

DIGITAL FORENSIC RESEARCH CONFERENCE

AFF4-L: A Scalable Open

Logical Evidence Container

By

Dr. Bradley L. Schatz

From the proceedings of

The Digital Forensic Research Conference

DFRWS 2019 USA

Portland, OR (July 15th - 19th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics

research. Ever since it organized the first open workshop devoted to digital forensics

in 2001, DFRWS continues to bring academics and practitioners together in an

informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,

annual conferences and challenges to help drive the direction of research and

development.

https://dfrws.org

DFRWS 2019 USA d Proceedings of the Nineteenth Annual DFRWS USA

AFF4-L: A Scalable Open Logical Evidence Container

Dr Bradley L. Schatz
Schatz Forensic, Brisbane, Australia

a r t i c l e i n f o

Article history:

Keywords:
Logical image
AFF4
Deduplication

a b s t r a c t

With the proliferation of cloud-based evidence and locked down physical storage logical imaging is
increasingly necessary in digital forensics. In practice closed formats are commonly used, however they
lack extensibility and expressiveness, are poorly defined, and suffer from limited interoperability. This
work proposes and implements an open logical imaging format based on the AFF4 evidence container,
supporting scalable arbitrary metadata storage and deduplicated logical image storage.
© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The concept of logical imaging has been adopted for a range of
purposes in digital forensic practice, ranging from sharing of sub-
sets of evidential files post extraction from traditional physical
forensic images, to preservation of file subsets during triage. In the
mobile device forensics space (and especially iDevices) logical im-
ages are widely used due to physical access to block level storage
being locked down. Finally, with triage's focus on rapid identifica-
tion and preservation of sets of files, logical imaging is widely used.

A logical image is commonly understood to be a collection of
bytestream copies of one or more suspect files, associated file
metadata (including path), and file integrity information (typically
bitstream hashes). In 2018, common logical image formats in use
are the Encase L01 and Lx01, Access Data AD1, and Cellebrite's
format. These are all vendor specific formats and lack formal
specifications. Beyond these, a range of ad-hoc hybrid schemes
based on existing archive formats such as tgz, cpio, and zip are also
used.

Recent changes to the computing landscape increasingly moti-
vate the usage of logical imaging. These include the following.

1.1. Locked & encrypted physical storage

With first iOS devices, and now the recent generation of Mac
computers with the T2 Security Chip and FileVault2 enabled,
physical imaging has become is increasingly impractical with the
resulting physical images generally unusable due to a lack of access
to keymaterial for decryption. File level access to a multi-versioned

filesystem is however still available from user space, assuming
access.

1.2. Cloud/SaaS evidence

In the cloud Software-as-as-Service (SaaS) environment, phys-
ical imaging is in general not feasible. Forensically relevant data
sources are regularly byte-oriented streams that can only be
accessed by web service calls. Logical imaging matches well with
forensic preservation of these sources.

1.3. Streamed software distribution

With the advent of SaaS and regular patching software is
increasingly distributed online to endpoints, with traditional “dis-
tributions” of software being less easy to define. Examples include
Windows Update and games deployed on the Steam platform.
Curating collections of such software requires regular snapshots,
however employing regular physical disk images for such snap-
shots is impractical due to the granularity of such images. The space
requirements of such snapshots quickly multiply when undertaken
regularly, which motivates the usage of deduplicated storage
techniques.

1.4. Contribution

This paper proposes an openly specified logical evidence
container based on the AFF4 evidence container (Cohen and
Garfinkel, 2009), introducing the concept of deduplication into
logical imaging. The proposed container provides the same logical
imaging primitives as existing approaches, with the advantages of
deduplicated content storage, extensibility and expressiveness viaE-mail address: bradley@schatzforensic.com.

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

https://doi.org/10.1016/j.diin.2019.04.016
1742-2876/© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 29 (2019) S143eS149

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:bradley@schatzforensic.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2019.04.016&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2019.04.016
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2019.04.016
https://doi.org/10.1016/j.diin.2019.04.016

arbitrary metadata storage, along with a freely available
implementation.

The challenges involved in implementing the proposed format
are discussed, validation and testing of the implementation
described and a scalability challenge identified. This challenge ap-
plies not only to the proposed approach, but also to other forensic
representation approaches. A solution to the challenge is proposed
and evaluated.

2. Related work

2.1. Linked data in the representation of forensic information

The usage of a linked data model for representing forensic
related information within and between forensic evidence con-
tainers was originally proposed in Secure Digital Evidence Bags
(Schatz and Clark, 2006) and subsequently refined in the Advanced
Forensic Format v4 (AFF4) (Cohen and Garfinkel, 2009). Both ap-
proaches use the Resource Description Framework (RDF) for
describing forensically relevant information in a machine and hu-
man readable format.

Information is represented in RDF as objects, properties and
values of properties (referred to collectively as an RDF triples). Re-
lationships between objects are described by naming each object
uniquely - for example by using a Universal Resource Locator (URL).
Information represented using the RDFmodel can be expressed in a
number of text-based languages, including Turtle and JSON-LD.

The AFF4 is narrowly focused on providing an evidence
container for storing arbitrary forensic information, eschewing
formal ontology specification by relying on a simple lexicon.

The wider ontological challenge of representing and exchanging
forensic and cyber investigation related information has taken up
by the CASE/UCO effort (Casey et. al, 2017). Like AFF4, it relies on a
linked data model based on RDF, while its concerns are in general
orthogonal to those of the AFF4.

2.2. Logical forensic imaging

The Encase Logical Evidence File (LEF), which is also widely
known as an L01 and Lx01 have been reverse engineered by Metz
(2019) and an implementation in the C language was produced.

Bjelland has made available a Python-based AD1 parser
(Bjelland, 2019). Write support is not provided.

The original AFF4 forensic image container proposal contem-
plated supporting logical imaging, and the PMEM volatile memory
imager (Cohen, 2019) pioneered logical acquisition of memory-
mapped files (amongst others) associated with physical memory
images.

2.3. Deduplicated storage

In the wider Internet, deduplicated data representation (also
known as Content Based Addressing) is widely used and relied on
in products such as Rsync, BitTorrent, Git, and Dropbox, in fil-
esystems such as ZFS, and in operating systems such as Windows
Server.

In the context of digital forensics, Teleporter (Watkins et al.,
2009) proposed using the hashes of known files to represent file
content for efficient transmission of physical forensic images, and
AFF4 Hash Based Imaging (Cohen and Schatz, 2010) proposed using
hashes of fixed size data blocks for improving the efficiency of
physical forensic imaging.

3. Extensions to the AFF4 for logical imaging

The proposed logical image container formalizes the existing
work towards AFF4 logical imaging and builds on the existing ab-
stractions provided by the AFF4 Standard v1.0 (Schatz and Cohen,
2017). The proposal described in this paper differs from the prior
work in that it focuses on:

! Efficient storage of file content;
! Enabling human readability and browsability of logical image
containers using existing ZIP tools (supporting as much as
possible a 1:1 mapping between file appearance in-filesystem
and in-container).

! Definition of comprehensive lexicon representing the filesystem
tree relationships between acquired logical files, and folders.

3.1. Formalizing resource naming

In the AFF4 architecture, all evidence objects are identified using
an Resource Description Format (RDF) compatible resource iden-
tifier. The AFF4 initially employed Universal Resource Names
(URN's) before shifting to a bespoke Universal Resource Identifiers
(URI) scheme beginning with “aff4://”. This was due to con-
straints in encoding file paths in way that complied with Universal
Resource Name (URN) standards while at the same time working
with overly strict RDF parser implementations.

In the intervening years between the initial proposal of the AFF4
and today, the RDF standard has evolved to support internation-
alization by relying on the Internationalized Resource Identifiers
(IRI) standard for resource identifiers.

We propose formalizing the AFF4 resource naming scheme in
the following way. We call such an IRI an AFF4 Resource Name
(ARN) to distinguish it from more generic identifier schemes. AFF4
Objects named based on GUID's are named using an Internation-
alized Resource Identifier (IRI) rather than a URI with the existing
scheme “aff4://”.

A GUID based ARN in constructed as follows:

The object GUID part follows the UUID standard. The host and
path part may contain any Unicode character that is not forbidden
in the IRI specification (“/” is used as a path delimiter). Forbidden
printable characters must be percent encoded per the standard URL
encoding scheme. The forbidden printable characters are:

<>\̂ `{j}

A key difference between this new scheme and the old is that
Unicode characters from other languages are now allowed, and the
path part is more expressive, allowing characters which may take
on special roles in a URL (such as ¼ and ?) to be used in the path
part with impunity.

3.2. Suspect path to resource name mapping

The proposed approach aims to represent as succinctly as
possible the path of suspect files in the ARN of the preserved object.
However, native OS paths may contain characters that are illegal in
an IRI (and onwards an ARN). For example, HFSPlus will allow any
Unicode character, including NUL.

Accordingly, we define an encoding function from suspect file
paths to AFF4 Resource Names. We adapt rules generally adopted

B.L. Schatz / Digital Investigation 29 (2019) S143eS149S144

for the file://URI scheme, with the following rules and
exceptions:

! Forward slashes delimit paths.
! Any control, space, percent and forbidden characters are percent
encoded.

! Unicode printable characters outside of the ascii range are UTF-8
encoded and case sensitive.

! The host part of a UNC file URL is treated as a regular path
component.

Table 1 summarizes valid mappings for a range of suspect path
to ARN mappings. The ARN is constructed by taking the Volume
ARN (the identifier of the AFF4 volume) and appending the path
component per the above.

With reference to Table 1, note that non-UNC paths involve a
double slash “//” to distinguish the absence of a host in the path.

It is anticipated that implementers might elect to re-use the
existing OS and browser provided “file://” encoding functions as
a basis for implementing this encoding, however such imple-
mentations are a moving target as implementers update behavior
(Whatwg, 2017). We intend to build a comprehensive canonical
path to ARN mapping table in support of identifying where using
such implementations will produce non-compliant encodings, and
to produce independent implementations of the encoding function
without resorting to the OS provided encoding function.

In addition to the above mapping, we preserve the original file
path name using the aff4:originalFileName property.

3.3. Storage of logical file bytestreams

The standard abstraction provided by the AFF4 for storing
bytestreams is the Image Stream (a type of Compressed Block
Stream). This abstractionwas developed with a focus on supporting
efficient seek-able compressed block storage for physical images.
The PMEM work adapted the AFF4 approach to additionally store
content as simple Zip Segments (zip files).

We propose a hybrid approach where the bytestream content of
acquired logical files are stored using either approach based on

their size (depicted in Fig. 1). Large files use an AFF4 Image Stream
for efficient seekable compression, and for small files a native Zip
Segment is used. We do the latter for reasons of efficiency e the
Image Stream requires at least two Zip Segments and an extra layer
of indirection for storage. In our prototype implementation we
choose to store any bytestreams greater than 1M in size as Image
Streams, and smaller as Zip Segments.

3.4. ARN to zip file segment mapping

Existing versions of the AFF4 defined a simple mapping rule for
mapping resource identifiers to Zip Segments. For resource names
that begin with a Volume GUID resource name, such as those
shown in Table 2, the Volume resource name is removed, and the
remainder is used as the Zip Segment name, after being URL
percent encoded.

In order to enhance human viewability and retain Unicode fil-
enames when browsing with standard Zip file browsers1, we pro-
pose refining the encoding rules to the following:

! The Volume identifier part of the ARN is removed.
! The following “/” separator is removed.
! Any percent encoded spaces are converted back to spaces.

The resulting Zip Segment Name can then be used to locate
relevant Zip resident data.

3.5. File metadata

File metadata is stored using the standard AFF4 methods as RDF.
We define the lexicon properties and classes described in Table 3 to
support representing the relevant metadata. We anticipate these
properties are only the beginning of those that will be defined (for
example the time of deletion may be a candidate).

3.6. Resource enumeration

Logical file consumer applications typically present the
container of logical files images as a file system hierarchy. In order
to do this, such applications require the ability to enumerate the
logical files in the image and to identify the roots of trees of files
and folders in the image.

This is supported in the following way. Producers of such images
declare an aff4:LogicalAcquisitionTask object at the time of
acquisition, and define an aff4:filesystemRoot property for
each root folder or file that is acquired. For example, the RDF from a
logical image of the C:\Windows\System32\ folder and sub-
folders would include:

Table 1
Suspect path to ARN mappings.

OS Path AFF4 Resource Name

c: aff4://e6bae91b-14d231833e18//c:
c:\ aff4://e6bae91b-14d231833e18//c:/
c:\foo aff4://e6bae91b-14d231833e18//c:/foo
\\bar\c$ aff4://e6bae91b-14d231833e18/bar/c$
\\bar\c$\foo\ ネコ.txt aff4://e6bae91b-14d231833e18/bar/c$/foo/ネコ.txt
/foo/bar aff4://e6bae91b-14d231833e18//foo/bar
/foo/some file aff4://e6bae91b-14d231833e18//foo/some%20file

Fig. 1. The bytestream of logical images are stored as regular zip files. For larger im-
ages, Image Streams are used.

Table 2
AFF4 Resource name to Zip Segment Name mapping.

AFF4 Resource Name Zip segment name

aff4://e6bae91b-14d231833e18//c: /C:
aff4://e6bae91b-14d231833e18//c:/ /C:/
aff4://e6bae91b-14d231833e18//c:/foo /C:/foo
aff4://e6bae91b-14d231833e18/bar/c$ bar/c$/foo
aff4://e6bae91b-14d231833e18/bar/c$/foo/ネ コ.txt bar/c$/foo/ネ コ.txt
aff4://e6bae91b-14d231833e18//foo/bar /foo/bar
aff4://e6bae91b-14d231833e18//foo/some%20file /foo/some file

1 For example WinRAR or 7-Zip.

B.L. Schatz / Digital Investigation 29 (2019) S143eS149 S145

Client applications may query the AFF4 RDF for nodes of type
aff4:LogicalAcquisitionTask and follow links from there.

3.7. Integrity

We employed the standard AFF4 linear bitstream hash property
(aff4:hash) to store the SHA1 andMD5 hashes of each logical file
image. The block-based hashing approach of (Schatz, 2015) is
compatible with this approach and may be employed by
implementations.

3.8. Bringing it all together

With the prior in place, logical imaging of a small file involves
the following steps:

! A new AFF4 volume is created;
The suspect file path is encoded using the suspect path to ARN
Path Fragment encoding rules;
The ARN representing the file is created from the Volume GUID
and the ARN Path Fragment;

! The ARN is given the rdf:type of aff4:FileImage and
aff4:Image;

! File metadata is read and recorded against the ARN using the
properties in Table 3;

! The ARN is encoded as a Zip Segment Name.
! The file content is stored to the AFF4 volume as a Zip Segment
using the Zip Segment Name.

! The file hashes are calculated and stored as the aff4:hash

property of the ARN.
! The class name aff4:zip_segment is added to the rdf:type
list of the ARN to indicate that it is stored as a Zip Segment.

Appendix B contains an example of RDF representing a small
logical file image produced per the above for the ARN aff4://
df2a4a50-84b7-4408-98ce-9cf99b91f070/test_images/

AFF4-L/ネコ.txt. The RDF representing a logical file image
named </test_images/AFF4-L/dream.txt> is additionally
visible.

4. Extensions to the AFF4 for deduplicated logical imaging

We adapt the deduplicated physical image approach of (Cohen
and Schatz, 2010) towards logical file imaging, by defining an
aff4:Map for each logical file image. A segmenting algorithm is
applied to split the source file into fixed size chunks, and each
chunk is hashed. The chunk hashes are used as unique addresses to
identify the byte streams contained in the chunks.

The former approach uses the sha1 chunk hashes to name Zip
Segments for storing the byte streams of the associated chunks.
This is inefficient in terms of storage, requiring a Zip File Header
and Central Directory entry per unique chunk.

Our proposed approach introduces one layer of indirection.
Block Hash ARNs represent the content of a fixed size unique byte
stream (a chunk) that has a particular hash. The Map representing
the logical file image builds its address space from references to
Block Hash ARNs. Block Hash ARNs in turn are associated with a
property which points to a byte range in a stream where its cor-
responding bytes are stored. Under this proposal the chunks are all
stored in a single AFF4 Image Stream per acquisition session for
efficiency. This structure is depicted in Fig. 2.

The Block Hash ARNs are constructed following the URN stan-
dard. The urlsafe base64 (Josefsson, 2006) encoded sha512 hash of
the chunk is prefixed with “aff4:sha512:”. Other hash algo-
rithms may be simply substituted in this scheme in the future.

Using a standard AFF4 Map to refer to the corresponding byte
streams in the Image Streamwould cost two Zip Segments perMap.
Given the potential number of these maps it is desirable to find a
more efficient approach.

A new single-entry Map syntax was defined which we call Slice
Maps. The syntax is inspired by the array slice syntax in the Python
language and allows map storage directly in the RDF the AFF4
volume without the cost of further Zip Segments.

Appendix B shows an example of the RDF of such a Slice Map
following the rdf:dataStream property. The slice refers to bytes

Table 3
New AFF4 lexicon supporting logical imaging.

Lexicon item Meaning

aff4:originalFileName The original unencoded file path and name of a logical evidence object
aff4:birthTime The birth time of a file's content and metadata.
aff4:lastWritten The last modified time of a file's content.
aff4:recordChanged The last modified time of a file's filesystem metadata
aff4:lastAccessed The last access time of a file's content.
aff4:FileImage Class representing a suspect file
aff4:Folder Class representing a suspect folder
aff4:child Property representing the FilesImages contained in a Folder
aff4:LogicalAcquisitionTask Class representing a logical acquisition activity
aff4:filesystemRoot Property pointing to a Folder or FileImage which forms the root of an acquisition operation.

Fig. 2. Logical file image deduplication employs two-level maps and stores unique
byte content in an Image Stream.

B.L. Schatz / Digital Investigation 29 (2019) S143eS149S146

0 to 0x8000 of the aff4:ImageStream named aff4://
32f40158-4abe-48d5-9511-d92cbfa62fa9. The meaning of
the statement can be read as:

“The bytestream with name <aff4:sha512:E67K3X8M9A_
Ba4F6I_F948Cy7n25V2smtLWtAkGpC7ZLW0djC1YTBE

puAA4zcGESafhP--d9_tYUAVav74QcQA¼¼> and sha512 hash
E67K3X8M9A_Ba4F6I_F948Cy7n25V2smtLWtAkGpC7ZLW0djC1

YTBEpuAA4zcGESafhP--d9_tYUAVav74QcQA¼¼ is stored in
bytes 0 to 0x8000 of the Image Stream named aff4://

32f40158-4abe-48d5-9511-d92cbfa62fa9.”

Appendix C shows a map entry which refers to this Hash ARN.
Unlike the former hash based disk imaging approach, our

chunking algorithm deals with incomplete chunks found at the end
portions of files which are notmultiples of the chunk size. These are
padded with NUL bytes to make a complete chunk.

4.1. Trust or verify

The usage of hashes alone to identify unique bytestreams leads
to the possibility of a hash collision. While the usage of the SHA512
algorithm ensures this possibility is highly unlikely, we follow the
approach of ZFS (Bronwick, 2009) in enabling hash matches to be
either be trusted or verified by byte-by-byte comparison of the
original bytestream with a hash matched chunk.

5. Evaluation

The above proposals were implemented in the open source
pyAFF4 (AFF4, 2019) library and the implementation validated by
creating standard logical and hash-based logical file images. Those
images were then verified against the calculated and stored SHA1
and MD5 linear bitstream hashes. The logical images were found to
be accurate copies of the original files.

The correct operation of deduplication was verified by creating
images of source files with known common blocks and manually
inspecting the internal AFF4 structures.

The scalability of the implementationwas tested by undertaking
deduplicated logical acquisitions of two sets of files. The sets were
sourced from the System32 folder of a Windows 10 system and a
Windows Server 2012 system.

Referring to Table 4, image A is a logical image of the files from
the Server 2012 system, image B is a logical image of the files from
the Windows 10 system, and image C is a logical image containing
both sets of files. All images were created using deduplication.

The table summarizes the number of logical file images con-
tained in each container, the number of RDF triples consumed in
representing the file metadata and AFF4 metadata, and the
container size. The column labeled “Initial access latency” records
the amount of time it took to open the AFF4 logical image and begin
accessing the image contents on the first access, with the value
after the slash being the latency on subsequent accesses.

Notable in the results is the length of time it takes to open and
access a logical image. For images A and B it is around 30e40s e a

considerable time penalty to pay each time the logical image is
opened.

We investigated the root cause of this and found it attributable
to the cost of parsing the RDF from the logical image. In this case the
parser being used was RDFlib (RDFLib, 2019), a pure python RDF
parser implementation.

The implementation was then modified to employ a searchable
compressed RDF serialization called HDT (Fern!andez et al., 2013).
On load of an image for the first time the AFF4 RDF is read without
parsing and an HDT serialization of the RDF is created directly from
it and cached. The cached copy is used for all subsequent accesses.
In this way, there is a conversion cost the first time the container is
opened, but any subsequent accesses are saved that cost: the image
contents are immediately accessible. It took around 3e4s each to
generate an HDT serialization and index of images A and B, and
around 9s for file set C, almost an order of magnitude faster.

6. Discussion

While the above evaluation would benefit from further data
points, the findings related to the initial access latency have bearing
on the use of RDF as a metadata representation for logical imaging.
The initial access latency of the revised HDT approach provides
acceptable first-time open performance for file corpuses in the tens
of thousands of files. This is arguably sufficient for traditional
logical imaging applications such as interchange of evidence
extracted from physical images, and likely mobile device imaging.
However, for applications such as logical acquisition of all files on a
modern Windows system, where files can number in the millions,
the initial access latency may be seen as problematic.

The implications of the above have wider bearing on current
approaches to representation in forensics. The CASE/UCO effort
aims to form a standard specification language for representing and
exchanging forensic and cyber investigation related information.
Like AFF4, it relies on a linked data model based on RDF, while its
concerns are in general orthogonal to those of the AFF4. It's current
prototype software implementation, the CASE-Python-API (CASE,
2019) relies on the same RDFlib library for reading and writing
RDF, but uses the JSON-LD serialization of RDF for storage.

We converted the RDF metadata for image B (which is stored
internally in AFF4 as an RDF language variant called Turtle) into a
semantically equivalent JSON-LD serialization. We then timed the
initial access latency for loading the JSON-LD serialization and
compared it with that for the equivalent AFF4/Turtle. The latency
was almost the same (38.7s).

Based on this we anticipate that the CASE effort will face similar
concerns in instances where the information represented begins to
reach hundreds of thousands of triples.

7. Future work

The scaling issues identified motivate further work in identi-
fying how generalizable the observed issues are across other
implementation approaches. Future work is required in evaluating
the effect of ontology design approach on the resulting dataset size,

Table 4
Scalability testing results.

Img Count Files RDF Triples Container size (GB) Initial access latency RDFlib (s) Initial access latency HDT (s)

A 19,463 228,287 1.5 33/33 3.8/0
B 21,835 236,235 1.9 39/39 4.4/0
C 41,298 461,220 3.4 67/67 8.9/0

B.L. Schatz / Digital Investigation 29 (2019) S143eS149 S147

as is work on avoiding or frontloading the cost of consuming such
information. HDT appears to be a promising direction, however
more efficient parsers may be another, as may different data stor-
age approaches.

The two-level map proposal described in this paper may not be
ideal for all circumstances. An alternative approach may adopt a
one-level approach, constructing the file maps by direct reference
to the byte ranges in the chunk storage stream. This may provide
more efficient map storage and reads, with less efficient identifi-
cation of storage corruption at the block level. The approach pro-
posed was chosen primarily because it provides loose coupling
between the file maps and the stored blocks, which we anticipate
will be allow for repository and lifecycle level concerns such as
garbage collection of unreferenced chunks. Future work will
consider such alternate approaches.

The chunking algorithm used is not in parity with the current
state of the art. Newer approaches employing Content-Defined
Chunking (CDC) yield higher storage efficiency for a tradeoff in
CPU overhead. Future work will explore the role of CDC approaches
in comparison with the current chunking approach.

The proposal exploits the case sensitivity and multilingual
support of ZIP and IRI approaches to support an evidence container
that, as much as possible, continues to preserve the original file
name using regular tools. The approach does present challenges in
applying the approach to AFF4 directory-based volumes, which use
a simple filesystem layout rather than a ZIP container. Different
ARN to Segment mapping rules will be required to cope with

variances between filesystems such as case-insensitivity and legal
characters.

Finally, we anticipate that future work might include acceler-
ating hash lookup using bloom filters and evaluating the opera-
tional effectiveness of AFF4 deduplication by testing against a
variety of corpuses.

8. Conclusion

This paper proposes an openly specified logical evidence
container based on the AFF4 evidence format, introducing the
concept of deduplication into logical imaging. The proposed
container provides the same logical imaging primitives as existing
approaches, with the advantages of deduplicated content storage,
improved extensibility and expressiveness, and possessing a freely
available implementation, downloadable at https://github.com/
aff4/pyaff4.

Acknowledgements

The author thanks NIST for their partial funding of this work,
Michael Cohen for his critique of the revised AFF4 segment naming
scheme, and the DFRWS reviewers for their helpful feedback.

Appendix A

B.L. Schatz / Digital Investigation 29 (2019) S143eS149S148

https://github.com/aff4/pyaff4
https://github.com/aff4/pyaff4

Appendix B. Slice map example

Appendix C. dream.txt map entry

References

AFF4, 2019. The Python implementation of the AFF4 standard. https://github.com/
aff4/pyaff4. Feb 2019.

Bjelland, Petter, 2019. Pyad1. https://github.com/pcbje/pyad1. Feb 2019.
Bronwick, Jeff, 2009. ZFS deduplication. https://blogs.oracle.com/bonwick/zfs-

deduplication-v2. (Accessed February 2019).
CASE, 2019. https://github.com/ucoProject/CASE-Python-API. Feb 2019.
Casey, et al., 2017. Advancing coordinated cyber-investigations and tool interoper-

ability using a community developed specification language. Digit. Invest.
https://doi.org/10.1016/j.diin.2017.08.002.

Cohen, Michael, 2019. PMEM. Feb 2019. https://github.com/Velocidex/c-aff4.
Cohen, Michael, Schatz, Bradley, 2010. Hash based disk imaging using AFF4. Digit.

Invest. https://doi.org/10.1016/j.diin.2010.05.015.
Cohen, Garfinkel, Schatz, 2009. Extending the advanced forensic format to

accommodate multiple data sources, logical evidence, arbitrary information

and forensic workflow. Digit. Invest. https://doi.org/10.1016/j.diin.2009.06.010.
Fern!andez, Javier, et al., 2013. Binary RDF Representation for Publication and Ex-

change (HDT). Web Semantics: Science, Services and Agents on the World Wide
Web, Elsevier.

Josefsson, S., 2006. The Base16, Base32, and Base63 data encodings. Feb 2019.
https://tools.ietf.org/html/rfc4648.

Metz, Joachim, 2019. https://github.com/libyal/libewf/blob/master/documentation/
Expert%20Witness%20Compression%20Format%20(EWF).asciidoc2. Feb 2019.

RDFLib, 2019. https://github.com/RDFLib/rdflib. Feb 2019.
Schatz, Bradley, 2015. Wirespeed: extending the AFF4 container format for scalable

acquisition and live analysis. Digit. Invest. https://doi.org/10.1016/
j.diin.2015.05.016.

Schatz, Bradley, Cohen, Michael, 2017. AFF4 Standard v1.0. https://github.com/aff4/
Standard/blob/master/AFF4StandardSpecification-v1.0.pdf. Feb 2019.

Schatz, Clark, 2006. An Open Architecture for Digital Evidence Integration. In:
AusCERT Asia Pacific Information Technology Security Conference : Refereed
R&D Stream. Gold Coast, Queensland, pp. 21e26.

Watkins, K., McWhorte, M., Long, J., Hill, B., 2009. Teleporter: an analytically and
forensically sound duplicate transfer system. Digit. Invest. 6, S43e7.

Whatwg, January 2017. URL living standard. https://url.spec.whatwg.org/.

B.L. Schatz / Digital Investigation 29 (2019) S143eS149 S149

https://github.com/aff4/pyaff4
https://github.com/aff4/pyaff4
https://github.com/pcbje/pyad1
https://blogs.oracle.com/bonwick/zfs-deduplication-v2
https://blogs.oracle.com/bonwick/zfs-deduplication-v2
https://github.com/ucoProject/CASE-Python-API
https://doi.org/10.1016/j.diin.2017.08.002
https://github.com/Velocidex/c-aff4
https://doi.org/10.1016/j.diin.2010.05.015
https://doi.org/10.1016/j.diin.2009.06.010
http://refhub.elsevier.com/S1742-2876(19)30165-3/sref9
http://refhub.elsevier.com/S1742-2876(19)30165-3/sref9
http://refhub.elsevier.com/S1742-2876(19)30165-3/sref9
http://refhub.elsevier.com/S1742-2876(19)30165-3/sref9
https://tools.ietf.org/html/rfc4648
https://github.com/libyal/libewf/blob/master/documentation/Expert%20Witness%20Compression%20Format%20(EWF).asciidoc2
https://github.com/libyal/libewf/blob/master/documentation/Expert%20Witness%20Compression%20Format%20(EWF).asciidoc2
https://github.com/RDFLib/rdflib
https://doi.org/10.1016/j.diin.2015.05.016
https://doi.org/10.1016/j.diin.2015.05.016
https://github.com/aff4/Standard/blob/master/AFF4StandardSpecification-v1.0.pdf
https://github.com/aff4/Standard/blob/master/AFF4StandardSpecification-v1.0.pdf
http://refhub.elsevier.com/S1742-2876(19)30165-3/sref15
http://refhub.elsevier.com/S1742-2876(19)30165-3/sref15
http://refhub.elsevier.com/S1742-2876(19)30165-3/sref15
http://refhub.elsevier.com/S1742-2876(19)30165-3/sref15
http://refhub.elsevier.com/S1742-2876(19)30165-3/sref15
http://refhub.elsevier.com/S1742-2876(19)30165-3/sref16
http://refhub.elsevier.com/S1742-2876(19)30165-3/sref16
https://url.spec.whatwg.org/

	AFF4-L: A Scalable Open Logical Evidence Container
	1. Introduction
	1.1. Locked & encrypted physical storage
	1.2. Cloud/SaaS evidence
	1.3. Streamed software distribution
	1.4. Contribution

	2. Related work
	2.1. Linked data in the representation of forensic information
	2.2. Logical forensic imaging
	2.3. Deduplicated storage

	3. Extensions to the AFF4 for logical imaging
	3.1. Formalizing resource naming
	3.2. Suspect path to resource name mapping
	3.3. Storage of logical file bytestreams
	3.4. ARN to zip file segment mapping
	3.5. File metadata
	3.6. Resource enumeration
	3.7. Integrity
	3.8. Bringing it all together

	4. Extensions to the AFF4 for deduplicated logical imaging
	4.1. Trust or verify

	5. Evaluation
	6. Discussion
	7. Future work
	8. Conclusion
	Acknowledgements
	Appendix A
	Appendix B. Slice map example
	Appendix C. dream.txt map entry
	References

