A Correlation Method for Establishing Provenance of Timestamps in Digital Evidence

By

Bradley Schatz, George Mohay, Andrew Clark

Presented At

The Digital Forensic Research Conference

DFRWS 2006 USA Lafayette, IN (Aug 14th - 16th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development.

http://dfrws.org
A correlation method for establishing provenance of timestamps in digital evidence

Bradley Schatz (Presenter)
Prof. George Mohay, Dr. Andrew Clark

Information Security Institute, QUT
“As you collect a suspicious systems current date, time and command history... determine if there is any discrepancy between the collected time and date, and the actual time and date within your time zone”

Can we rely on timestamps in digital evidence sourced from computers in the wild?
Q1.1: Do computer clocks behave consistently?

Q1.2: Can we infer the timeline of a digital device from readily available digital evidence?
Results

Empirical results showing the unpredictability of timelines of Windows OS based hosts.

Demonstrate a method for inferring the temporal behaviors of a host by correlating related timestamps from local and 3rd party sources.
Problems with Digital Timekeeping

- Drift
- Skew
- Synchronisation
 - NTP
Treatment of Time in Digital Forensics

• Stevens (2004) model for relating timestamps from multiple timelines
• Event time bounding (Gladyshev & Patel 2005)
Treatment of Time in Digital Forensics

- Dynamic date & time stamp analysis (Weil 2002)
 - Web server adds Last Modified time to response headers (server timescale)
 - IE assigns the Last Modified Time from HTTP header to the filesystem Modified Time for cached file
 - IE assigns the local time (local timescale) to the filesystem Last Accessed Time for the cache file
 - Difference between two is clock skew
 - Assuming negligible latency
 - Assuming page was generated dynamically
 - Assuming server timescale is reliable
Q1.1: Do computer clocks behave consistently?

Q1.1: Can we infer the timeline of a digital device from readily available digital evidence?
Temporal Behavior Experimental Setup
Domain Controller “Rome” Clock Skew
2K Workstation “Florence” Clock Skew
XP Workstation “Milan” Clock Skew
“Rome” v “Milan” Clock Skew

[Graph showing comparison of clock skew between Rome and Milan over a period from 02/04 to 11/04]

QUT
Queensland University of Technology
CRICOS No. 00213J
Observations

• Making reliable statements about the timescale of a particular computer within a windows domain network is problematic

• Unknown factors influence the RTC
 – Host Florence synchronisation with Civil time
 – Host Milan peaks
Q1.1: Do computer clocks behave consistently?

Q1.2: Can we infer the timeline of a digital device from readily available digital evidence?
Temporal Correlation Experimental Setup

Small Business Network

Internal Network

Windows 2000 Server

Internet

Internet

Experiment 2

NTP Server

HTTP Proxy Server

HTTP Proxy Log

Browser Log

Web Browser
Difficulties in correlating MRU records with event records
Uncached records correlation algorithm

• Chooses history records which necessarily have come directly via squid
• Values single matches more than multiple
Workstation Trieste Clock Skew

1188 unique history records
340 non-cached matches found
110 of these form basis set
~16 false positives
Observations

• False positives
 – Reverse engineering assumptions?
 – Correlation algorithm error?
 – IE Implementation error?

• Probabilistic algorithms hold promise
 – Statistical likelihood
 – MCMC?
Conclusions 1

• Presented real world diversions from the idealised temporal behaviour of windows systems

– Making reliable statements about the timescale of a particular computer within a windows domain network is problematic
– What are the implications for standalone windows systems?
– What are the implications on audit?
Conclusions 2

• Presented two algorithms for correlating the temporal behaviour of a system from trusted sources
 – Incomplete information re index.dat file semantics hampers progress
 – At best we get a characterisation due to false positives

 – Uncertainty / Probabilistic based methods may help
 • MCMC
 • Measure error
END