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ARTICLE INFO ABSTRACT

Article history: File carving is a technique to recover files from a storage medium without relying on a file system or
other external metadata. As long as the files have been stored contiguously, most file formats are
comparatively easy to carve. The moment files have been stored fragmented, the carving process be-
comes a highly complicated task—even when the fragmentation scenario is relatively simple—and most
file carvers available today are not capable of restoring such files correctly.

In this paper, we apply syntactical file carving, i.e. the process of utilizing the syntax of a file format to
the maximum extent, to the PNG file format. By doing so, we show that the complexity of carving files
even in very convoluted fragmentation scenarios can be significantly reduced. Furthermore, we provide a
prototypical implementation of a syntactical PNG file carver. In our evaluation, the carver was able to
restore 98% of the test files completely and correctly, while the remaining files were at least partially
recovered.

Since most of the publicly available file carving datasets do not contain PNG files, we created a custom
dataset for our evaluation resembling the DFRWS forensic challenges from 2006 to 2007. To ease the
creation of such datasets we implemented a dataset generation framework. Using our framework it is
possible to create complex fragmentation scenarios with just a few lines of code and configuration.
Through this, we hope to encourage the creation of publicly available datasets and to foster further
research in the area of file carving.
© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction File carving is a recovery technique which does not need any

existing file system meta data. A trivial approach is header-to-

The results of a digital forensic investigation significantly
depend on the digital evidence extracted from various storage de-
vices. In most cases, already the analysis of the latest live version of
the file system reveals a lot of evidence to a forensic investigator.
This data includes anything from media files and documents to
saved bookmarks and visited web pages. Diving deeper and
analyzing a file system even further can bring more evidence to
light, including files that have been deleted. Unfortunately, a trivial
recovery of these deleted files may not always be feasible due to
inconsistent or missing file system meta data entries. In other cases,
the file system may be damaged or completely missing and,
therefore, unusable for the recovery of deleted files.
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footer carving, where the data between two identifiable byte
sequences—the header and the footer—is extracted. Unfortunately,
such simple file carving methods commonly yield insufficient re-
sults as soon as files are stored fragmented.

More than ten years ago, Garfinkel already performed a large-
scale analysis of fragmented files in the wild and emphasized the
importance of being able to reassemble these fragments (Garfinkel,
2007). Unfortunately, carving fragmented files is far from trivial. To
be able to carve fragmented files, the exact fragmentation point and
the start of the next fragment have to be detected. Depending on
the file type both steps can be extremely complex. Moreover, due to
the ever-increasing size of storage devices, the sheer number of
candidates for the beginning of the next fragment renders simple
brute-force approaches useless.

In this paper, we argue that a file carving approach should take
advantage of as much of the internal structure of a file type as
possible to determine the fragmentation point and to find the start
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of the next fragment. The syntax of a file is typically easier and
faster to check than the actual file contents, which some ap-
proaches use to carve fragmented files. Moreover, a carved file
conforming to the syntax of its format is less likely a false positive
(i.e. a corrupted file). Avoiding false positives is a key aspect when
file carving is performed—after all, the carved files have to be
reviewed by an investigator.

Furthermore, we propose to perform the carving process in
several phases. The rationale behind this is that most of the files are
relatively easy to carve (e.g. non-fragmented files or simple
bifragmented files), while there are comparatively few files which
require methods taking most of the available blocks of a storage
device into consideration. Those more costly methods should be
postponed until all of the easy to carve files have been recon-
structed to reduce the number of data still available.

In order to demonstrate the usefulness of syntactical file carv-
ing, we present an approach to carve fragmented PNG files. PNG is a
popular image file format which is widely used especially on web
pages. Moreover, there are several graphic programs which use
PNG as their default output format (first and foremost screenshot
programs which may have been used to capture forensically
interesting data). Finally, there are various techniques to hide ex-
ploits or malicious payloads in PNG files (Shah, 2015; Marques,
2016). Therefore, we argue that PNG is a file format which is of
high interest and most certainly encountered during a forensic
investigation. Finally, the PNG file format is sufficiently structured
to enable syntactical carving.

To evaluate our approach, we reviewed various available carving
test sets but found that none of them contains PNG files. Therefore,
we developed a framework to generate test datasets for the eval-
uation of file carvers. It allows the user to easily create different test
cases reflecting various fragmentation scenarios. Using this
framework we established an evaluation dataset for PNG file
carvers resembling the scenarios used in the DFRWS carving
challenges from 2006 to 2007 (Carrier et al., 2006, 2007).

In summary, our contributions are a phase-based, syntactical file
carving algorithm for PNG files. Our prototypical implementation of
the algorithm outperforms popular existing file carving tools, such
as Scalpel or PhotoRec. Moreover, we provide a framework to easily
generate test datasets for file carvers. Both, the prototypical
implementation of our carver and the dataset generation frame-
work will be released as open source software (Hilgert et al., 2019).

2. Portable Network Graphics

Portable Network Graphics (PNG) is an image file format which
can be used to store true-color, indexed-color and greyscale images
with or without an alpha channel for transparency in a lossless
manner. It was designed for web applications, which is why it is
streamable and supports a progressive display option. The World
Wide Web Consortium (W3C) describes PNG as an “extensible file
format for the lossless, portable, well-compressed storage of raster
images” (W3C, 2003). The most recent PNG specification was
published in 2003 and is the main reference to gain knowledge
about the internal structure, the data streams, and the syntax of
PNG files. Further resources for a better understanding of PNG
include the initial RFC published in 1997 (Boutell, 1997) as well as
“The Definite Guide to PNG” (Roelofs and Koman, 1999).

In this section we do not go into details of how the actual image
data is encoded and stored in a PNG file, but rather focus on aspects
of the file format relevant for file carving.

2.1. Structure of a PNG file

The basic structure of a PNG file is illustrated in Fig. 1. As

89 50 4e 47
0d 0a la Oa

Fig. 1. Structure of a PNG file and its chunks.

depicted there, a PNG file always starts with the PNG file signature.
This signature consists of the following sequence of eight bytes
(represented as hexadecimal values): 89 50 4e 47 0d 0a la Oa.

Disregarding the signature, the complete PNG file is divided into
multiple units referred to as chunks. Fig. 1 also illustrates the layout
of PNG chunks. Each chunk consists of four fields: a length field
(four bytes), a type field (four bytes), a data field (variable length),
and a CRC field (four bytes).

The length field contains an unsigned integer specifying the
length of the data stored in the data field. This value can also be
zero indicating that the data field is empty. Note that the total
length of a chunk is the value defined in the length field plus twelve
bytes (four bytes each for the length, type, and CRC fields).

The second field defines the chunk type. Each of the four bytes
stored in the type field corresponds to an ISO 646 letter from A-z or
a-z. The letters make up the name of the chunk type. As of version
1.4.6 of 1ibpng, 26 different chunk types are registered (Roelofs,
2015). Furthermore, the PNG specification defines ordering con-
straints for chunk types restricting the position of certain chunk
types within a PNG file.

If the defined length of a chunk is non-zero, the third field
contains the actual chunk data. Finally, for integrity each chunk
ends with a four-byte Cyclic Redundancy Check (CRC). Since the
CRC is calculated over the chunk type and the data fields, it is also
present for chunks without data.

2.2. Chunk types

PNG defines the THDR, IDAT, IEND and PLTE chunk types as
critical chunks, meaning every implementation of the PNG stan-
dard should be able to correctly parse and render these chunks. For
a PNG file to be valid, exactly one THDR and one TEND have to be
present as well as one or more IDAT chunks. The following sections
elaborate on these three chunk types in more detail.

2.2.1. THDR

An THDR chunk is always the first chunk within a PNG file,
following the PNG signature. It defines fundamental properties of
the image such as its width and height as well as the bit depth and
color type and the compression, filter, and interlace methods. In
total, these data fields of the IHDR chunk are always 13 bytes in size
resulting in a static length field across all THDR chunks.

2.2.2. IDAT

IDAT chunks store the actual image data of the PNG file as a data
stream compressed by the compression method defined in the
THDR chunk. All IDAT chunks in a PNG file should be stored in a
consecutive order without any other chunk type in between. PNG
encoders can divide the compressed image data into arbitrarily
sized chunks. As already mentioned, also IDAT chunks with zero
data are legal according to the PNG specification.

2.2.3. 1IEND

The 1END chunk must be the last chunk since it marks the end of
a PNG file. An 1END chunk does not contain any data and is,
therefore, equal for all PNG files.
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3. Existing file carving approaches for PNGs

To the best of our knowledge, there is no carver—either in ac-
ademic publications or as a software tool—explicitly focusing on
fragmented PNG files. However, there are existing approaches
which can be applied to carve PNGs. These will be briefly described
in what follows.

Header-to-footer carving is an obvious approach to be applied to
PNG files. It searches for specific byte sequences which identify the
start and end of a particular file type. Generally, header-to-footer
carving benefits from longer signatures as they reduce the proba-
bility for false positives. As described in Section 2 PNG files have an
eight byte signature at the beginning. In combination with the fixed
length and type fields of the THDR chunk, this makes a 16-byte
header which can be searched for. The data of the TEND chunk is
defined to be empty. Hence, this image trailer of 12 bytes can be
used as the footer signature for PNG files. This is what the open
source carver Scalpel does for example (Richard IIl. and Roussev,
2005; Richard III. and Marziale, 2013). As already mentioned in
the Introduction, header-to-footer carving generally fails when a
file is fragmented.

The same holds for header-embedded-length carving. This
approach can be used when a file type has a length field in its
header. After finding the header, this field is parsed to determine
the length of the file. Then, the bytes from the header plus the
number of bytes parsed from the length field are carved. The PNG
file header does not have a global length field to indicate the size of
the complete file. There are length fields within the individual
chunks, though. Hence, a modified header-embedded-length
carving approach could be employed here. The basic idea would
be to parse the length of the first chunk, proceed this number of
bytes in the disk image, parse the length field of the next chunk,
and jump again. This would be carried out until a jump reaches a
position without a valid chunk header. This is what Foremost
(Kendall et al., 2009) does when the PNG specific extraction mode
is enabled. PhotoRec (Grenier, 2015) also uses this approach. Again,
this only works when a file is not fragmented.

One of the first approaches to cover fragmented files was
bifragment gap carving as proposed by Garfinkel (2007). It extends
the methods described above by placing a gap between the start
and end of a fragmented file to be carved. This gap is subsequently
moved as well as grown to find the range of bytes not belonging to
the current file under reconstruction. To check whether the correct
gap is found the author uses what he calls fast object validation.
This is basically a file type dependent method to check whether a
file is valid and includes techniques such as validating headers and
footers, decompressing the file, or utilizing other characteristics of
the particular file type at hand. This approach works well for files
split into two fragments where the gap between the two fragments
is sufficiently small. For files split into more than two fragments the
algorithm is not suited.

Finally, there are various techniques which focus on the actual
file contents rather than on the syntax of the file format. Examples
are the publications by Memon and Pal (2006), Pal et al. (2008), and
Tang et al. (2016). Here the authors propose to compare the pixel
values of JPEG images in order to detect the fragmentation point
and the fragment with the highest probability to be the next one in
the file to be carved. In order to be able to do this, the data has to be
completely decoded. That is, the file format has to be parsed, if
there is any compression, it has to be removed, and any other
encoding step has to be inverted as well, until the actual file con-
tents are available. In fact, these approaches are a progression of the
fast object validation mentioned in the paragraph before. However,
instead of returning a binary value (“validates” or “does not vali-
date”) the pixel comparison returns probabilities.

In summary, the existing approaches do not implement what we
would consider as syntactical file carving. On the one hand, the are
approaches utilizing features of the actual file contents. These
features are usually computationally expensive and complex to
obtain. On the other hand, there are approaches which only use the
file structure in a very rudimentary way. Moreover, they typically
use these features only to more precisely find the point where a file
is corrupted or fragmented but do not implement any means to
further reconstruct a fragmented file. We argue that the syntax of a
file format can be used not only to find fragmentation points more
precisely but also to aid in the reassembly of fragmented files.

4. Carving PNG files

In this section we describe our approach to phase-based, syn-
tactical file carving of PNG files using their internal structure to
facilitate the carving process.

4.1. Phase zero: signature search

During the initial step, the given disk image is searched for all
occurrences of PNG-specific signatures. Besides the PNG start
signature marking the very beginning of a PNG file, we also look for
the 26 registered chunk types (i.e. their signatures) defined in the
PNG specification. Since the PNG start signature was designed to
reduce the possibility of incorrectly identifying data as a PNG file
(W3C, 2003), it is used as the primary header signature during our
carving process limiting the chance of finding false positives. The
PNG start signature is compulsorily followed by the THDR chunk.
For this reason, we additionally check that the number of PNG start
signatures and the number of THDR signatures found are equal.

4.2. Phase one: chunk jumps

This phase is responsible for identifying contiguous sequences
of PNG files. For non-fragmented PNGs, this results in carving the
whole file. As already mentioned, each chunk in a PNG file starts
with a four byte integer specifying its length. Assuming that there is
no fragmentation, this information indicates the end of the current
chunk as well as the beginning of the next chunk. Especially, it
enables us to easily compute the expected location of the signature
of the next chunk. Once we know this position, we check whether
the bytes at this position are actually a valid PNG chunk type. If this
is the case, we compute the CRC of the current chunk and compare
it to the value stored at the end of the chunk.

This step, which we refer to as a chunk jump, is repeated until the
last chunk of the PNG file, the TEND chunk, is reached. Whether a
single chunk jump was successful or not, is determined by three
different criteria:

1. After performing a chunk jump, there has to be valid PNG
chunk type signature.

2. Valid PNG chunk signatures have to follow the ordering con-
straints defined in the PNG specification (W3C, 2003).

3. The CRC checksum at the end of the chunk has to match the CRC
checksum calculated over the data jumped over.

If all chunk jumps starting at a PNG signature and ending at an
TEND chunk were successful, as shown in Fig. 2, the PNG file is
completely carved and extracted from the disk image. During this
process, all non-fragmented files are carved. In case of a missing
valid PNG chunk type after a chunk jump, a broken ordering
constraint, or a CRC mismatch, the next phase of the carving pro-
cess is initiated as soon as phase one is completed.
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Fig. 2. Successful chunk jumps of a non-fragmented PNG file.

4.3. Phase two: bifragment block generator

Fig. 3 shows an example of an unsuccessful chunk jump caused
by a fragmented PNG file. Since we know that all chunk jumps,
except for the last one, should end at another chunk, we are
expecting a PNG chunk type signature after a valid chunk jump. We
employ the database of PNG chunk type signatures created in phase
zero to find the next fragment of the current file. In theory, every
signature in this database could be the correct successor of our
current chunk. To reduce the number of candidates we first exploit
the fact that storage devices use a fixed block size when reading
and writing data. On account of this fixed block size as well as the
length specified in the chunk, we can compute the offset of the
expected chunk type signature within its block. This allows us to
filter out all chunk type signature candidates which are located at
an incompatible offset. To filter out even more candidates we also
consider the chunk ordering constraints. That is, only chunk types
which are allowed after the current chunk are taken into account.
These two filtering steps should already eliminate most of the
available candidates leaving us with a comparatively small number
of possible successors.

After the filtering, the combinations for the data blocks in be-
tween the known chunk start and the possible end candidates are
generated. Note that we only consider data blocks of the disk image
which have not been used by previously identified PNG parts. This
also holds for following phases. Possible block combinations are
generated by block generators. Given a start as well as an end block,
different strategies are used to find the correct corresponding
chunk data.

During phase one, the bifragment block generator generates
candidates similar to the bifragment gap carving described by
Garfinkel (2007). This approach exploits the fact that the majority
of files are bifragmented resulting in the fragmented data being
stored right after the chunk start as well as right before the chunk
end. Knowing the length of the data and, thus, also the gap size,
enables us to efficiently create block candidates also for non-
sequential fragments. Furthermore, we use the CRC stored at the
end of every chunk to validate the correct block combination. The
bifragment block generator starts with the maximum number of
blocks at the chunk start, which is decremented while increasing
the number of candidate blocks at the chunk end, maintaining the
total number of required blocks. Fig. 4 illustrates the principle of the

Offset Expected Offset Chunk
within block chunk end  within block end

] 1

Fragment 1

C;:I:tk Fragment 2

Fig. 3. Failed chunk jump of a bifragmented PNG file.
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Fig. 4. Example of the bifragment block generator for combinations of three blocks of
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Fig. 5. Example of a PNG fragmented into four fragments.

bifragment block generator generating combinations for three
blocks with start block 4 and end block 11.

In fact, the bifragment block generator does not only succeed in
the case of bifragmented PNG files. Since we are exploiting the
syntax of PNG, we are able to use the detected chunk signatures as
anchor points during the carving process. This reduces the problem
of carving a whole PNG file at once to the problem of carving each
chunk of the file individually. This makes the bifragment block
generator applicable every time a chunk is bifragmented. As an
example, Fig. 5 shows a PNG file split into four fragments. Without
any additional information, finding the fragmentation points as
well as reassembling the fragments is most certainly unfeasible.
Using the chunk signatures of PNG, we are able to detect not only
which chunks are fragmented, but also their start and possible
ends. This information along with the block combinations gener-
ated by the bifragment block generator, enables us to correctly
reassemble the bifragmented chunks and, finally, the whole frag-
mented PNG file.

4.4. Phase three: sliding window block generator

As described in the previous section, the combinations gener-
ated by the bifragment block generator succeed only for PNG files
containing at most bifragmented chunks. If a chunk is split into
more than two fragments, one of its fragments does not contain a
PNG chunk signature and, thus, no syntax we could benefit from.
Nevertheless, we still know the expected amount of data in be-
tween the first and last fragment. Moreover, the CRC checksum can
still be used to identify the correct block combination.

In the very first step of this phase, a window of the size of the
number of blocks required for the chunk to be complete is created.
This window is then slid from the fragment containing the chunk
start to the fragment containing the chunk end. An example of a
sliding window block generator is displayed in Fig. 6. Note that the
sliding window is also moved between the chunk end and the
chunk start (not depicted in the figure) in order to handle cases
where fragments are stored out of order. Also, combinations
already generated during the previous phase are not generated
again.

In case no correct block combination was found, the numbers of
blocks following the chunk start and preceding the chunk end are
fixed and increased (cf. Fig. 7). This is done since fragmentation
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Fig. 7. Sliding window block generator for three blocks with fixed number of blocks at
the start and end.

does not necessarily occur right after or before the chunk start or
end block respectively. Whenever possible, the initial fixed number
of blocks is chosen with respect to a logical border, e.g. the amount
of blocks between the chunk start and the next PNG start signature
or the end of the disk image. The size of the sliding window is
adjusted according to the fixed blocks as shown in Fig. 7.

4.5. Phase four: brute force block generator

If none of the previous phases succeeds, the brute force block
generator is initiated as a last resort. As its name suggests, all
possible block combinations are brute forced and randomly
generated. This approach is very time consuming even for a small
number of blocks and, thus, most likely not feasible for realistic disk
images. Note that we did not use this block generator in our
evaluation.

4.6. Phase five: corrupted PNGs

In the last phase we handle corrupted PNG files. A PNG is
considered to be corrupted when all block generators failed (e.g. by
CRC mismatch), when the number of available blocks is smaller
than the required number of blocks, or when no matching chunk
signatures are left. In such cases we carve everything of the file that
has been validated so far. Additionally, we append as many bytes
after the fragmented chunk as indicated by its length field. Of
course, this may result in random data being carved. Still, most
image viewers are able to decode the image data up to the point
where invalid data appears. This means that all of the correct data
will still be viewable.

4.7. Search space reduction

One of the crucial factors to significantly improve the efficiency
of the block generators—and of fragmented file carving in

Fig. 8. Sliding window with used blocks.

general—is to reduce the number of candidates to consider when
trying to find the exact fragmentation point and the beginning of
the next fragment. In this section we present several techniques
that we employ to enhance the efficiency of our approach.

As depicted in Fig. 8, the number of block combinations to be
generated can be drastically reduced as soon as there are blocks
that do not have to be considered. Such blocks are for instance
those that belong to an already successfully carved file. Therefore,
we keep track of all blocks that belong to parts of a file which have
been validated and do not consider them any further. That is, the
block generators will skip already used blocks and will not generate
combinations containing them.

Starting with phase 3, we also run the block generators of the
previous phases, before applying the block generator of the current
phase. Due to newly added used blocks, the simpler and less time-
consuming block generators may succeed now.

What is more, the previously described phases are not only
started from the PNG start signatures. Instead, they are initiated for
each and every detected chunk signature as well. Doing so results in
already successfully validated larger parts of PNG files. This
approach not only increases the number of blocks which are
marked as used, it also reduces the number of chunk signatures to
consider when trying to find the next fragment of a file. Considering
that a large part of the files will not be fragmented or at least will
not be fragmented into a lot of fragments, these techniques result in
a significant reduction of the search space.

Finally, all of the operations can easily be carried out in parallel
since we only work on the file structure and do not need any data
from already validated parts of a file. All of this is possible due to the
syntax of PNG files enabling us to identify and validate fragments
independently from other carving processes.

5. File carving datasets

Grajeda et al. (2017) already emphasized that the availability of
datasets for the digital forensics community is far from perfect. Less
than 4% of the datasets created for research are made available and
shared with the public afterwards. This thwarts reproducibility and
makes a meaningful comparison between methods and tools very
difficult. Moreover, the creation of datasets from scratch each and
every time is not only time-consuming, but also complex and error-
prone if done manually.

For the evaluation of file carvers, many different scenarios of file
fragmentation and corruptions have to be created. The DFRWS
forensic challenges from 2006 to 2007 provided test files contain-
ing such scenarios particularly designed to evaluate file carving
approaches. Furthermore, the creators did not only provide a
detailed listing of the used scenarios, but also the exact offsets of
every fragment in the test files. Therefore, these files are still used
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nowadays to show the usefulness of new carving algorithms.

Understandably, the challenges did not cover each and every
existing file type. Unfortunately, PNG was one of the file types not
included in any of the challenges. For this reason, we decided to
create an image generation framework specifically designed to aid
in the evaluation of file carvers. Our goal was to provide an easy to
use framework for the creation of even complex file carving sce-
narios similar to those covered in the DFRWS challenges.

5.1. Automatic generation of file carving datasets

Fragments are the basic building block used in our framework.
A fragment can be either a FileFragment ora FillerFragment.
A File Fragment—as the name suggests—is a fragment of a
certain file and contains real data to be carved. FillerFragments,
on the other hand, are fragments of a given size with user-defined
or random data. On each of these fragments, file or filler, it is
possible to perform a range of operations:

o New fragments can be created by splitting an existing fragment.
This is possible by dividing a fragment into a user-defined
number of uniformly or randomly sized fragments as well as
providing the exact fragmentation offsets. This can also be done
recursively, i.e. splitting a created fragment again. Since each
fragmentation is carried out with block-sized granularity, only
the last fragment of a file can be smaller than the specified block
size.

¢ Another way of manipulating an existing fragment is to remove
parts of it. This includes methods for removing the start or end
of a fragment, e.g. to remove headers and footers of a file. The
amount of data to be removed is specified in bytes. Also, the
result of these two operations is a single fragment object. On the
other hand, removing multiple blocks in the middle results in
two fragments.

In the next step, fragments are combined into a Scenario. A
scenario acts as a wrapper around its fragments making it possible
to perform various operations.

¢ Adding a fragment to a scenario is the most simple operation in
order to create any possible configuration of fragments
manually.

e The intertwine operation is used to add new fragments in an
alternating sequence in between the existing fragments of a
scenario. E.g., it can be used to add fillers in between fragments
of an existing scenario.

e Other operations on a scenario include shuffling, reversing or
explicitly changing the order of its current fragments.

In the end, multiple scenarios are added to an Image used to log
information about the exact offsets of the used fragments as well as
to write the data to disk. Moreover, the fragments are aligned to a
specified block size by padding smaller fragments when required.

5.2. DFRWS file carving challenge

As already mentioned, the DFRWS challenges from 2006 to 2007
featured datasets covering various scenarios for the evaluation of
file carvers. Since these images did not include any PNG files, we
decided to recreate the scenarios using our framework. For this
purpose, we initially surveyed the fragmentation scenarios
included in the challenges and organized them by dividing their
characteristics into the following four categories:

o Files: This includes not only the number of files used for a sce-
nario, but also which files have been selected. The maximum
number of files for a scenario used throughout the challenge is
four.
Fragments: The files are furthermore divided into a certain
number of fragments. For this step, the fragmentation points are
an important property. In the DFRWS challenges, the fragmen-
tation points appear to have been chosen at random for each
fragmentation within a scenario while the maximum number of
fragments created per file was four. Additionally, some scenarios
had some fragments missing, including the start, middle, or end
of a fragmented file.

Order: All of the created fragments have been arranged in a

certain order. This can also mean simply reversing the given

fragments. Intertwining fragments also belongs into this cate-
gory since it is simply a specific way of ordering fragments. For
most of the scenarios in the DFRWS challenge, an exact order
has been provided. The order of the fragments in the inter-

twined scenarios, though, does not appear to be following a

particular ordering scheme.

o Filler: Some scenarios make use of fillers between fragments.
Fillers in the DFRWS challenges are either random data or (parts
of) other files. Aligning fragments to clusters by using padding is
also part of this category. Each fragment in the DFRWS is
padded, so that it is aligned to the given block sizes of 512 bytes.

Subsequently, we generalized the scenarios with respect to the
aforementioned criteria and used them to create our evaluation
scenarios containing PNG files. As in the original challenges, the
exact fragmentation points of the files are chosen randomly in our
scenarios. This also holds for the order and number of fragments
per file in the sequential intertwine scenarios. Furthermore, the
PNGs were selected randomly from a custom dataset consisting of
PNG files varying in size, structure and content. These PNGs as well
as any accompanying files required to recreate our scenarios are
publicly available (Hilgert et al., 2019) to enable reproducibility.

Our evaluation scenarios including their characteristics are lis-
ted in Table 1. Some scenarios contain PNG files which are incom-
plete (indicated by a T). Moreover, scenarios 19, 20, and 22 contain
PNG files missing their beginning. In these cases, it is already
certain from the beginning that it will not be possible to display
these PNGs even if they were carved.

6. Evaluation

For the evaluation, we chose to compare our prototypical
implementation of a syntactical PNG file carver with the most
prominent open source file carvers, namely Scalpel, Foremost, and
PhotoRec. Scalpel uses a configuration file defining the headers as
well as the footers of a certain file type. Unfortunately, in the default
configuration for PNG, neither the header nor the footer byte se-
quences were correct. We modified the configuration file according
to the PNG specification using 89 50 4e 47 0d Oa la 0Oa for the
header and 49 45 4e 44 ae 42 60 82 for the footer. Additionally, we
adjusted the maximum PNG file size to 200 MB as some of the files
in our dataset are larger than the default size of 20 MB. Foremost is
run with its built-in PNG extractor not using the configuration file.
Moreover, we enabled the options to keep corrupted or incomplete
files (e.g. due to missing footers), since some of our scenarios
contain incomplete files. Apart from the aforementioned options,
we used the default configurations of the carvers.

For the evaluation, we created 50 instances of each of the sce-
narios listed in Table 1. Each of these instances is unique with re-
gard to the fragmentation points, the used PNG files, and the
padding and filler data resulting in a broader test coverage.
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Scenarios created to evaluate our carver. An asterisk (*) indicates that the value was generated randomly and may vary between the different
instances of the scenario, a ' indicates scenarios with missing fragments.

Scenario PNGs Fragments Description Order

1 1 1 non fragmented 1

2 1 2 non-sequential 1b 1a

3 1 2 with filler 1a FILLER 1b
4 2 2 with PNG in between la21b

5 1 3 with filler 1a FILLER 1b FILLER 1c
6 1 3 non-sequential lalc1b

7 1 3 non-sequential 1b1a1c

8 1 3 non-sequential 1b1c1a

9 1 3 non-sequential 1cla1b

10 1 3 non-sequential 1c1b1a

11 1 4 non-sequential lalc1b1d
12 1f 2 missing end 1a

13 1f 3 missing middle lalc

14 1f 3 missing end 1a FILLER 1b
15 1f 3 missing middle, non-sequential 1c1a

16 1f 3 missing end, non-sequential 1b 1a

17 2 2 intertwined, non-sequential 1b2b1a2a
18 21 2 intertwined, 2nd missing end la2a1b

19 2f 2 1st missing end, 2nd missing start, continuous 1a 2b

20 2f 2 1st missing end, 2nd missing start, with filler 1a FILLER 2b
21 21 2 1st missing end, 2nd out of order 1a2b2a

22 21 2 2nd missing start and in between 1st fragments la2b1b

23 2f 2 1st missing end, with filler 1a 2a FILLER 2b
24 2 * intertwined, sequential *

25 3 * intertwined, sequential *

26 4 * intertwined, sequential *

All carvers were run on each scenario instance with the afore-
mentioned configurations. Additionally, we set a timeout of 1 h per
run in order to terminate cases in which a carver would take an
impracticably long time.

The results of the carvers were evaluated manually and each
carved file was graded into one of the following five categories:

o Complete carved files are those, that are viewable and show the
complete image data without any alteration of colors, trans-
parency or content. This also includes carved files with addi-
tional data after their actual end. Note that for particular
scenarios (marked with a ), the term complete refers to the
actual part of the PNG that could have been carved and dis-
played (e.g. only the first part of a PNG missing its middle).
Carved files with minor alterations are those which can be
opened with an image viewer and at least 50% of the image
content has to be viewable. Moreover, only minor changes in
color and transparency are allowed.

On the other hand, carved files with major alterations include
PNG files whose majority of the content (<«50%) cannot be
displayed.

Corrupted or missing files include files which cannot be opened
with an image viewer, files which do not contain any actual
image data (e.g. just a transparent or black rectangle), or PNGs
which are completely missing.

False positives did not occur during our evaluation and are thus
not present in the table.

We used GIMP in version 2.8.22 linked with libpng in version
1.6.34 for the assessment of the carved files. GIMP proved to be very
generous with respect to CRC errors in PNG, meaning that even
corrupted files were decoded and displayed as far as possible.

Table 2 lists the results of the carvers. The first column indicates
the scenario number and the second column the number of ex-
pected PNG files. Note that for the scenarios 19, 20, and 22 this
number is different from the number of PNGs in this scenario (cf.
Table 1). This is because these scenarios contain files with their

start missing and we do not expect these files to be carved and
neither do we expect them do be viewable. Each carver column is
divided into five sub-columns. The first one indicates the total
number of files carved, the second one the complete files, followed
by the files with minor alterations, then files with major alterations,
and finally missing or corrupted files. Since the last sub-column
means corrupted or missing, the numbers of the last four sub-
columns do not necessarily sum up to the number of total files
carved (first sub-column).

The first thing to notice is that none of the file carvers produced
any false positives in our scenarios.

Our syntactical PNG file carving approach was able to success-
fully carve all instances of 20 of the 26 different scenarios. We
investigated the overall 38 files which have not been completely
carved and found that these files were incomplete because our
carver was stopped after the timeout of 1 h. A closer look at the
scenario instances revealed that the files were fragmented in such a
way that some of the fragments contained not enough structure for
our approach to be efficient. Most of the times these timeouts
occurred when a single IDAT was fragmented into more than two
fragments. This results in at least one fragment containing only
compressed data and no syntax that our carver could benefit from.
In such cases, a vast number of block combinations has to be tested
before the correct one is found. For single instances, we tested our
carver without a time limit and found that it eventually carved the
corresponding files completely.

The other evaluated carvers performed well when the data to be
carved was stored contiguously, i.e. when the complete files or, in
case of missing data, the remaining fragments were stored without
any fragmentation and in correct order. On the other hand, even in
simple fragmentation scenarios such as scenario 3, none of the
other carvers was able to carve the files completely.

While Scalpel performed as expected, we found that Foremost
and PhotoRec performed worse than supposed. For Foremost we
found that there is a hard-coded check whether the image di-
mensions parsed from the THDR are smaller than 3000 x 3000
pixels. Some of the PNGs in our dataset are larger than that
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Table 2
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Evaluation results. The carver sub-columns indicate the total files carved, complete files, files with minor alteration, files with major alteration, missing/corrupted files. A T in-

dicates scenarios with missing fragments.

# | PNGs pngCarver Foremost Scalpel PhotoRec
1 5 | 50 50 0 0O O[5 13 0 37 0[5 50 0 0 0[5 50 0 0 0
2 50 |50 50 0 0 0|5 0 4 46 0|50 2 28 20 0|37 0 14 23
3 50 |50 50 0 0 0|5 0 5 45 0|5 0 27 23 0|0 0 0 O
4| 100 | 100 100 0 0 0| 9 13 5 78 N 100 51 32 17 0| 83 [81 2 0
5 50 |50 48 02 0|5 0 2 48 0|5 0 18 30 @M 0o 0 0 0
6 50 |50 48 1 1 0|5 0 1 49 0|5 o0 15 3 0|0 0 0 O
7 50 |50 50 0 0 0|5 0 6 42 W2W 50 o0 17 31 4 0 0 4
8 50 |50 50 0 0 0|5 0 2 48 0|5 0 18 31 40 0 10 30
9 50 |50 50 0 0 0[5 0 4 46 0|45 0 29 16 36 0 20 16
10 5 |50 50 0 0 0|5 0 0 5 05 0 15 31 45 0 5 41
11 50 |50 44 1 5 0|5 0 0 50 0|5 0 5 45 0| 6 0 0 6
12 500 | 50 50 0 0 0|50 9 6 34 W 50 50 0 0 0]22 22 0 0
13 500 | 50 50 0 0 0|50 8 18 24 0|5 49 o0 1 0|0 0 0 O
14 500 | 50 37 8 5 0[50 0 11 37 B2W 50 o0 28 21 B 7 o0 4 4
15 500 | 50 50 0 O O| 50 16 11 23 0 |50 (499 1 0 0|4 4 0 0
16 500 | 50 36 7 7 0|5 0 13 37 0|5 0 32 18 0|45 0 28 17
17| 100 | 100 100 0 0 0| 9 0 11 79 100 0 44 54 J2§ 100 0 45 53
18 | 1007 | 100 100 0 0 0| 97 ‘11 14 72 . 100 '50 33 17 0| 50 0 31 19
19 500 | 50 50 0 0O 0|5 9 7 3 0[5 5 0 0 0[O0 0 0 O
20 500 | 50 50 0 0O 0|5 13 5 3 0|5 5 0 0 0|2 "2 0 0
21| 100" | 100 100 0 O 0| 100 17 17 66 0 | 100 50 29 21 0| 54 5 26 23
22 500 | 50 49 01 0|5 15 6 29 0|5 39 8 3 0|0 0 0 O
23| 100" | 100 100 O O O| 97 10 15 72 100 50 28 22 0| 50 43 7 0
24| 100 |100 100 O O O| 95 0 13 82 100 0 39 61 0|5 0 19 31
25| 150 | 150 150 O O O | 145 0 15 130 150 0 49 99 75 0 23 NS
26| 200 | 200 200 0 0O 0[193 0 30 162 200 0 80 119 104 0 49 53

resulting in Foremost carving only the first 1 MB of these files. For
PhotoRec we did not find an obvious reason why it did not perform
as expected.

7. Limitations and future work

Although our approach proved to be able to carve files correctly
even in complex fragmentation scenarios, there are still some
limitations which will be discussed in this section.

In cases of missing fragments in the middle of a PNG file, our
approach is only restoring the first part and discarding the rest.
Padding the missing parts in these cases is not useful, since such
PNGs can only be displayed up to the padded part anyway. This is
due to the fact that padded data most certainly corrupts the com-
pressed PNG data stream. Here, it would be necessary to pad with
data which does not interfere with the decompression of the data
stream. This is a complex research topic on its own and beyond the
scope of this paper.

For the detection of succeeding chunk candidates, our approach
relies on the block alignment used by storage devices as described
in Section 4.3. For most storage devices the fixed sector size is well-
known and can, thus, be used by our implementation. Modern file
systems like ZFS on the other side make use of dynamically-sized
blocks. Therefore, it is necessary to examine if and how this
behavior influences our approach—especially when multiple and
various block sizes are used on a single file system.

Finally, our syntactical approach for PNG file carving is obviously

highly dependent on the syntax of PNG. Thus, fragmented PNG files
with a lack of syntactical information do not benefit from our
approach and require more time to be carved. Moreover, frag-
mentation points at certain offsets, e.g. right before a chunk
signature or in the middle of a CRC, hamper our approach and result
in more block combinations having to be generated. Though these
cases were not encountered during our evaluation, they need to be
considered and handled in future developments.

8. Conclusion

Syntactical file carving utilizes the syntax of a file format to the
maximum extent. Using PNG as an example, we showed that this
approach enables effective file carving even in very complex frag-
mentation scenarios. Of course, syntactical file carving can only be
applied to file types having a sufficiently well-defined syntax. In
such cases, however, exploiting features of the syntax can drasti-
cally simplify the carving process. For instance, it is often possible to
very easily carve the single parts of a fragmented file indepen-
dently. Afterwards, these parts only have to be reassembled.
Moreover, the operations required to apply syntactical file carving
are often less complex and less computationally expensive than
content-based approaches.

Since we were not able to find suitable datasets to evaluate our
approach, we created a framework allowing the easy and auto-
mated creation of dataset which can be used in the assessment of
file carvers. Using our framework, datasets similar to the ones used
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in the DFRWS forensic challenges from 2006 to 2007 can be created
with just a few lines of code and configuration. We hope that this
framework fosters the research of more advanced file carving ap-
proaches as well as the availability of datasets open to the public to
enable the reproducibility of published evaluation results.
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