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a b s t r a c t

The use of memory forensics is becoming commonplace in digital investigation and incident response, as
it provides critically important capabilities for detecting sophisticated malware attacks, including
memory-only malware components. In this paper, we concentrate on improving analysis of API hooks, a
technique commonly employed by malware to hijack the execution flow of legitimate functions. These
hooks allow the malware to gain control at critical times and to exercise complete control over function
arguments and return values. Existing techniques for detecting hooks, such the Volatility plugin apihooks,
do a credible job, but generate numerous false positives related to non-malicious use of API hooking.
Furthermore, deeper analysis to determine the nature of hooks detected by apihooks typically requires
substantial skill in reverse engineering and an extensive knowledge of operating systems internals. In
this paper, we present a new, highly configurable tool called hooktracer, which eliminates false positives,
provides valuable insight into the operation of detected hooks, and generates portable signatures called
hook traces, which can be used to rapidly investigate large numbers of machines for signs of malware
infection.
© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The last decade has seen the rise of memory forensics from a
research-grade idea to a standard procedure in digital forensics
workflows. This adoption has largely been driven by the wide-
spread creation and use of memory-only malware and malware
components that require little-to-no interaction with the local fil-
esystem. To detect such threats, investigators must rely on analysis
of the data structures and artifacts contained within volatile
memory. Fortunately, significant open-source memory forensics
research and tool development has been performed that enables a
wide variety of analysis tasks, including malware detection, insider
threat investigations, system audits, and more (The Volatility
Framework, 2017; Rekall, 2016; Ligh et al., 2014). One of the most
significant drawbacks of all of these tools, however, is the

inaccessibility of several critical analysis tasks to less experienced
investigators, especially those with little previous background in
operating system internals and malware reverse engineering. One
of the most glaring examples of this is the detection and analysis of
API hooks by userland malware on Windows systems. The use of
API hooks by malware allows it to inspect, filter, and modify any
data being passed to and returned by functions within running
programs, including any associated libraries (Branco et al., 2012). By
placing such hooks, malware is then able to perform a wide variety
of tasks, such as keystroke logging, password stealing, hiding pro-
cesses and files, hijacking network connections, preventing security
tools from loading, and nearly anything else that it wishes to
perform on the system. Due to the power that API hooks gives
malware over a system, detection of such threats is a high priority
for digital investigators (Case and Richard, 2016; Peter, 2018).

The current inaccessibility of API hook triage and analysis to all
but the most experienced investigators significantly reduces the
scalability of memory forensics and presents a significant bottle-
neck within the workflow of organizations. In this paper, we
demonstrate these issues through the use of the industry-standard
apihooks (Ligh, 2013) plugin in Volatility and our newly developed
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Volatility plugin, hooktracer. Our plugin performs post-processing
of apihooks-generated output in conjunction with our own mem-
ory analysis algorithms. The goal of our plugin is to automate sig-
nificant portions of API hook triage, make the analysis results
accessible to novice investigators, and generate data that can be fed
into other automated analysis engines, such as machine learning
and security analytics systems. Our plugin is intended to benefit
investigators in enterprise environments, where a significant
number of 3rd party applications and security monitors are
installed after the initial Windows installation, which populates
memory with many disparate artifacts. In these environments,
whitelists of memory-resident data and system-wide instrumen-
tation are generally not deployed or realistically even possible,
making the large amount of noise generated by certain memory
forensic techniques untenable.

This paper begins by providing an overview of API hooks and
how Volatility's existing apihooks plugin detects them. It then il-
lustrates the specific deficiencies in the existing apihooks plugin
that make it largely unusable in real-world, enterprise environ-
ments. This discussion is followed by presentation of the algorithm
that drives our new analysis plugin along with the results of our
plugin against a variety of operating system versions, security
software, and malware samples.

2. API hooks background

2.1. Code injection

As mentioned in the previous section, the use of API hooks al-
lows malware to have nearly complete control of a running system.
To place API hooks within target processes, malware must first be
able to run code inside a process. A variety of code injection tech-
niques are available to malware to accomplish this goal (Hosseini,
2017). These techniques allow injection of blocks of code,
commonly known as shellcode, or entire library files (DLL files) into
foreign processes. In nearly all modern investigations, these blocks
of shellcode or DLL files will be entirely memory-resident. Detec-
tion of code injection techniques can be accomplished with Vola-
tility's existing malfind, messagehooks, and eventhooks plugins,
among others (Case, 2016).

Once malware is injected into a victim process, it often inserts
API hooks (Bremer, 2012) within the victim's address space. The
hooks effectively replace the implementation of an existing func-
tion with one implemented by the malware. Such hooks can take
one of two forms, both of which are detected by Volatility's api-
hooks plugin, explained next.

2.2. IAT and EAT hooks

Portable executable (PE) files are the native executables for
Windows environments (Matt, 2010). At compile time, generated
PE files specify which libraries and external functions are needed
for the application to operate correctly. When a Windows appli-
cation is loaded, the runtime loader will then load and initialize
these libraries from the file system using the LoadLibrary API
(Galkovsky, 2009) and resolve the runtime addresses of needed
functions through the GetProcAddress API (MSDN, 2018).

As these addresses are resolved, they are stored in optimized
lookup tables so that future calls will not require loader-related
overhead. For functions that an application or library imports, the
resolved addresses are stored in the module's import address table
(IAT). For functions that are exported for use by other modules, the
resolved addresses are stored in the module's export address table
(EAT).

Malware can effectively hijack the operation of resolved

functions by overwriting the corresponding entries within these
lookup tables. Once addresses are overwritten with the addresses
of malicious functions, all future calls to the victim function are
completely under the control of the malware.

Volatility's apihooks plugin detects such hooks by first
enumerating every module (the main application and its depen-
dent DLLs) in a process' address space and then verifying that every
entry in the IAT and EAT for each module points back into its
owning module or, if it points outside the module, that it matches a
whitelist of known redirected functions. Otherwise, any entry
whose implementation points to an address outside the owning
module is reported as hooked.

Fig. 1 shows how IAT and EAT hooks are reported in Volatility. In
this output, the type of the hook (IAT), the process that is hooked
(svchost.exe) and the function (SLGenerateOfflineInstallationId) that
was hooked inside of the victim DLL (slc.dll) are shown. Additional
information includes the module responsible for the redirection
(sppc.ddl) and a disassembly of the first few redirected instructions.

2.3. Inline/trampoline hooks

The second technique used for API hooking is known as inline or
trampoline hooks. These hooks work by overwriting the first few
instructions of a function to redirect control flow to a malicious
implementation. This type of hook has two advantages for malware
authors compared to IAT/EAT hooks. First, inline hooks are
stealthier in memory as automated disassembly is required to
detect them, instead of a verification of the IAT and EAT. Second,
inline hooks can target any functionwithin a module, not just those
that are directly imported or exported.

To detect these types of hooks, Volatility's apihooks plugin per-
forms some relatively simple static analysis. The plugin enumerates
all functions within all loaded modules of a process, and then dis-
assembles the first few instructions to see if control flow leaves the
containing function. If such a control flow change occurs, the plugin
will report output as shown in Fig. 2. This catches most inline
hooks, but may miss hooks inserted deeper into a function.

3. Drawbacks of current memory forensic detection of API
hooks

While existing memory forensic algorithms for enumerating API
hooks are capable of detecting most hooking mechanisms, the
amount of data produced by such algorithms on modern operating
systems is too much for even subject matter experts to handle. To
make matters worse, analyzing a reported hook to determine if it
was placed by legitimate software or malware requires reverse
engineering of in-memory code and understanding the context of

Fig. 1. An IAT hook.
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each hook within the process. Manual examination of each hook
clearly doesn't scale without refining how apihooks operates, as we
discuss in the next section.

3.1. Overwhelming number of legitimate hooks

When the memory forensics algorithms for detecting API hooks
were originally developed (circa Windows XP), there were almost
no hooks present on systems not infected with malware. This
meant that any reported hooks were likely malicious and deserved
investigation. Unfortunately, this situation has drastically changed
in modern versions of Windows, as API hooks are explicitly used by
Windows to support backwards compatibility. Specifically, hooks
are used to ensure that applications will execute the required
version of some function. Many investigators are familiar with the
largest of these backwards compatibility subsystems, the Applica-
tion Compatibility Cache, more commonly referred to by the digital
forensics community as the shimcache (Parisi, 2015).

To illustrate this problem, Table 1 documents the number of API
hooks present in a clean/default install of various Windows ver-
sions. For our testing, the state of each systemwas a clean install of
the 32bit version of the operating system followed by the default
user logging in and then launching the default browser (either
Internet Explorer or Microsoft Edge). Each install was done in a new
VMware Fusion virtual machine. Thememory capturewas acquired
by suspending the virtual machine and copying the produced vmem
and vmss files (Volatility Foundation, 2014).

Starting with Windows 7, hooks placed by the backwards
compatibility engine, browser engine, and other operating system
components make the number of hooks to manually analyze
completely impractical. Furthermore, as we discuss in the related
work section, to date there has not been any effort to effectively
whitelist such hooks in a scalable and accessible manner. In Sec-
tions 5, we discuss our efforts to implement effective API hook
whitelisting as well as document how the usability of apihooks

becomes far worse when anti-virus applications are installed on a
system.

3.2. Diagnosis requires manual reverse engineering

The overwhelming number of API hooks present in default in-
stalls of modern versions of Windows and particularly, systems
with anti-virus enabled, would not be such a burden for experi-
enced investigators if existing algorithms were able to produce
better indicators of which hooks were actually suspicious. Instead,
if an investigator wishes to examine an API hook, they must use a
combination of the apihooks, volshell, and vadinfo plugins. As dis-
cussed in (Ligh, 2013, 2016; Tyler, 2014), the volshell plugin allows
programmatic exploration of memory samples, including dis-
assembling arbitrary regions of process memory. The vadinfo plugin
maps addresses within a process’ address space to a file path on
disk or the anonymous memory region that backs it. Using these
plugins in combination allows an investigator to determine the
source of a single API hook, but again, this is a very labor intensive,
manual process. Even ignoring the tedium, this procedure is real-
istically only accessible to experienced reverse engineers.

4. Automating analysis of API hook behavior

To provide automated analysis and filtering of API hooks within
a memory sample, we developed a new Volatility plugin, hook-
tracer. Algorithm 1 illustrates hooktracer internals at a very high
level. First, a set of API hooks is gathered by executing apihooks
from Volatility (line 1). Emulation is then performed on each API
hook to determine the basic blocks that are executed. Then each
basic block is mapped to its hosting memory regions. Finally, tra-
versed regions are displayed in one of several accessible formats
(line 2e8).

Algorithm 1. Hooktracer.

The following sections describe the implementation of
Algorithm 1 in more detail.

4.1. Gathering API hooks

The set of API hooks present within each process can be gath-
ered using the techniques employed by the existing Volatility api-
hooks plugin. This process is relatively slow, as it must check
thousands of functions to be thorough. The current implementation
of our tool consumes the output of apihooks formatted using JSON.

4.2. Hook emulation engine

To determine the code paths that a particular API hook takes, we
rely on runtime emulation (Stevens, 2008). Emulation is a tech-
nique for of “executing” code in a software environment that
mimics physical hardware. The use of emulation has a long history
in the security and malware analysis communities (Bartholomew,

Fig. 2. An inline/trampoline hook.

Table 1
Operating system version and corresponding number of legitimate
hooks.

Operating System Number of API Hooks

Windows XP 36
Windows 7 296
Windows 8 622
Windows 10 32, 458
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2006; Bilzor et al., 2011; Kimball and Baldwin, 2012; Elena Gabriela
Barrantes et al., 2003; Portokalidis et al., 2006; Yin and Song, 2010),
with QEMU being perhaps the most well-known emulator. We
chose to leverage emulation to avoid the pitfalls of the current
apihooks plugin, which statically analyzes instructions and uses
several hard-coded patterns to detect control flow redirection
outside of the hosting module. Not only is this brittle, but it also
makes analysis of more than a few instructions per function
extremely difficult. Our choice of emulator for our plugin was
unicorn (Nguyen and QuynhDang, 2015), which is used in a variety
of security and forensics software (Unicorn showcase, 2018), and
has Python bindings to allow complete control of its emulation
environment from Volatility.

4.3. Initializing the emulation environment

Before emulation using unicorn can begin, the emulator envi-
ronment must be initialized. This is left largely to the developer and
provides a great deal of flexibility. To be useful, code using the
emulator needs to register callbacks within the emulated envi-
ronment to monitor the emulated code's behavior. Our Volatility
plugin currently registers emulator callbacks for the following
events exposed by unicorn:

! Instruction tracing
! Basic block tracing
! Memory reads and writes
! Memory accesses (read, write, or execute) to invalid or un-
mapped memory regions

After registering our callbacks, our plugin initializes a virtual
address space for analysis of each API hook.

4.4. Implementing the emulated stack

The first aspect of the virtual address space that our plugin
initializes is the stack. By default, unicorn provides no stack and the
programmer must initialize a memory region within the emulated
address space and set the stack pointer register to point to it.
Implementing a fake stack and maintaining correct operations
presented two main challenges.

First, the stack region chosen must live within a region not
currently in-use by the application and one which would not be
inadvertently overwritten by the emulated code. To avoid this
issue, we chose a region within the kernel virtual address space to
place our emulated stack. When running on a real Windows sys-
tem, userland code can never access kernel ranges so this does not
break any operations. We also implemented our read, write, and
execution monitor callbacks to stop emulation if they detect access
attempts to kernel memory ranges that are not within our chosen
stack region. The effect of this setup and associated monitors is that
the emulated code can store and retrieve data on the stack as usual,
and we can ensure that data within the process’ memory is not
trampled by our stack emulation.

The second challenge we faced related to the stack was how to
correctly determine when an emulated hook finished executing.
This was essential to ensure that we let the entire API hook call
chain be emulated without letting execution branch to incorrect
locations after completion. To meet this goal, we instrumented our
read and write operation callbacks to monitor access to the stack
base address. Since our emulated stack starts ‘empty’, the plugin's
initialization code sets a global flag to False and only updates it if
the stack base is written to by emulated code. Our memory read
callback is set to monitor for reads to the stack base and halts
emulation if the stack base is read from before being written. The

motivation behind this monitoring is that when an API hook exe-
cutes its final ret instruction to return control flow from itself, the
ret will attempt to read from the initial stack base to gather the
address to continue execution.We know that the retwill be pointed
at the stack base as the API hook handler is the initial function
emulated, and any/all sub-procedures called by the hook will have
already adjusted the stack pointer before returning.

With these challenges dealt with, our plugin is able to provide a
fully functional stack to the emulated code.

4.5. Emulating an API hook

Once the emulator environment is initialized, we use unicorn to
begin emulation at the starting address of the API hook. Since this
address is not yet mapped into the emulated address space, the
initial execution attempt will trigger a call to our invalid memory
access callback with the address and size of the access set as pa-
rameters. If the address is within a valid memory region of the
analyzed process, then our plugin will attempt to read it from the
memory sample. When the accessed page is present within the
memory sample, our callback will first read the data out of the
memory sample and then copy the data to the corresponding
address in the emulated address space. This allows the emulator to
continue processing and for our plugin to fill the emulated address
space on demand. The same procedure occurs when control flow
pivots to previously unmapped pages or when data is read from or
written to pages for the first time.

In situations where a needed page is not accessible, our plugin's
callback will optionally “patch” in data where possible to allow
execution to proceed for as long as possible. When enabled for
write operations, the plugin maps a blank page into the emulated
address space and then allows the write to occur on the new page.
For execution attempts on new pages caused by a CALL instruction,
our plugin maps in the target page and fills the target address with
the opcodes corresponding to the MOV EAX, 0; RET; instruction
sequence. These instructions set a return value of zero, which
mimics the usual error condition of Windows APIs. The calling
function can then branch based on the error condition and continue
execution.

4.6. Gathering and analyzing basic blocks

As an API hook is being emulated, unicorn triggers a callback
event when new basic blocks are reached. Basic blocks are units of
code (instructions) that execute linearly and in an unconditional
manner. The hooktracer plugin leverages this callback to record
every basic block executed by a particular API hook. Once emula-
tion of a hook is complete, the plugin leverages Volatility's API to
map every basic block to its containing memory region. By gath-
ering these regions in the order of their execution, a wide variety of
analysis can be performed as described in the following section.

5. Automated analysis with hooktracer

Fig. 3 shows the output of our plugin against an API hook
inserted by the Core Flood (U.S. Government Takes, 2011) malware.
In this output, the plugin reports that a process with PID 2044 and
name IEXPLORE.EXE has an API hook on the GetMessageA function
inside user32.dll. This information comes directly from the JSON
data generated by apihooks. The rest of the information is generated
by our analysis algorithm. Each subsequent line lists, in order, the
memory region where at least one basic block was executed.

In interpreting this output, we first see that control flow of our
hooked API was redirected to a non-file backed region starting at
0x7ff80000. We also see that the permissions of the region are
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executable, readable, and writable. This raises several red flags, the
first being that legitimate code should be mapped from a file on-
disk, not stored and executed directly from memory. Second, hav-
ing all three permissions bits enabled is a common sign of malware
that is utilizing memory-only code, as these permissions allow
injection of shellcode. In legitimate applications that do not contain
self-modifying code, executable regions should be readable and
executable, but not writable. The permissions also assist in
detecting hollowed processes. As described by Cysinfo (Monnappa,
2016), DLL files loaded through normal APIs, such as LoadLibrary,
will have their permissions set to PAGE_EXECUTE_WRITECOPY. For
hollowed processes, the permissions will always be something else,
generally PAGE_EXECUTE_READWRITE. Finally, we note that the
paths displayed by our plugin are derived from the in-kernel data
structures (VADs) that track the memory region. This prevents
name-overwriting attacks against the userland loader from
affecting our output (Powershell-suite, 2016).

The remainder of the output in Fig. 3 illustrates that the legiti-
mate ntuser.dll and user32.dll handled the actual API request and
then later returned control back to the malicious handler. The
number in parenthesis after each region is the number of basic
blocks that were executed in a memory region before control flow
was transferred outside the region. This numbering makes the
output more concise and helps to focus attention on regions in
which significant numbers of instructions were executed.

The usefulness of groupingmemory regions becomes evenmore
clear when examining API hooks inserted by one of the most pro-
lific pieces of malware in history, TDSS (Microsoft Security Intell,
2010). An API hook related to TDSS is illustrated in Fig. 4. In the
beginning of this output, we see that the API hook initially begins
executing in thememory region starting at 0x270000 but then later
transfers control to a secondmalicious region starting at 0x260000.
Based on this output, the investigator can quickly deduce that there
are two regions hosting suspicious code, as opposed to just the
original one. No reverse engineering was required to gain this
insight. Furthermore, Volatility provides several plugins that
permit extraction of memory regions once the base address is
determined (Wiki, 2012).

5.1. Hook analysis with security tools present

Based on the previous figures, readers may draw the same
conclusion that many investigators do, which is that any API hook
that initially starts execution in non-file backed memory is illegit-
imate. Unfortunately, this is often an incorrect conclusion, as nearly
all anti-virus and endpoint security monitors employ malware-like
tactics to gain visibility into system activity as well as to remain as
hidden as possible. Visibility is often gained by utilizing API hooks
to monitor parameters passed to functions as well as for system
events, such as a process starting or a DLL loading. Stealthiness is
enhanced by using non-file backed regions to disassociate
executing endpoint security code from files that might be identified
and flagged bymalware. Unfortunately, these hooks are detected by
the apihooks plugin, potentially creating a large number of false
positives for an investigator looking for malware.

As an example, after we installed the free edition of AVG Anti-
Virus (AVAST Software) in our previous default Windows 7
install, the number of API hooks reported went from 296 as shown
in Table 1 to 1625. This occurred because AVG places numerous
hooks in every process to monitor activity.

Fig. 5 shows the output of Volatility's apihooks plugin against
one of the AVG hooks. Obviously, the apihooks plugin does not
provide any indication that the hook is associated with AVG.
Instead, it simply lists the first two hops in the control flow chain,
with the second hop transferring control to an unknown third
destination. For an investigator to determine the hook's source,
they must load volshell, as previously discussed, to begin reverse
engineering the hook's code and manually following the jumps.
The investigator might then use Volatility's vadinfo plugin to map
the jump destinations to memory regions.

In comparison, Fig. 6 shows this hook as reported by hooktracer.
In this output, the investigator can see that control flow transfers
from the API hook at 0x776a22b8 to the non-file backed region at
0x74c60000, and then to several DLLs inside of the AVG Program
Files subfolder. Given that the hook has likely been placed by awell-
known security product, the investigator can instead dedicate time
to looking for other signs of malware infection.

5.2. Filtering legitimate DLLs

Even with the accessibility of API hooks analysis provided by
hooktracer, the sheer number of API hooks present on even non-
infected systems makes manually scrolling through the output
time consuming. To help alleviate this burden, we added filtering
support to the plugin. Two of these filters are described in this
section and the third filter is described in the next section.

The first filter allows excluding an API hook from output if every
memory region accessed during emulation matches a given file or
folder path. The most common use of this filter is to exclude API

Fig. 3. Hooktracer output for Coreflood malware.

Fig. 4. Hooktracer output for TDSS malware. Fig. 5. AVG API hook detected by Volatility's apihooks plugin.
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hooks where all code paths are handled by file-backed regions
originating under the System32 directory. This is possible as
modern Windows versions protect DLLs in this directory from
modification, which prevents malicious overwriting of these files.
As an example, Fig. 7 shows our plugin's output against a legitimate
API hook from our clean Windows 10 system.

In the output, an API hook of the CryptUninstallCancelRetrieval
function is shown as well as that every code path for the hook is
inside DLL files under System32. This is precisely what thousands of
hooks look like in memory when shimcache and other built-in
hooks are active, which is the default starting in Windows 7.

To exclude such hooks from the output of hooktracer, in-
vestigators can re-run the plugin with an “All Containing” filter of
\Windows\System32. For “All Containing” filters, our plugin com-
pares the path of every memory region found during basic block
tracing to the path(s) specified in the filter. If every region matches
the filter (e.g., they are all in the Windows System32 directory),
then information about the API hook is suppressed. By applying this
filter to our clean Windows 10 sample, the number of hooks re-
ported drops from 32,458 to only 178. This shows that by simply
filtering every API hookwhose implementation exists solely in DLLs
stored under System32, we have removed over 99% of the plugin's
default output.

When examining the remaining 178 hooks, two hook patterns
emerge, as illustrated in Figs. 8 and 9. These hooks are related to the
Visual Cþþ runtime and to Microsoft's OneDrive application and
files associated with these components are not stored under the
System32 directory. If we re-run the plugin with filtering added for
these DLLs, the number of hooks reported goes from 178 to zero.
Thus by starting with a filter for hooks targeting System32 DLLs and
then adding new string-based filters for observed legitimate hooks,
we are able to quickly determine that no malicious hooks are
present on the system. This process required no reverse engineer-
ing and each execution of our plugin takes less than 30 s on a
typical laptop computer.

Hooktracer also supports a second filter type that can be used
alone or in conjunction with “All Containing” filters. The second
type, “Any Containing”, will exclude API hooks from output when
the path of at least one memory region matches the filter. This type
of filter is extremely powerful when analyzing hooks placed by
security tools, such as AVG. As shown previously in Fig. 6, AVG
hooks every process with DLLs that live under the

\ProgramFiles\AVG\Antivirus directory. To exclude AVG's hooks
from the plugin's output, we can use an “Any Containing” filter
configured with the AVG directory path.

As mentioned previously, apihooks found 1625 userland API
hooks in our memory sample with AVG active as compared to 296
before it was installed. By using an “Any Containing” filter set for
AVG in conjunction with our previous “All Containing” filters for
System32 and vcruntime, the number of hooks is reduced to 175, an
89% reduction. Examining the remaining hooks shows that 122 of
them are inside of Internet Explorer processes and are browser
compatibility hooks that redirect into IEShims.dll or ieframe.dll, as
shown in Fig. 10.

The remaining hooks involve processes that loaded Visual Cþþ
runtime DLLs from the Windows Side-by-Side directory and the
AcLayers.dll component of the shimcache, which is stored in the
\Windows\AppPatch directory. By running the plugin again with
filters targeting these components, the number of hooks reported
drops to zero.

5.3. Grouping hooks across processes

Another powerful capability of hooktracer is the ability to group
sets of hooks across processes. This allows investigators to under-
stand the full scope of infections on a single system as well as build
simple and reliable indicators of compromise that can be used on
any number of memory samples across a number of systems. For
this case study, we will analyze our previously clean Windows 7
system, which we infected with the infamous Zeus malware
(IOActive, 2012; James, 2011).

Executing apihooks against this memory sample produces 480
API hooks compared to the 296 present in our clean sample. This
large increase is due to Zeus’ aggressive behaviour of injecting code
into every process that it has permission to access, as well as
hooking 41 functions within each victim process. Without any fil-
ters, hooktracerwill producemany similar blocks of output per Zeus
hook, as shown in Fig. 11. Note that the permissions indications
have been removed for readability.

The hook's control flow starts with two anonymous regions
followed by a DLL file under System32 and then exiting from the
original anonymous memory region. All of the hooks placed by

Fig. 6. AVG API hook detected by hooktracer.

Fig. 7. Legitimate API hook in Windows 10 detected by hooktracer.

Fig. 8. An unfiltered API hook related to use of the vcruntime140_app.dll in the Win-
dowsApps folder.

Fig. 9. An unfiltered API hook due to use of Microsoft's OneDrive components.

Fig. 10. Browser hooks redirect into IEShims.dll or ieframe.dll.
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Zeus follow this same pattern of two anonymous regions to start
followed by the legitimate API being handled by a varying number
of DLLs inside of System32.

To allow investigators to avoid manually examining 41 of these
hooks per process, we implemented a grouping capability in
hooktracer that allows filtering the output to include only the
processes and victim functions hooked by the same malware code.
To generate a grouping, an analyst runs hooktracer and specifies the
process ID and victim function name of the hook to be grouped. As
shown in Fig. 11, the PID is 2384 and the function is ntdll!NtCreate
User Process. This instructs hooktracer to create an ordered record
for the first three memory regions executed by the hook so that
they can later be re-identified. This record will include the size for
non-file backed regions and the full path on disk for file-backed
ones. We chose the size for non-file backed regions as the iden-
tity marker as it is highly consistent across injections. Other attri-
butes, such as the starting and ending address or a region's
contents, are not reliable, due to both address layout space
randomization (ASLR) as well as code and data changes that occur
within a region at runtime and across processes.

Once the grouping record is generated, the analyst can re-run
hooktracer with the record specified. This will instruct the plugin
to display only processes and hooked functions that match the
record's pattern of region sizes and file paths. As shown in Fig. 12,
hooktracer's grouping capability uses the record from one hook in
one process to identify every other process and function infected
with Zeus. This figure has some of the output truncated for brevity's
sake, but in total hooktracer was able to automatically find and
report the 41 hooked functions across all 8 infected processes.

Investigators can also use hook records when analyzing other
Windows memory samples. In real-world investigations, where
numerous machines may need to be investigated quickly, being
able to rapidly determine which are infected and which are not is
key. By integrating hooktracer's grouping capability into their
investigative workflow, an investigator can whittle an entire in-
vestigation's worth of systems down to only the infected ones
within minutes.

6. Related work

6.1. Emulation for malware analysis

The use of emulation to analyze the behavior of malware is a
powerful technique with over a decade of research behind it (Yin
et al., 2008; Kang et al., 2009; Lutz, 2008; Kruegel, 2014). Until
recently, however, all of these emulation efforts required access to
an original malware executable file as well as the ability to emulate
that executable in a heavyweight environment, such as Bochs
(Lawton, 1996) or QEMU (Bellard, 2005), to instrument and observe
execution. While these techniques are powerful, such approaches
are not directly applicable to memory analysis, as executables in
memory go through substantial transformations from the time they
are loaded fromdisk until a memory capture is taken. This generally
prevents the executables from being later extracted from memory
and then natively executed. Furthermore, the rise of memory-only
malware means that much of the malware found in modern

investigations cannot be easily encapsulated into a functional
executable file at all. This prevents existing whole-system emula-
tors from being able to analyze the malware. Finally, existing hook
detection architectures require substantial instrumentation and
specialized lab setups that are not realistically feasible in incident
response handling across diverse enterprise infrastructures. Other
modern techniques for live analysis, such as virtual machine
introspection (libvmi, 2019), face many of the same challenges and
are not applicable in post-compromise scenarios.

6.2. Memory forensics and emulation

After the introduction of unicorn and its accessible Python
bindings, there have been two recent research efforts besides ours
that integrated unicorn with Volatility. The first, ROPEMU
(ROPEMU, 2016; Graziano et al., 2016), uses unicorn to automati-
cally detect ROP chains (Maloney) within memory. ROP is used by
system-level exploits to perform code-reuse attacks. Such attacks
are necessarily memory-only and can be difficult to detect with
traditional Volatility plugins.

The second project (Hammond) also hunts for ROP chains and
was specifically developed to detect the “Gargoyle” attack
(Lospinoso, 2017) that hides executable code using permission
changes and timers. Detection of Gargoyle is implemented by
emulating the handler of each registered timer found by Volatility
and checking if calls are made to any Windows API functions
leveraged by the Gargoyle attack.

Although neither of the referenced projects are related to API
hooks, we consider them to be important relatedwork, as they both
leverage unicorn in conjunction with Volatility to significantly
expand the state-of-the-art in memory forensics.

6.3. Analysis of in-memory API hooks

The difficulties of analyzing API hooks on enterprise systems
without a filtering capability led to a research project and Volatility
plugin named apihooksdeep (Volatility PluginDeep, 2014). This

Fig. 11. Hooktracer output for a Zeus API hook.

Fig. 12. Hooktracer grouping Zeus' API hooks.
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plugin filters API hooks based on the fuzzy hash set of the code that
implements the initial handling of the hooks. To generate this hash
set, the investigator must use a combination of Volatility plugins to
determine the owning module and then also use other plugins to
extract the module from memory. A standalone tool must then be
run against the module to generate the hash set. Once the hash set
is created, it can then be used as a filter to exclude API hooks that
match the same initial hooking code. Using the plugin to filter
legitimate hooks that start in non-file backed memory, as was
shown with AVG, is not currently supported by the plugin and
would likely be problematic, since most of these hooks are simply
control flow transfers.

While apihooksdeep is a substantial research effort and the best
effort to date for filtering of Volatility's apihooks, its accessibility to
a wide range of investigators and its scalability are quite limited.
These limitations occur as generating the hash sets for a single API
hook takes several steps, including running multiple Volatility
plugins and a separate standalone tool. Furthermore, these hash
sets need to be built on a clean system that closely matches the one
under investigation or the filter will be ineffective. While this is
possible in mature, enterprise IT environments with “gold builds”
for each system, it still requires at least one member of the security
team to build new hash sets for each new build and for every up-
date to 3rd party applications, such as anti-virus and other
endpoint security monitors. This also places utilization of the hash
sets outside of the reasonable workflow of consultants, who must
operate in a wide variety of non-uniform environments. Finally,
since the hash sets are based on the actual code of modules
implementing API hooks, the hash sets will change substantially
over time. The use of fuzzy hashing offsets this risk some since the
plugin can report a percentage of how similar two hooks are, but
then this requires the analyst to tune the acceptable threshold.

Compared to our filters, which are string-based and gathered
from DLL listings produced by our plugin, the fuzzy hash sets are
more complicated to use, burdensome to maintain, and more
brittle.

7. Conclusion

In this paper we have demonstrated a new Volatility plugin,
hooktracer, which makes userland API hooks analysis both more
efficient and accessible to a wide range of investigators. Our plugin
performs emulation of API hooks to determine the implementing
module(s) and relationships between these module(s). Through
such analysis, we allow an investigator to quickly determine which,
if any, API hooks are suspicious and require deeper investigation.
Given the large-scale reliance on API hooks by Microsoft and
endpoint security vendors as well asmalware authors, it is essential
that quick and easy-to-use filtering is available to investigators.

As we have demonstrated, hooktracer meets these needs and
makes API hook analysis available to investigators of all experience
levels. The whitelisting system of hooktracer allows highly effective
filters to be created using only simple strings, and since these filters
are based on the pathnames of files and not code, they will rarely, if
ever, need to change. hooktracer also supports generation of hook
records that allow re-identification of previously discovered mal-
ware. Given the large number of systems that a typical incident
response effort might target, hook records have the potential to
save a substantial amount of investigative time.
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