forensic
tools for the openstack cloud computing platform. Digit. Investig. 10, 87e95.

E. T. S. I, Jan. 2016. Lawful Interception (LI); Cloud/Virtual Services for Lawful
Interception (LI) and Retained Data (RD). Tech. Rep. ETSI TR 101 567. European
Telecommunications Standards Institute.

Garfinkel, S.L., 2010. Digital forensics research: the next 10 years. Digit. Investig. 7,
64e73.

Garg, P., Wang, Y., September 2015. NVGRE: Network Virtualization Using Generic
Routing Encapsulation. RFC 7637 (Informational). https://tools.ietf.org/html/
rfc7637.

Hunt, R., Zeadally, S., 2012. Network forensics: an analysis of techniques, tools, and
trends. Computer 45 (12), 36e43.

Khan, S., Gani, A., Wahab, A.W.A., Shiraz, M., Ahmad, I., 2016. Network forensics:
review, taxonomy, and open challenges. J. Netw. Comput. Appl. 66, 214e235.

Khan, S., Gani, A., Wahab, A.W.A., Abdelaziz, A., Bagiwa, M.A., 2016. FML: a novel
forensics management layer for software defined networks. In: 2016 6th In-
ternational Conference-Cloud System and Big Data Engineering (Confluence).
IEEE, pp. 619e623.

Kreutz,D., Ramos, F.M.,Verissimo,P.E., Rothenberg,C.E., Azodolmolky, S.,Uhlig, S., 2015.
Software-defined networking: a comprehensive survey. Proc. IEEE 103 (1), 14e76.

Lazzez, A., 2013. A survey about network forensics tools. Int. J. Comput. Inf. Technol.
2 (1), 74e81.

Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, L., Sridhar, T., Bursell, M.,
Wright, C., Aug. 2014. Virtual eXtensible Local Area Network (VXLAN): A
Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks.
RFC 7348 (Informational). http://www.ietf.org/rfc/rfc7348.txt.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J., 2008. Openflow: enabling innovation in campus net-
works. ACM SIGCOMM Comput. Commun. Rev. 38 (2), 69e74.

Nelson, B., Phillips, A., Steuart, C., 2014. Guide to Computer Forensics and In-
vestigations. Cengage Learning.

http://refhub.elsevier.com/S1742-2876(17)30031-2/sref1
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref1
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref1
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref1
http://dx.doi.org/10.1109/MC.2005.136
http://dx.doi.org/10.1109/MC.2005.136
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref4
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref4
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref5
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref5
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref5
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref6
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref6
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref6
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref7
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref7
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref7
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref7
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref8
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref8
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref8
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref8
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref8
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref8
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref9
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref9
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref9
https://tools.ietf.org/html/draft-davie-stt-00
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref11
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref11
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref11
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref12
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref12
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref12
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref13
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref13
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref13
https://tools.ietf.org/html/rfc7637
https://tools.ietf.org/html/rfc7637
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref14
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref14
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref14
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref15
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref15
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref15
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref16
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref16
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref16
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref16
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref16
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref17
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref17
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref17
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref18
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref18
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref18
http://www.ietf.org/rfc/rfc7348.txt
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref20
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref20
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref20
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref20
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref21
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref21


D. Spiekermann et al. / Digital Investigation 20 (2017) S66eS74S74
Ohira, K., 2014. Performance evaluation of an openflow-based mirroring switch on a
laptop/raspberry pi. In: Proceedings of the Ninth International Conference on
Future Internet Technologies, CFI ’14, ACM, New York, NY, USA, 20:1e20:2.

Palmer, G., 2001. A Framework for Digital Forensic Science, a Roadmap for Digital
Forensic Research, pp. 15e20.

Pfaff, B., Davie, E.B., December 2013. The open vswitch database management
protocol. RFC 7047 (Informational). https://tools.ietf.org/html/rfc7047.

Pfaff, B., Pettit, J., Amidon, K., Casado, M., Koponen, T., Shenker, S., 2009. Extending
networking into the virtualization layer. In: Hotnets.

Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J., Wang, A.,
Stringer, J., Shelar, P., Amidon, K., Casado, M., 2015. The design and imple-
mentation of open vswitch. In: 12th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 15), pp. 117e130.

Pilli, E.S., Joshi, R.C., Niyogi, R., 2010. Network forensic frameworks: survey and
research challenges. Digit. Investig. 7 (1), 14e27.

Pilli, E.S., Joshi, R., Niyogi, R., 2010. A generic framework for network forensics. Int. J.
Comput. Appl. 1 (11), 14e27.

Rasmi, M., Jantan, A., Al-Mimi, H., 2013. A new approach for resolving cyber crime in
network forensics based on generic process model. In: The 6th International
Conference on Information Technology (ICIT 2013).

Ren, W., Jin, H., 2005. Distributed agent-based real time network intrusion forensics
system architecture design. In: 19th International Conference on Advanced
Information Networking and Applications (AINA’05) Volume 1 (AINA Papers),
vol. 1. IEEE, pp. 177e182.

Ruan, K., Carthy, J., Kechadi, T., Baggili, I., 2013. Cloud forensics definitions and
critical criteria for cloud forensic capability: an overview of survey results. Digit.
Investig. 10 (1), 34e43.

Sefraoui, O., Aissaoui, M., Eleuldj, M., 2012. Openstack: toward an open-source
solution for cloud computing. Int. J. Comput. Appl. 55 (3), 38e42.

Spiekermann, D., Eggendorfer, T., 2016. Challenges of network forensic investigation
in virtual networks. J. Cyber Secur. Mobil. 5 (2), 15e46.

Spiekermann, D., Eggendorfer, T., 2016. Towards digital investigation in virtual
networks: a study of challenges and open problems. In: Proc. 11th International
Workshop on Cyber Crime (IWCC 2016). IEEE Computer Society, pp. 406e413.

Spiekermann, D., Eggendorfer, T., Keller, J., 2015. Using network data to improve
digital investigation in cloud computing environments. In: High Performance
Computing & Simulation (HPCS), 2015 International Conference on. IEEE,
pp. 98e105.

Wu, J., Ping, L., Ge, X., Wang, Y., Fu, J., 2010. Cloud storage as the infrastructure of
cloud computing. In: Intelligent Computing and Cognitive Informatics (ICICCI),
2010 International Conference on. IEEE, pp. 380e383.

http://refhub.elsevier.com/S1742-2876(17)30031-2/sref22
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref22
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref22
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref22
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref23
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref23
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref23
https://tools.ietf.org/html/rfc7047
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref25
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref25
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref26
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref26
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref26
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref26
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref26
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref27
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref27
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref27
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref28
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref28
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref28
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref29
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref29
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref29
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref30
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref30
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref30
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref30
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref30
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref31
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref31
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref31
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref31
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref32
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref32
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref32
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref33
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref33
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref33
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref34
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref34
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref34
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref34
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref35
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref35
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref35
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref35
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref35
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref35
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref37
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref37
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref37
http://refhub.elsevier.com/S1742-2876(17)30031-2/sref37

	Network forensic investigation in OpenFlow networks with ForCon
	Introduction
	Related work
	Virtual networking
	Network protocols
	Software defined networks
	Network function virtualization

	Network forensic investigation
	Challenges
	New NFI framework

	ForCon
	Implementation
	Initial capture
	Monitoring
	Changes

	Evaluation
	Conclusion
	References


