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1. Introduction

Modern mobile operating systems make use of the SQLite
database format to store application data. SQLite is popular for
mobile applications, because the database is very fast and uses only
few resources (Lite documentation - fi). For instance, the mobile
messenger application WhatsApp relies on SQLite as storage format
(WhatsApp is one of the most used communication channels
worldwide with over 1.5 billion users each month (Statista, 2017)).

However, SQLite is not restricted to mobile applications. For
example, popular web browsers like Firefox or Chrome and the mail
client Thunderbird rely on SQLite. Besides application data SQLite is
used to store meta data such as browser history, bookmarks, and
login credentials, too.

From an IT forensics point of view it is therefore essential to
extract all information related to an SQLite database. While the
extraction of allocated database information is straightforward, the
acquisition of deleted SQLite data is difficult, though.

In this paper we focus on digital traces in the scope of SQLite
that belong to deleted database data. To stay time and resource
efficient (especially on mobile devices), SQLite does not delete
database records instantly by default. Instead it labels them as
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deleted. This behaviour is similar to the erasure process in file
systems and offers the opportunity to recover some deleted SQLite
data from the SQLite database files.

In the field of recovering deleted SQLite records, some com-
mercial and open source tools have already been published to cover
this topic. Sample common tools evaluated in this paper are the
Forensic Browser for SQLite from Sanderson Forensics (Sanderson
Forensics), Undark from Paul Daniels (Daniels) or Stellar Phoenix
Repair for SQLite from Stellar Data Recovery (Stellar Data Recovery).
We will show that our tool bring21ite is superiour to these tools
with respect to recovering deleted SQLite data. Additionally some
research papers address the deletion of SQLite records, e.g (Jeon
et al., 2011) (Aouad et al., 2013) (Ramisch and Rieger, 2015) (Su
and Xi, 2017). In Section 2 we present this related work and
discuss their deficiencies.

An important aspect of current SQLite implementations is the use
of the journal file format Write-Ahead Log (WAL). WAL stores the latest
changes to the SQLite database and is a richful source to recover
deleted SQLite information. In contrast to our approach the majority of
both the tools and the academic papers do not include the informa-
tion provided by WAL files. A further relevant aspect in the context of
deleted SQLite data is the inspection of the unallocated area within the
SQLite database file. As of today this aspect is only treated by one
academic paper (Su and Xi, 2017) and extended by our approach.

In order to improve the recovery rate of deleted SQLite data we
suggest to make use of a structural approach: we analyse the

1742-2876/© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).


http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:harald.baier@h-da.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2019.04.017&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2019.04.017
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2019.04.017
https://doi.org/10.1016/j.diin.2019.04.017

S32 C. Meng, H. Baier / Digital Investigation 29 (2019) S31—S41

deletion behaviour of SQLite depending on different database pa-
rameters, which affect the erasure of database data. As SQLite
pragmas are an important parameter during deletion, we examine
the erasure behaviour dependent on the used pragmas.

Based on the results of our analysis, we develop a concept to
parse and process deleted SQLite records. Our concept is imple-
mented within our tool bring2lite. bring2lite is imple-
mented in Python and publicly available." In order to show the
strength of our approach, we provide an evaluation of bring2lite
and competing tools with respect to a common dataset of SQLite
files. The overall result is that bring21ite achieves the highest
recovery rate of approximately 53% compared to its eight
competitors.

The rest of the paper is organised as follows: in Section 2 we
review related work. Then Section 3 provides background infor-
mation on the SQLite data format. Section 4 presents our structural
analysis on data deletion in SQLite followed by Section 5, where we
present our concept and algorithm to extract deleted SQLite data.
Section 6 introduces our tool bring21ite followed by its evalu-
ation in Section 7. We conclude our paper in Section 8 and a point to
future work.

2. Related work

This section describes the current research in the field of SQLite
with a focus on recovering deleted SQLite data. To cover all work
that is related to this paper, we first give an overview of general
approaches to restore deleted records. Beyond that, further
methods are shown which do not only focus on the main file of the
database or the typical structures in the database itself. We point
out that in contrast to our approach all of the subsequent related
work only considers a single part of recovering deleted records. In
order to evaluate our tool with its competitors, Section 2.6 presents
an SQLite database corpus and a standardised method of testing
forensic SQLite tools.

There are further sources, which deal with the digital forensic
analysis of SQLite databases. However, the focus of these sources is
the actual forensic analysis rather than the recovery of deleted
records. For instance, the recent book of Sanderson (2018) is an
excellent reference to the general digital forensics aspects of SQLite,
however, the recovery of deleted data is not yet at the core of this
book. Anglano et al. (2017) conduct a regular forensic analysis of
SQLite databases and only refer to other publications in the scope of
deleted records. Pereira (2009) follows the approach to extract
records on the partition level from temporary files of a moz_places
database of the firefox web browser. Afonin and Katalov (2016)
focus on SQLite records that contain deleted text messages, call
logs, and chat entries. However, their process is very complex and
requires the use of specialised software or SQLite specific expertise.

2.1. A recovery method of deleted record for SQLite database

Sangjun, Jewan, Keunduck and Sangjin (Jeon et al., 2011)
describe a basic method to recover deleted records from an SQLite
database. The method uses the schema table to collect information
about the cell structure within the b-tree leaf pages. With this in-
formation the method searches for possible datatypes in the cells
and tries to match them. To prove that their method works, the
authors make use of an SMS database crafted by themselves. Nine
records were recovered with the developed method from this
specially crafted database. However, the authors do not consider
SQLite data of journal files and unallocated space. Furthermore,

1 https://github.com/bring2lite/bring2lite.

their evaluation is superficial. The authors describe a tool called
SQLiteRecover, however, it is not publicly available.

2.2. A tool for SQLite data recovery on android devices

The research paper (Aouad et al., 2013) written by Aouad,
Kechadi and Di Russo focuses on recovering deleted records from
the Short Message Service (SMS) and Multimedia Messaging Ser-
vice (MMS) databases in Android devices (Aouad et al., 2013).
makes use of a similar approach to our method, but with two
important differences. The first difference is to shrink the size of the
file pages that need to be processed by analysing the pointer map
page, however, this only occurs if SQLite uses the vacuum pragma.
The second change is that the processing of the SQLite structures
are customized to match the fields of an SMS database file, that is
(Aouad et al., 2013) does not develop a generic algorithm for all
SQLite databases. To prove the viability of their method, the authors
of (Aouad et al., 2013) present a specific evaluation and configure a
setup with two Android devices. They were able to recover 95% of
the deleted records on the first Android device and 75% on the
second device, respectively. After one week of additional usage of
the devices, the authors again extract deleted records. In this case,
the results of the first device did not change, but the reconstruction
of the data on the second smartphone only recovered 25%. How-
ever, neither the source code nor an executable software of the
concept used in (Aouad et al., 2013) is available.

2.3. Recovery of SQLite data using expired indexes

Ramisch and Rieger (2015) describe how indexes can be used to
restore deleted records. Their basic idea is that expired records
sometimes can be unrecoverable from the regular SQLite structure,
but can still exist in the b-tree index leaf page. In the cells of these
pages the indexed values are redundantly stored to the corre-
sponding cell within the table b-tree leaf pages and therefore can
be used to restore deleted records. The method described in
(Ramisch and Rieger, 2015) first extracts index structures and uses
them to enrich extracted data from freeblocks which are stored in
the table b-tree leaf pages. The extraction itself works similar to the
methods from the previous two research papers but without the
component of enrichment. The tool was tested on multiple not
specified databases and with the “database Envelope Index”, which
contains message metadata from Apple Mail.” ((Ramisch and
Rieger, 2015)). In these cases the tool worked well and could
extract all deleted records correctly. The method works without the
feature of processing payload which exceeds more than one page.
Likewise the previous two sections, the authors of (Ramisch and
Rieger, 2015) implemented a tool based on the provided method,
but do not give access to any sort of source code or an executable.

2.4. Key technologies for mobile phone forensics and application

Su and Xi (2017) use a different pre-processing and framework
approach in comparison to the other related work (Su and Xi, 2017).
offers a method to first decrypt encrypted SQLite databases and af-
terwards extract deleted records. The first stage of the framework
regards different encryption methods that are used by manufac-
turers and SQLite itself. The second stage is a similar method to the
previous delineated approaches. In the first step, the authors extract
the so-called “affinity types” and compare them to the types within
the cells. If two field combinations match each other, the cell is ready
for an extraction. To validate the reliability of the method, a database
with four records is created. Afterwards, three of these records are
deleted and one additional record is inserted. As the last step,
another record of the last two records is deleted. With this prepared
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database and the described algorithm all records can be recovered.
Although the authors of (Su and Xi, 2017) describe the parsing
process of non-allocated area as well as the freeblock structure, their
provided method does not cover the freelist structure as a part of the
extraction process of deleted records nor the WAL file.

2.5. SQLite forensic analysis based on WAL

In (Liu et al., 2017) Yao, Ming, Jian, Ning and Xiaodong introduce
an alternative method, focusing on processing the Write-Ahead Log
(WAL) file in addition to the main SQLite file. As a result of their
research, a tool is developed which processes the main database
and the corresponding WAL file in at most five steps. Similar to
other related work, the method analyses the page type as well as
the serial types. To test the functionality of the developed tool, two
databases were crafted. On the first database, the checkpoint to
release the data from the WAL to the SQLite database was not
triggered and on the second, the checkpoint was triggered. The tool
in (Liu et al., 2017) was able restore 100% of the records on the first
and 80% on the second database. The authors show that their re-
sults are superiour to the approach of (Jeon et al., 2011) (see Section
2.1). In contrast to our tool bring21ite the described extraction
approach in (Liu et al., 2017) only addresses the area of extracting
deleted records from the WAL file.

2.6. A standardised corpus for SQLite database forensics

A fundamental problem in science in general and in IT forensics
in special is the comparability of concepts and tools. The main
reason is that an accepted ground truth is often missing. The paper
of Nemetz, Schmitt and Freiling (Nemetz et al., 2018) offers a so-
lution concerning this problem with respect to SQLite. To achieve a
comparability between the amount of tools, a forensic corpus was
created which contains standardised SQLite databases (Nemetz
et al., 2018). describes criteria that need to be considered if such
an SQLite corpus is designed and crafted. These criteria mention
that a corpus has to be representative, complex, heterogeneous,
annotated, available, distributed and maintained. As a result the
researchers present a collection of 77 databases which are sepa-
rated into 5 categories. One of these categories is designed to test
tools with respect to recovering deleted records. The authors of
(Nemetz et al., 2018) create a forensic corpus and apply a set of six
tools. The comparison shows that no tool is able to recover all
deleted records from the crafted databases. It is one main goal of
our paper to show the effectiveness of available tools (including our
method implemented within bring21ite) with respect to this
ground truth of SQLite databases. A subsequent work (Schmitt,
2018) addresses the problem of anti-forensics in the scope of
SQLite and tests the robustness of tools to handle anti-forensic
measures.

3. Background on the SQLite specification

In this section we provide some fundamentals on the SQLite
specification, which are necessary to understand our approach. This
section bases on the standard book on SQLite (Allen and Owens,
2010) and the official SQLite specification (Lite documentation -
fi) and its derivative documents. We first introduce pages and
pragmas in Section 3.1 and then give some details on the actual
SQLite file format in Section 3.2.

3.1. SQLite pages and pragmas

Before an SQLite database file can be created, certain configu-
rations have to be adjusted. First, the page size needs to be set. A

page is the smallest unit, which can be addressed, that is the page
size defines how much new space will be allocated if the current file
size is too small. A page is similar to a cluster on file system level
and a sector on partition level, respectively.

A second important configuration parameter are pragmas. A
pragma basically is an option, which typically is customized before
an SQLite database is created for the first time. The relevant prag-
mas in the scope of our paper are the following (see (Lite
documentation — pr)):

e secure_delete: The pragma secure_delete is configurable with
the three settings 0, 1 and FAST. A special setting of this pragma
is the option FAST which leaves forensic artefacts in the so called
freelists. If this pragma is set to 1, all deleted records and pages
will be overwritten by zeros (see (Lite documentation — pr)).
auto_vacuum: The second pragma is called auto_vacuum. If this
pragma is turned on, the database deletes unused pages and will
not keep these pages in a freelist (see (Lite documentation —
pr)).

e journal_mode: The last relevant pragma is journal_mode which
enables or disables journaling. The pragma has six options
which are DELETE, TRUNCATE, PERSIST, MEMORY, WAL and OFF.
All of these options, omitting the WAL and OFF switch, will
create an additional file with the ending ‘-journal’. If the pragma
is set to WAL, a file with the ‘-wal’ ending will be created. The
WAL file will never be deleted, but as it has a fixed size SQLite
overwrites its pages once the WAL file end is reached (see (Lite
documentation — pr)).

All three pragmas affect the conditions under which SQLite
keeps deleted records in any structure in both the main database
file and any optional journal file.

3.2. SQLite file format

An SQLite file is organised in a so-called b-tree structure and is
divided into an SQLite header and an SQLite body (Lite
documentation - fi). The header comprises the first 100 bytes of
the file and it provides basic information such as a header string,
page size, size of the database file, text encoding. At offset 100 of the
SQLite file, the SQLite body starts with its first page. This page
contains a structure called SQLite master table. The master table
holds essential information about the table and index schemas of
the database and is the entry point to each table and index through
the page number of its first page.

In the context of this paper, pages belong to one out of four
different types. Each type has its own task and structure. The types
are the following:

Freelist trunk page is organised in 4 bytes page pointers. The
first 4 bytes pointer will point at the next freelist trunk page. Every
subsequent pointer shows the page number of a freelist leaf page.
The pointer to the first freelist trunk page is stored in the SQLite
header at offset 32.

Freelist leaf page is a free page which can be allocated to store
new records. This type of page holds no allocated data or any other
type of content.

Table b-tree interior page holds pointers to its children b-tree
pages and to the page number of the right-most child (the child
page with the largest number), which is held separately. Similar to a
freelist trunk page, the pointer is 4 bytes in size.

Table b-tree leaf page is the key structure to store records in an
SQLite database. This type of table b-tree page is the only one that
can contain active data.

Each table b-tree leaf page is divided into a page header and a
page body as shown in Fig. 1. This type of page is the only structure
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Fig. 1. Layout of a regular table b-tree leaf page, which stores active and deleted
records.

within an SQLite file, which holds regular user or application data.
The page header comprises 8 bytes and is followed by the cell
pointer array. The cell pointer array stores pointers (each of which is
2 bytes long) to every cell within the same page. SQLite stores a cell
as far as possible to the end of a page in the cell content area. Please
note that the first cell pointer addresses the last cell of the page, and
the last cell pointer points to the first cell in cell content area. The
region between the last pointer of the cell pointer array and the first
cell in the cell content area is the unallocated area.

One important pointer in the page header is the freeblock pointer
at offset 1 in the page header. Freeblocks contain removed cells in
the cell content area and are organised as a chain: the freeblock
pointer is the entry point to the chain (i.e., the first freeblock), and
each freeblock contains a pointer to its successor. A freeblock is
separated in three areas: (1) a 2-byte pointer to the next freeblock,
(2) the length of the current freeblock encoded in 2 bytes and (3)
the actual free area with deleted content. If a freeblock is the last in
a freeblock chain, the first field will be set to zero. For our consid-
erations, the third area of a freeblock is of special interest.

Algorithm 1. Calculation of a varint based on a byte sequence.

Data: byte-sequence (e.g., a serial type)
Result: bitstring of varint

if byte-sequence [index] < 128 then

| varint = varint || byte-sequence[index];
end
10 return varint;

1 varint = 0;

2 index = 0;

3 while byte-sequence [index] >= 128 do

4 varint = varint || (byte-sequence[index] — 128);
5 index +=1;

6 end

7

8

9

The smallest entity within an SQLite database is the cell.
Numbers in a cell are encoded by a variable-length integer or shortly
a varint. The length of a varint is 1-9 bytes, its value can be
calculated as shown in Algorithm 1. The calculation algorithm it-
erates over the input byte array (e.g., the serial type of the cell) and
goes over all bytes until a byte with most-significant bit equal to
zero is found (that is the numeric value of the byte as unsigned
integer is smaller than 128). The most-significant bit of all pre-
ceding bytes is removed to get the actual representation of the

underlying 64-bit number.

Each cell starts with two varints to represent the number of
bytes of the payload and the row id, followed by a byte array, and
ends with an optional 4 byte pointer, which refers to an overflow
page if one is needed. The byte array stores a varint, which holds the
header length of the byte array, serial types and the actual payload.
All serial types besides TEXT and BLOB are encoded with a defined
value. A BLOB is defined by a number that is greater than or equal to
12 and even, while a TEXT is defined by a number that is greater
than or equal to 13 and odd. Finally, the size of the record stored in
the payload can be calculated with the serial types as explained in
(Lite documentation - fi).

4. Structural analysis on SQLite record deletion

In this section we perform a structural analysis to learn about
the deletion behaviour of SQLite. Our central goal is to observe how
SQLite removes records under different conditions, i.e. to learn the
reality of SQLite deletion. More precisely we analyse, which data
structures still provide information if content is deleted from the
database. From Section 3 we know that deleted content may be
found in data structures of a table b-tree leaf page (unallocated
area, freeblocks), a freelist page, and finally artefacts in a journal
file, e.g., a WAL file.

As discussed in Section 3.1 SQLite uses pragmas to configure the
deletion of database entries. In order to learn about how SQLite
deletes records under different conditions and in different data
structures, various scenarios are defined and examined. These
scenarios are labelled with S1 to S6, where we start with an easy
scenario and turn to more complex ones.

As we define each scenario and each pragma configuration on
our own, no sample SQLite files are available, that is we have to
generate our SQLite files to observe the deletion behaviour on our
own. In Section 4.1 we introduce our six scenarios and explain our
generation method of our test file set. Then in Section 4.2 we
present and review the results of our structural analysis.

4.1. Scenarios and test files

We explain our approach to generate the test files to observe the
deletion behaviour of SQLite. We have to generate these SQLite
database test files for our structural analysis on our own for two
reasons: first a database, which contains realistic data and is grown
over months or even years, contains a huge and complex amount of
data. In this case it is highly probable that we overlook a structure
and misinterpret the deletion behaviour and hence do not repro-
duce reality. Second — and similar — when we define the deletion
behaviour on our own, we know about the actual ground truth.

We generate our SQLite test database files for our structural
analysis with the help of a self developed tool. This tool produces
SQLite database files by reading two different configuration text-
files: the first one defines the database schema and the second
one the actual database records. We only generate one table. This
table contains columns for id, name, surename and zip.

Based on this information an SQLite statement script is ini-
tialised. We use this script and hence generate an SQLite test file for
every scenario and all combinations of pragmas, respectively. In all
we test 12 pragma combinations for each of the 6 scenarios, hence
in all we create 72 database files for our structural analysis. Sample
results for some pragma combinations are listed in Table 1.

Our six scenarios are as follows (from easy to more complex):

Scenario S1 Insert 1 record, delete it.
Scenario S2 Insert 3 records, delete 1 record.
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Scenario S3 Insert 3 records, delete all.

Scenario S4 Insert records until a second page will be created,
delete the record on the second page.

Scenario S5 Insert records until a second page will be created,
delete all records on the first page.

Scenario S6 Insert records until a second page will be created,
delete all records.

The first scenario represents the simplest among all. Only one
record is inserted and deleted afterwards to empty the database
again. The second and third scenario are an extended version of the
first scenario as three records are inserted, resepectively. The sec-
ond scenario deletes only one and the third deletes all three re-
cords. That way it can be examined how SQLite tries to optimise the
structure when only one record is deleted and the rest is still in use.
Besides, it can be considered what happens if all records are deleted
and the used page, which holds multiple deleted records, will be set
free.

The last three scenarios (i.e., S4 to S6) address the aspect of
deleting a whole table b-tree leaf page and especially how SQLite
performs if a whole table b-tree leaf page is inserted and deleted
afterwards. In this particular case, 159 records are necessary to fill
an entire table b-tree leaf page. This number of records depends on
the concrete data types and content of the records.

4.2. Results of structural analysis

In this section we present the results of our structural analysis
on base of the scenarios and different pragma combinations as
explained in Section 4.1. To clarify again our main goal is to identify,
under which conditions a recovery of deleted SQLite data is
possible.

In all we have 72 different test settings. We present sample
results of our structural analysis in Table 1, further results are
available in Meng (2018). A scenario in Table 1 is marked with

e a “+”, if all records of the according test file can be fully
extracted,

e a “0", if some records leave traces and may be restored, and

e a“-",if no record of the according test file can be extracted, that
is no trace can be found via a hex editor.

The rating is with respect to the main SQLite database file, if no
additional journal file is generated. If a journal mode is activated,
the rating in Table 1 depicts the recovery result of this additional
file. While the “+” and “-” rating is unique, respectively, the neutral
rating “0” only means that parts of the original records leave traces
after deletion. For example S5 is rated as neutral in the second
column of Table 1. In this particular case a freelist page holds only
about 50% of the data within a freelist page.

We start our discussion with the first column in Table 1. The
rating shows that all deleted records can be extracted, if the pragma
combination secure_delete = 0 and auto_vacuum = 0 is used with

Table 1
Sample pragma combinations under which it is possible to restore deleted records.

no journal, that is we consider the recovery results from the main
SQLite database file. Using a hexdump viewer we observe that
besides the first 4 bytes of the deleted record the content is still
available. In this case SQLite deallocates the content by generating a
freeblock and changes the information about the first freeblock at
offset 1 in the page header. If a deletion of multiple adjacent records
is executed, the whole deleted area is defined as a single huge
freeblock and may be restored, too.

Next we observe the deletion behaviour, if we only change the
pragma secure_delete to the FAST setting and leave the remaining
two pragmas unchanged (second column in Table 1). As no journal
file is use, the recovery results are with respect to the main data-
base file, too. The SQLite specification (Lite documentation — pr)
describes the FAST setting as follows: “This has the effect of purging
all old content from b-tree pages, but leaving forensic traces on
freelist pages.” Therefore we do not expect to recover traces in the
table b-tree page itself, but in a freelist leaf page, if such a page was
generated. A freelist is generated, if (1) at any time, some data of the
database table was written on this page, (2) no more data of the
table is stored on this page, and (3) the database allocated at least
two pages for the table. In our test setting, only scenarios S5 and S6
generated freelist pages, hence only for these scenarios we were
able to recover content.

The third column in Table 1 sets the pragma secure_delete = 1
and makes use of a WAL file as journal. Although the whole content
in the SQLite database file is securely deleted (because SQLite
writes zero bytes to the location of the deleted records), we are able
to restore the whole content from the WAL file. All previously
deleted records are still allocated in the last but one written frame
of the WAL file. We point out that SQLite does not delete or change
any frames of a WAL file, but continuously writes changes into a
subsequent new frame, that is the whole page history in its pre-
vious states can always be recovered through the formerly written
frames.

The fourth column in Table 1 makes use of a rollback journal in
the PERSIST mode. The pragma secure_delete is set to 1 and
auto_vacuum = 0 is used. The PERSIST journal mode does not
delete the rollback journal file after completion of a transaction, it
only wipes out the journal file header with zero bytes. Compared to
a WAL file the rollback journal differs in terms of the number of
pages that can occur within the rollback journal. More precisely a
rollback journal stores every page only once. After deletion of the
content in the SQLite database file we do not observe any indication
about a deletion in the corresponding rollback journal page. In this
test setting all records are readable without any limitations from
the rollback journal file. Our hypothesis is that SQLite first inserts all
records into the rollback journal and then directly deletes the
processed data in the main database file.

Finally we point to the case of deleted content in the unallocated
area. If a database is in long-time usage, the unallocated area be-
tween the cell pointer array at the beginning of each table b-tree
leaf page and the cell content area can contain deleted data as well.
For instance this happens if cells next to the unallocated area are

Scenarios secure_delete = 0/ secure_delete = FAST/ secure_delete = 1/ secure_delete = 1/
auto_vacuum = 0/ auto_vacuum = 0/ auto_vacuum = 0/ auto_vacuum = 0/
journal_mode = OFF journal_mode = OFF journal_mode = WAL journal_mode = PERSIST

51 + - + +

S2 + - + +

S3 + - + +

S4 + — + +

S5 + 0 + +

S6 + 0 + +




S36 C. Meng, H. Baier / Digital Investigation 29 (2019) S31—S41

(Parse sqlite master table Parse regular records Parse freeblock Parse Il d areaj
5 Parse freelists 5 Parse WAL 5 Parse rollback Journaq

Fig. 2. Flowchart of the whole method that tries to recover deleted records from an
SQLite database file.

deleted (that is cells, which have been allocated lastly). In such a
case SQLite just changes the pointer of the beginning of the content
area instead of using a freeblock.

5. Concept to extract deleted content

In this section we develop our concept to extract deleted data
from an SQLite database. It is the result from our structural analysis
from Section 4. Fig. 2 shows an abstract overview about the method
that is the basis of our concept. The different processing steps are
the extraction of SQLite data from the SQLite master table, regular
records, freeblocks, unallocated areas, freelist pages and finally the
journals WAL and rollback, respectively.

First the SQLite header needs to be processed before any of the
other steps can be triggered. Then the SQLite master table is parsed.
This table is always stored on the first page of the database file and
hence is easy to find. The master table stores information about all
tables and indexes of the database. Important information are the
respective schema and the entry point to the table or index (the
entry point is stored as the page number of the table or index root
page). Using the master table, Algorithm 2 connects all pages of the
database file to their respective schema. It is necessary to check if
the SQLite master table is a table b-tree interior page or a regular
table b-tree leaf page. If the first database page is a table b-tree
interior page, all table b-tree leaf pages need to be gathered
through the page pointers first and be parsed afterwards. The entry
point to a table may be either a table b-tree leaf page (if the table is
small and all data fits in one page) or a table b-tree interior page (if
the data exceeds one single page). Based on the result of Algorithm
2, a key-value mapping that joins the pointers to the related SQLite
schemas is possible.

Algorithm 2. Connects all pages with their corresponding
schema.

Data: schemas (array of all entry pointers), page-size
Result: all schemas connected to their pages
1 result = [];
/* loop over all entry pages */
for p in schemas do
if p > 0 then
page = extract_page((p-1) * page_size);
if page == interior b-tree page then
result[p].append(
page.header.right_most_pointer);
numb_cells = page.header.number_of _cells;
8 cells = extract_cells(page, numb_cells);
9 result[p].append(cells);
10 else
11 | result[p].append(p);
12 end
13 end
14 end
5 return result;
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If all information from the SQLite master table is extracted, we

parse the regular records. This can be easily done using the
outcome of Algorithm 2 and the information of the cell pointer area
in each b-tree page.

The next step is to recover deleted records from each active page
of the database. These records are either stored in freeblocks or in
the unallocated area. We first discuss the recovery of deleted data
from freeblocks. Using the page header of an active page we jump
to the first freeblock of this page and then traverse the chain of
freeblocks. Due to the linked list concept of freeblocks this is
straightforward. However, the first four bytes of each freeblock are
used for building the linked list and hence the original content of
these four bytes may not be recovered, i.e., the original varints,
which were stored in these four bytes, are lost. Nevertheless due to
Algorithm 2, we know the schema of the table and thus it is
possible to make an assumption, which data types were held by the
cell. A cell always starts with a varint to encode the length of the cell
followed by a varint for the integer key (the rowid). After that, the
actual record header starts with its varint encoded header length.
Often each of these three varints is one byte long, respectively. After
the record header varint SQLite enumerates a varint for each col-
umn (that is the serial type array). As the freeblock wipes out the
first four bytes, mostly the first varint of the serial type array is not
recoverable. Based on the table schema from the master table, the
length of every serial type and the overall length of the serial type
array can be calculated. We make use of the supposition that the
wiped out first varint of the serial type array is always an integer.

Algorithm 3. Extract deleted data from a freeblock.

Data: serial types (based on the table shema), L
(estimated value of header lengh), freeblock length

Result: multiple possible solutions that could match the

record based on the related shema

possible-solution = [];

length =

calculate-length-of-freeblock-content(serial-types);

content = extract-content(L, length);

4 possible-solution.append(content);

return possible-solution;
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To calculate the length of a cell header and thus find the start of
its payload, let v be the length of the first three varints within a cell
(length of the cell payload, rowid and record header length).
Furthermore, let s be the number of all serial types that are defined
within the schema of the current page. Let b be the numbers of data
types with variable length (blob and text) fields that occur in the
schema related to the current cell. This variable is zero if there is no
text or blob field stored within the schema. Then the length L of the
headeris L = v+ s+ b.

The problem with this calculation is that there are two variables
that are unknown in general. First the variable v can grow to a size
of 27 bytes as each of the varints has a maximum size of 9 bytes.
Second the size of b is not readable from the schema. We therefore
first iterate over the variable v and check every possibility of b at
each value of v until a certain threshold is reached. In each iteration
step the extracted field of the cell, which is based on the serial
types, is compared to the data types held in the corresponding
schema of the current page. In this implementation the threshold is
set to one for every additional text or blob field in the schema. This
value can be set to a maximum of nine (maximum value of a varint)
per variable length field to test all possibilities.

A comparable calculation of the exact length of a cell is proposed
by Jeon et al. (2011). However, the computation in (Jeon et al., 2011)
is not suitable in our opinion as Jeon et al. compute the whole cell
length at once. However, this requires the knowledge of the cell
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header length, which is not the case in advance.

If the comparison between assumed serial types and schema
matches, these values are considered to be correct. Afterwards, the
records of the freeblock can be extracted as shown in Algorithm 3.
Through the serial types that are extracted from the previously
described step, the length of the payload can be calculated, as
shown in line 2 of Algorithm 3. This happens through the conver-
sion between serial types and length predefined from SQLite. With
the length of the payload and the variable L, the extraction of
several fields can be processed. The final conversion into human
readable values of every field is a post-processing step and not
shown in Algorithm 3.

The return value of Algorithm 3 is realised as a list, because if the
first three varints only sum up to three bytes, it is not possible to
recover the integer type held within the first byte of the cell
payload. In this case, all six possible integer values have to be
iterated and stored as possible solutions. Furthermore, a freeblock
can consist of more than one deleted cell. This is an additional
possibility, in which more than one record can be added to the
solution list.

Algorithm 4. Extraction of unallocated area from a table b-tree
leaf page.

Data: page (i.e. hexdump of currently processed page)
Result: processed unallocated area
header-length = get-header-length(page);
cellpointerarray-length =
get-cell-pointer-array-length(page);
stop = get-start-of-cell-content-area(page);
unalloc-area = extract-unalloc-area(header-length +
cellpointerarray-length, stop);
deleted-record-pointer = NULL;
for x = 0 — length(unalloc-area) do

byte = extract-byte(x);

if byte /= " then

deleted-record-pointer = x;
10 break;
1 end
12 end
13 result = reduce-unalloc-area(unalloc-area,
deleted-record-pointer);

14 return result;
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Next we turn to the unallocated area. Algorithm 4 describes the
extraction of the unallocated area from a regular table b-tree leaf
page. First, it is necessary to calculate the values of header length
and extract the number of cells within the cell pointer array to find
the starting point. The stop point is where the cell content area
starts. After the extraction of the unallocated area it has to be
inspected for any data, that is bytes different from zero bytes.

We now turn to the extraction of freelist pages. The algorithms
of regular b-tree leaf pages are also suitable to process freelist leaf
pages if little adjustments are made. A freelist leaf page is not
designated to contain any data at all. In other words, the previously
described algorithms can process a freelist leaf page from the start
to the point where data is found. Unlike freelist leaf pages, the
freelist trunk pages still contain an array which holds pointers to
the freelist leaf pages. With the trimmed unallocated area from
Algorithm 4, a processing of the extracted cells as in the regular
page processing algorithm and freeblocks as in Algorithm 3 can be
released. There are different options how these types of unallocated
areas can be processed with these algorithms. The concrete
implementation in this paper always tries to extract a freeblock

header and then the serial types. Subsequently, the content will be
extracted based on the found serial types.

For the extraction of WAL and rollback journal files, we refer to
(Meng, 2018).

6. The tool bring2lite

As proof of concept we implement a tool called bring2lite.
This tool implements the algorithms of Section 5 and adds a few
functions for usability reasons. bring2lite is implemented in
python. Digital forensic experts often make use of command line
tools like dd (Rubin et al. Kemp), file (Darwin) or strings (strings).
The command line interface of these tools accepts a user input via
flags and presents the results on the terminal. Hence we decide to
make use of a simple user interface based on command line input,
too. Furthermore bring21ite informs its users about the current
progress of its processing status. Finally bring21ite generates a
cryptographic hash. It provides all extracted information via a
folder structure within the chosen destination folder.

Key advantages of bring21ite compared to general purpose
tools like strings are as follows: first, bring21ite is able to con-
nect recovered data to its according database schema and table.
Hence the context and the data types of each record field are
known. Second as our tool is aware of the data types it is able to
recover numbers from their varint encoded representation. There is
no need for any post processing step to find out the actual value.

We will present sample interaction with and information on our
tool in what follows. We assume to work on a Linux operating
system and work in the directory bring21ite in the user's home
directory, where the tool is installed. We call this folder the main
directory of bring21lite.

6.1. Design of bring2lite

In this section we explain the main design of bring2lite. In
the main directory of the tool we find a readme file, a setup python
script and the subdirectory bring21ite, where the actual Python
scripts and classes are stored. The content of the bring2lite
subdirectory is shown, too.

~/bring2lite$ ls
bring2lite __init__.py README.md setup.py

~/bring2lite$ 1ls bring2lite
classes debug.log __init__.py main.py

Over all steps the SQLite database is handled in its binary format.
The first three steps of our programme are as follows: (1) gather
basic information about the SQLite database file from the SQLite
header, (2) process and extract all shemas from the SQLite master
table and connect them to the corresponding database page and (3)
loop over all pages of the processed SQLite database. Our main goal
is to encapsulate the functionality of the third processing step into
different parts and classes to master the complexity of the whole
extraction process.

An overview of the class structure of bring21ite is depicted in
Fig. 3. The classes are stored in the classes directory of the
bring21ite subfolder. They are as follows:

~/bring2lite$ 1ls bring2lite/classes

gui.py parser.py report_generator.py
_-init__.py sqlite_parser.py potentially_parser.py
__pycache__ journal_parser.py visualizer.py

WAL_parser.py
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The parsing and extraction logic is implemented in one of the
five parser classes, where Parser is the parent class and the
remaining four parser classes its inheritents. In order to process a
database file, the relevant parser class calls a function parse(),
which is already defined in the super class Parser (the Potential-
lyParser calls the function parse_page() instead). Using such a class
design implementation the page processing logic can be placed in
one single location and all pre- and post-processing operations are
able to be done in the particular classes depending on the actual
database file (SQLite, journal, WAL). Sample parsed and extracted
data is file_size, header_size or page_size that is required
to process every database file type. Additional fields like fil-
e_change_counter or checkpoint_sequence are individual for jour-
nal or WAL files and hence to its corresponding parser.

Each interaction with the exception of the results generated by
bring2lite between a user and the tool is encapsulated in the
GUI class.

6.2. Sample usage of bring2lite

We show a sample use of bring21ite. A sample command line
call is as follows:

“/bring2lite$ python3.6 ./bring2lite/main.py \
-filename ./db/0B-02.db --out ./result

In our example we invoke the main python script main.py of our
tool bring21ite via the python interpreter. The tool works on the
SQLite database as stated by the -file switch. In our example we
investigate the database file 0B-02.db from the corpus (Nemetz
et al.,, 2018) as explained in Section 7 (the database file resides in
the folder db). The switch —out of bring21ite is used to define the
folder, where the tool deposits its output.

“/bring2lite$ ls -1 results drwxr-xr-xcmcm 16384 Mr
27 20:34 freeblocks

drwxr-xr-x cmcm 16384 Mr 27 20:34 freelists
drwxr-xr-x cm cm 16384 Mr 27 20:34
regular-page-parsing

drwxr-xr-x cmcm 16384 Mr 27 20:34 schemas

drwxr-xr-x cmcm 16384 Mr 27 20:34 unalloc-parsing

bring2lite generates at most five different folders in the
output directory results to store recovered SQLite information from
different categories of data structures. If an output folder is not
generated, bring21ite did not succeed to find a data structure of
that category. The folder freeblocks is used to store reconstructed
information from freeblocks of database pages. The directory
freelist occurs if bring2lite processes any freelist page. The

Parser

PotentiallyParser JournalParser WALParser SQLiteParser

ReportGenerator

Fig. 3. Class structure of bring2lite.

folder regular-page-parsing holds database information from allo-
cated (i.e. non-deleted) SQLite data. Recovered information on the
schemas of the SQLite database are written to the directory sche-
mas. Finally the folder unalloc-parsing holds restored SQLite data
from the unallocated space within an SQLite page. In our particular
example all five folders are generated, i.e. our tool was able to find
deleted data in all implemented SQLite categories as well as regular
non-deleted content.

bring2lite writes its data to a log file in each of these five sub-
folders. The name convention of a log file is N-page.log, where N is
the page number of the SQLite file, where the data originally
resided, that is every log file stands for a single page from the SQLite
database. For instance if an investigator wants to examine all
recovered information from the unallocated area of the first page,
he has to access the file 1-page.log in the unalloc-parsing folder. A
sample output is as follows:

“/bring2lites 1s -1
-rw-r--r-—-cmcm2896 Mr 27 20:34 1-page.log

results/unalloc-parsing

The processed database 0OB-02.db only stores deleted records
within the unallocated space of the first page. Our tool was not able
to find any other record stored in an unallocated area of another
database page, because no second file was created. We next look at
the content of the recovered information from the unallocated
space.

“/bring2lites
l-page.log
INT, TEXT, TEXT, INT, REAL
20010,Luisa,Kuhn,-1407291853,4892744407.93914
20009, Christian, Schulze, 527030628,4362154905.
38727

20008, zoe, Schubert,-603005252,4007666590.16147
20007, Luca, Scholz,1643805150,1166617011.72898
++++++++++++++++++++++++++++

less results/unalloc-parsing/

The first line of a log file shows the schema of the processed
page or an error text if no schema could be extracted. Then one
extracted record is written to each line. Finally a separation line of
plus characters is generated to separate the outcome of two
extraction processes.

7. Evaluation

In this section we evaluate our tool bring21ite with respect to
database files from the forensic corpus of Nemetz et al. (2018). We
compare our tool to competing ones, too. We decided to make use
of the corpus provided by (Nemetz et al., 2018) because it is a
standardised benchmark for extracting deleted data from SQLite
database files. Our central evaluation result is depicted in Table 2.

7.1. Evaluation corpus and tested tools

In our opinion the corpus in (Nemetz et al., 2018) comprises two
segments: the first one is able to test the general functionality of a
digital forensic SQLite recovery tool. This covers aspects such as
encoding (e.g., which UTF-encoding is supported), how a tool
handles special characters, or column names with extremely high
length. The second segment is designed specifically to test the
ability of a tool to recover deleted records from regular SQLite
database file structures. This segment is divided into five categories
and every category is named with a hexadecimal digit starting from
0A, that is the corpus contains the categories from OA to OE. Every
database file within a category is numbered starting with 01, e.g.,



C. Meng, H. Baier / Digital Investigation 29 (2019) S31—S41 S39

Table 2

Recovery results of our tool bring21lite compared to other tools tested with the forensic corpus from (Nemetz et al., 2018).

Case  Tools tested by the creators of the forensic corpus (Nemetz et al., 2018)

Tools tested by the authors of this paper

Undark SQLite Deleted SQLabs SQLite Stellar Phoenix

SysTools SQLite

Sanderson Forensic  Sqlite Forensic ~Autopsy SQLite Deleted bring2lite

Records Parser Doctor Repair forSQLite Database Recovery Browser for SQLite  Explorer Records Plugin
0A-01 20/20* 0/20 0/20 0/20 0/20 0/20 0/20 0/20 20/20
0A-02 9/20* 20/20* 0/20 0/20 0/20 0/20 0/20 0/20 1/20
0A-03 20/20* 0/20 0/20 0/20 0/20 0/20 0/20 0/20 20/20
0A-04 15/20* 10/20* 0/20 0/20 0/20 0/20 0/20 0/20 13/20
0A-05 11/20* 20/20* 0/20 0/20 0/20 0/20 0/20 0/20 3/20
0B-01 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 4/10
0B-02 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10 4/10
0C-01 0/7 0/7 0/7 0/7 0/7 717 77 0/7 6/7*
0C-02 0/10 0/10 0/10 0/10 0/10 10/10* 9/10 0/10 8/10*
0C-03 0/7 77 0/7 0/7 0/7 2[7 4/7 0/7 6/7*
0C-04 0/10 10/10* 0/10 0/10 0/10 1/10* 8/10 0/10 8/10*
0C-05 0/10 10/10* 0/10 0/10 0/10 10/10* 9/10 0/10 10/10
0C-06 0/7 0/7 0/7 0/7 0/7 0/7 57 0/7 6/7*
0C-07 0/10 0/10 0/10 0/10 0/10 0/10 10/10 0/10 9/10*
0C-08 0/10 10/10* 0/10 0/10 0/10 0/10 6/10 0/10 7/10*
0C-09 5/10* 10/10* 0/10 0/10 0/10 0/10 2/10 0/10 0/10
0C-10 11/20* 20/20* 0/20 0/20 0/20 0/20 2/20 0/20 5/20
0D-01 0/5 2/5* 0/5 0/5 0/5 0/5 1/5 0/5 1/5
0D-02 0/5 1/5* 0/5 0/5 0/5 0/5 1/5 0/5 1/5
0D-03 0/5 0/5 0/5 0/5 0/5 0/5 1/5 0/5 0/5
0D-04 0/5 2/5* 0/5 0/5 0/5 0/5 0/5 0/5 1/5*
0D-05 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
0D-06 1/10* 5/10* 0/10 0/10 0/10 0/10 0/10 0/10 0/10
0D-07 0/5 5/5* 0/5 0/5 0/5 0/5 5/5 0/5 3/5*
0D-08 0/5 5/5* 0/5 0/5 0/5 0/5 3/5 0/5 3/5*
0E-01 3/7 2[7 0/7 0/7 0/7 3/7 0/7 0/7 5/7*
0E-02 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 3/5*
Sum  95/278 139/278 0/278 0/278 0/278 33/278 73/278 0/278 147/278

0D-02 is the second SQLite database file in the fourth category. In all
27 files with 278 deleted records are inspected.

In order to compare bring21ite to other competing tools (i.e.,
tools to recover deleted records from SQLite database files), we
proceed as follows: first, we adopt results of Nemetz et al. (2018),
that is we cite the recovery performance of six tools tested in
(Nemetz et al., 2018). Second we tested our tool bring21ite and
two further ones against the corpus of (Nemetz et al., 2018) (we
tested the Sqlite Forensic Explorer (SQLite) and Autopsy SQLite
Deleted Records Plugin (McKinnon, 2017) on our own, as these
tools are freely available to us).

7.2. Evaluation results

The overall evaluation result is given in Table 2. Tools that are
located under the left heading were tested by Nemetz et al. (2018)
and we only cite their recovery performance. All tools that are
located beneath the right heading are tested by the authors of this
paper. Each entry in Table 2 shows the number of items, where all
deleted data successfully was recovered for that file, in relation to
all items in the test database file. Nemetz et al. (2018) introduced a
category labelled with a star: (Nemetz et al., 2018) make use of this
labelling if “some elements correctly, some wrongly processed
(errors)”

The first category of the test corpus is labelled by 0 A. The key
test setting is to create one or more tables, insert in all 20 elements,
and finally launch a drop statement. From Table 2 we see that five
SQLite test database files belong to this category. Additionally we
see that some tools cannot handle this type of delete operations.
For instance programmes such as the Forensic Browser for SQLite or
Sqlite Forensic Explorer do not process the SQLite master table or the
unallocated area within a table b-tree leaf page. Furthermore we
extract from Table 2 that the tools SQLite Deleted Records Parser or
Undark seem to perform better than our tool bring21ite for some
database files within this category. However, all such results are

marked with a star and hence only provide partial recovery — in
contrast to our tool. For instance by examining the source code of
SQLite Deleted Records Parser we see that the SQLite Deleted Re-
cords Parser simply eliminates the non-printable characters and
returns the printable characters as a result. With that approach of
processing SQLite database files, only ASCII characters are correctly
extracted. However, data types such as integer and floating point
numbers need a manual post-processing. We point out that tools
like strings (strings) work in a similar way.

The poor performance of bring21ite with respect to database
file 0A-02 is due to the following fact. 0A-02 contains a freelist page,
that is there is no information about freeblocks available.
bring21ite parses a freelist page sequentially from the beginning
to the end, and it does not distinguish between a regular record and
a freeblock. As the database 0A-02 was created trough a rando-
mised deletion SQLite statement, a freeblock was created subse-
quent to the first regular database entry, and bring2lite is not
able to process this freeblock and all subsequent records.

The second category of the test corpus is labelled by OB. The test
setting is to create one or more tables, insert 10 elements, followed
by a drop, create and insert statement, respectively. From Table 2
we see that two SQLite test files belong to this category. The first
two categories differ from each other as the databases in this
category trigger a create table operation after the drop has finished.
No tool can parse any records except from bring21lite, which
recovers four records per file. Every record of the two databases
was found in the unallocated area of the SQLite database.

The third category 0C shows the results of all tested tools based
on databases, where create, insert and subsequent delete opera-
tions are used. All these operations put deleted records in regular
SQLite structures. Concerning the results of this category, the SQLite
Deleted Records Parser supposedly recovers more records than
bring2lite. However, the SQLite Deleted Records Parser only
partly recovers records. Furthermore as can be seen in database
files 0C-02, 0C-05, 0C-06 or 0C-07, respectively, the tool
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bring21lite achieves better results. The database file worth to be
discussed is 0C—05. By looking at the results of this database file,
the tool bring21lite is the only one that can reach an extraction
rate of 100%. All other tools have partly recovered records and are
consequently labelled with a star or have a lower recovery rate
compared to bring2lite.

The second last category OD comprises SQLite database files,
which create a table, insert new records, delete some of them fol-
lowed by a further insert statement. From Table 2 we see that nearly
all tools have problems to process this type of databases. The tool
SQLite Deleted Records Parser reaches a formal recovery rate of
44.4%, but all results are labelled with a star. These results are to be
considered as critical, because this category is the closest to reality
among all presented categories. Our tool bring2lite can only
reach a recovery rate of 20.0% and only the minority of the recov-
ered records are errorless.

Finally, the last category OE shows the behaviour of the different
tools in the context of databases with deleted records and overflow
pages. In this type of databases, bring21ite reaches a recovery
rate of 66.7%. The best recovery rate reached by its competitors is
25.0%. However, not all deleted records can be fully recovered,
because of the overwritten overflow page pointer. Without the pre-
defined evaluation setting (i.e.,, partly extracted records are
considered, too), the recovery result of our tool decreases to 33.3%.

7.3. Final result, discussion and limitations

The last row in Table 2 shows the overall result after five cate-
gories. In all 27 files are inspected, and 278 records have to be
recovered. Based on the evaluation criteria from (Nemetz et al.,
2018), our tool bring2lite performs the best followed by the
SQLite Deleted Records Parser and Undark:

1. bring2lite recovers 147 out of the 278 records, that is a recovery
rate of 52.9%.

2. SQLite Deleted Records Parser extracted 139 out of the 278 re-
cords and hence reaches a recovery rate of 50.0%.

3. Undark recovers 95 out of the 278 records, that is a recovery rate
of 34.2%.

It is important to mention that with respect to particular data-
bases (e.g., category OD) other tools seem to perform better. This is
due to different reasons: some databases only contain text and
therefore a printable string extraction performs better than our
structure based approach.

Another problem that is not covered by the current version of
bring2lite is as follows: if a freeblock contains more than one
cell bring21ite only recovers the first record from this cell. This
massively limits the recovery rate of bring21ite, because a lot of
deleted records within the forensic corpus of (Nemetz et al., 2018)
fall into this type of structure. By observing the worst case recovery
rate of bring21ite when processing database file 0C-03, it can be
seen that an improvement of the freeblock extraction method
would increase the amount of restored records to 100% without the
star label and hence the performance of SQLite Deleted Records
Parser.

Some minor limitations concern preprocessing steps before
using bring2lite and hence are relevant to the usability of
bring2lite. First unlike other tools, bring21lite is not able to
decrypt databases that are encrypted. The research paper by (Su
and Xi, 2017) offers a solution to this problem, and it is possible
to include this feature in a future release of bring21ite. A second
issue is that every database has to be collected manually and copied
in a dedicated folder to make bring21ite to work on these files.

More important is the current evaluation setting as proposed by

Nemetz et al. (2018). For instance the tool SQLite Deleted Records
Parser does not extract all records without an error for any of the
files in category OD. However, the actual recovery performance in
terms of ‘meaningfulness’ (i.e., is it possible for the investigator to
extract the relevant information from the recovered record) is not
considered. This is the main limitation of the current evaluation
methodology and must be improved in a next step.

8. Conclusion and future work

In this paper we investigated digital traces in the scope of SQLite
that belong to deleted database data. In order to improve the re-
covery rate of deleted SQLite data we performed a structural
approach and analysed the deletion behaviour of SQLite depending
on different database parameters, which affect the erasure of
database data. Based on the results of our structural analysis, we
proposed a concept to parse and process deleted SQLite records.
Our concept is implemented within our tool bring2lite.

In the field of recovering deleted SQLite records, some com-
mercial and open source tools have already been published to cover
this topic. Sample common tools evaluated in this paper are the
Forensic Browser for SQLite from Sanderson Forensics (Sanderson
Forensics), Undark from Paul Daniels (Daniels) or Stellar Phoenix
Repair for SQLite from Stellar Data Recovery (Stellar Data Recovery).
A central result is that our tool bring21ite is superiour to these
tools with respect to recovering deleted SQLite data. Additionally
some research papers address the deletion of SQLite records, e.g
(Jeon et al., 2011) (Aouad et al., 2013) (Ramisch and Rieger, 2015)
(Suand Xi, 2017). In order to show the strength of our approach, we
provide an evaluation of bring21ite and competing tools with
respect to a common dataset of SQLite files. The overall result is that
bring2lite achieves the highest recovery rate of approximately
53% compared to its eight competitors.

An important aspect of current SQLite implementations is the
use of the journal file format Write-Ahead Log (WAL). In contrast to
our approach the majority of both the tools and the academic pa-
pers do not include the information provided by WAL files. A
further relevant aspect in the context of deleted SQLite data is the
inspection of the unallocated area within the SQLite database file.
As of today this aspect is only treated by one academic paper (Su
and Xi, 2017) and extended by our approach.

Important future work in the scope of this paper is to test
bring21ite against anti-forensic measures of SQLite as proposed
by Schmitt (2018). We plan to test the robustness of our tool against
the anti-forensic measures of (Schmitt, 2018). Furthermore, the
processing of freeblocks needs improvement. From an in-
vestigator's point of view, our current implementation is obstruc-
tive, because relevant information may not be extracted while still
being present in SQLite structures. Additionally, SQLite can hold
other data types than an integer in the first column of a table.

Further future work is to improve the accuracy of processing
overflow pages. If a pointer to an overflow page is overwritten with
active content, this page could still be intact, but not extractable via
the regular SQLite structure. Before this problem can be tackled, a
research of whether the overflow page will stay within the data-
base if the original record is deleted or not, is a prerequisite.
Because these pages cannot be reached through a structure,
another solution of processing these pages is needed. For this so-
lution it is essential to search and recognise this sort of pages and
parse record artifacts if they are found.
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