Secure Digital Camera

By
Paul Blythe and Jessica Fridrich

Presented At
The Digital Forensic Research Conference
DFRWS 2004 USA Baltimore, MD (Aug 11th - 13th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development.

http://dfrws.org
Secure Digital Camera

DFRWS 2004

Paul Blythe and Jessica Fridrich

Research sponsored by the Air Force Research Laboratory
Presentation Outline

- Scenario
- Secure Digital Camera
- Biometrics
- Lossless Embedding for JPEG (Demo)
- Experimental Setup
- Conclusions
Scenario

Problem: Digital images are not easily acceptable in a court because it is difficult to establish their integrity, origin, and authorship.

Solution: Construct a (secure) digital camera for which one can prove that a given digital image
- Was not tampered with
- Was taken by a this particular camera
- Was taken by a specific person

Anticipated use: Establishing the chain of custody for forensic photographers
Prior Art

Watermarking Cameras:

Epson
- Requires optional watermarking software for embedding and viewing of watermark
- Detect tampering even if a single pixel has been changed
- Watermark is invisible

Kodak
- Watermarking capabilities built into camera
- Visible watermarking only
- Watermark logo can be added after picture is taken

Both cameras add non removable distortion to the image
Secure Digital Camera

1. Original Scene Image
2. Calculate Scene Hash Inside Camera
3. Biometric of Photographers Iris
 Camera Information (Time/date or Other Data)
4. Unique Secret ID Key Inside Camera
5. Output

Embedding Algorithm

Watermarking Chip

Archival Storage

Embedded (Biometrically Watermarked) Image

Embedding Scenario
Iris Biometric

- Iris recognition is based on visible features, i.e. rings, furrows, freckles and corona.
- Iris patterns possess a high degree of randomness.
- The Iris is essentially formed by 8 months, and remains stable through life.
- Statistically more accurate than even DNA matching since the probability of 2 irises being identical is 1 in 10 to the power of 78 (\(1 \times 10^{-7}\)).
Iris Capture
Biometric Watermarking

- Creates a link between a human subject and the digital media by embedding biometric information into the digital object.
Iris Representation

Iris Code (Daughman 1994)
- Would require a real-time iris image signal-processing chip inside the camera
- Can be represented with only 512 bytes

Compressed iris image
- JPEG compression is already supported by the hardware inside the camera
- Requires more embedding capacity
Authentication Watermarks

Can be classified into two groups:

Fragile
- The purpose of fragile watermarks is to detect every possible modification of the image with high certainty.

Semi-fragile
- Semi-fragile watermarks are supposed to be insensitive to “allowed” manipulations, such as lossy compression, but react sensitively to malicious content-changing manipulations.
Lossless Embedding

Most watermarks introduce non-reversible distortion due to quantization, truncation, or rounding

This leads to an irreversible loss of information

- Unacceptable for forensics
 - Difficult legal issues

- Unacceptable for medical imagery
 - Artifacts are potentially dangerous

- Unacceptable for high-importance military imagery
 - Special viewing conditions (zoom)
 - Sensitive preprocessing (filters, enhancement)
Lossless Watermarking

– To overcome the problem of authentication watermarks, “Lossless Watermarking” was proposed.

– With “Lossless Watermarking”, the embedding distortion can be completely removed from the watermarked image and thus one can obtain the original image.
Lossless Watermark Embedding for JPEG

Simplified Block Diagram – JPEG
Lossless Watermark Embedding for JPEG

Step 1) Select one or more Quantization Steps from the Quantization Table (i.e. (5,2) = 30) and Change its value by \(\frac{1}{2} = 15 \)

Step 2) All corresponding DCT coefficients in all blocks of the image are multiplied by 2 (2\(\times 4 = 8 \))

Step 3) Lossless & Invertable (LSB) embedding is used to keep the image appearance unchanged.
Lossless Watermark Extraction

Step 1) The randomly embedded LSBs are identified

Step 2) Extract the LSBs of the DCT coefficients along the path

Step 3) All LSBs are set back to zero & DCTs are divided by 2, and the corresponding DCT quantization step is multiplied by 2

Authentication Data

Original Image (Authenticated)
Secure Camera Scenario

Original Scene Image

Scene Hash H

Biometric

Camera Info

Unique Secret ID Key Inside Camera

Embedding Algorithm

Watermarking Chip

Output

Biometric Authenticated

Image Integrity Authenticated (H=H’)

Camera Info.

Embedded Hash (H)

Calculated Hash (H’)

Embedded (biometrically watermarked) Image

Archival Storage Results

Reconstruction System

Secret ID Key

Original Scene Image
Secure Stego

I will now demonstrate the software we used to simulate the Watermarking Chip. Secure Stego contains a software implementation of our lossless data embedding technique.
Experimental Setup
Conclusion

The Secure Digital Camera offers a solution to the problems associated with the chain of custody for digital images presented to the court.

The solution involves losslessly embedding the compressed photographer’s iris (taken through the viewfinder), hash of the scene image, date, time, and other data in the scene image itself.

The embedded data

- verifies digital image integrity (secure cryptographic hash)
- establishes image origin (camera information)
- verifies the image authenticity (photographers biometric)