72DFRWS

DIGITAL FORENSIC RESEARCH CONFERENCE

Windows Memory Forensics:
Detecting (Un)Intentionally Hidden Injected Code by
Examining Page Table Entries

By

Frank Block and Andreas Dewald

From the proceedings of

The Digital Forensic Research Conference
DFRWS 2019 USA
Portland, OR (July 15th - 19th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics
research. Ever since it organized the first open workshop devoted to digital forensics
in 2001, DFRWS continues to bring academics and practitioners together in an
informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,
annual conferences and challenges to help drive the direction of research and

development.

https://dfrws.org

Digital Investigation 29 (2019) S3—S12

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

DFRWS 2019 USA — Proceedings of the Nineteenth Annual DFRWS USA

Windows Memory Forensics: Detecting (Un)Intentionally Hidden N
Injected Code by Examining Page Table Entries e

Frank Block *" ", Andreas Dewald * P

2 ERNW Research GmbH, Heidelberg, Germany
Y Friedrich-Alexander University Erlangen-Nuremberg (FAU), Germany

ARTICLE INFO ABSTRACT

Article history: Malware utilizes code injection techniques to either manipulate other processes (e.g. done by banking
trojans) or hide its existence. With some exceptions, such as ROP gadgets, the injected code needs to be
executable by the CPU (at least at some point in time). In this work, we cover and evaluate hiding
techniques that prevent executable pages (containing injected code) from being reported by current
detection tools. These techniques can either be implemented by malware in order to hide its injected

code (as already observed) or can, in one case, unintentionally be taken care of by the operating system

Keywords:
Memory forensics
Code injection

\[/)\fitneg:;\?vz through its paging mechanism. In a second step, we present an approach to reveal such pages despite the
Malware mentioned hiding techniques by examining Page Table Entries. We implement our approach in a plugin
Rekall for the memory forensic framework Rekall, which automatically reports any memory region containing

executable pages, and evaluate it against own implementations of different hiding techniques, as well as
against real-world malware samples.
© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Memory forensics has become more and more important over
the last decade for different reasons: On the one hand, we observe
malware that does not persist itself on a persistent storage device
and can only be observed in the running state of the victim host. On
the other hand, live analysis is not always capable of generating
reliable results as the victim host might be compromised with a
kernel level Rootkit, using attack techniques that effectively
manipulate information gathered during the analysis. The presence
of such malware can be proven by analyzing a main memory image
of the system (captured by one of the many existing techniques,
which we do not want to discuss here). Besides kernel level mal-
ware, there is also user space malware which uses its own set of
techniques in order to get its task accomplished. One such tech-
nique are code injections.

1.1. Motivation
User space malware utilizes code injection techniques to

manipulate other processes or hide its existence. However, current

* Corresponding author.
E-mail address: fblock@ernw.de (F. Block).

https://doi.org/10.1016/j.diin.2019.04.008

tools/plugins for code injection detection are not able to cope with
the existing injection techniques and fail to reliably reveal existing
malware utilizing certain hiding techniques. This is due to the in-
formation they rely on, for example the VAD (Russinovich et al.,
2005; Dolan-Gavitt, 2007), which has a protection field that plu-
gins use to detect executable code. An attacker can, however, create
executable memory in a certain way so the VAD does not indicate
that it is executable and detection mechanisms won't report it. On
the other hand, it is possible to exploit the paging mechanism in
order to hide injected code. As some plugins prevent to report
empty memory (filled with zeros or not yet allocated), they fail to
report memory regions related to code injection when the corre-
sponding pages have been paged out. This can also happen unin-
tentionally, when the Operating Sytem writes malicious pages into
the pagefile on memory shortage.

In this work, we introduce a novel approach to reveal all
executable pages that are of potential interest for an investigator for
a given user space process, despite the hiding techniques covered in
this paper. Ignored are only yet not allocated memory pages and
unmodified pages of mapped image files (loaded executables and
DLLs), as these don't contain any injected code. In order to retrieve
the actual executable state of a page and to differentiate yet not
allocated memory from currently inaccessible memory, we
examine the Page Table Entries which we enumerate via the paging
structures, instead of the VADS, as it is faster and more reliable

1742-2876/© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fblock@ernw.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2019.04.008&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2019.04.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2019.04.008
https://doi.org/10.1016/j.diin.2019.04.008

S4 E Block, A. Dewald / Digital Investigation 29 (2019) S3—S12

(White et al., 2012). While this work also covers mapped files, our
focus is on anonymous memory as mapped files are already mostly
covered by White et al. (2013).

The resulting plugin has been evaluated on both, x86 and
x86_64 Windows 7 and Windows 10 VMs. The source code and
binary format (where applicable) respectively links and hashes of
all applications, malware samples and plugins used in this work are
publicly available in our online repository (Block, 2019), to allow an
easy reproducibility and verification of our results.

1.2. Contributions
The contributions of this paper are:

e An algorithm which retrieves a page's actual protection from its
PTE value and hence, its executable state despite any hiding
technique described in this work.

e A Rekall plugin that implements the algorithm and prints all
VADs with executable pages, potentially containing malicious
code.

1.3. Related work

This paper can be seen as a supplement of the great work done
by White et al. (2013). They presented an approach to automatically
compare loaded executables and DLLs in memory with the actual
files on disk in order to detect any modifications. While they
already examined Page Table Entries in some cases in order to
retrieve a page's executable state, they still rely on the VAD pro-
tection and did not consider all states a PTE can be in and hence are
still prone to the mentioned hiding techniques. The resulting plugin
hashtest (White, 2013) is part of our evaluation.

Besides this more generic approach to detect injected code,
there has been some research concentrating on the detection of
specific code injection characteristics, which also resulted in
Volatility plugins. One such example is the work by KSL group
(2017a), which also covers the VAD-protection hiding technique.
While their approach is not prone to this hiding technique in the
context of Process Hollowing, the paper does not offer a generic
way of detecting executable pages despite this technique.

The other plugins that are part of our evaluation are:

o hollowfind (Monnappa, 2016b, 2017) Detects different types of
Process Hollowing attacks.

o threadmap (KSL group, 2017b) Detects Process Hollowing at-

tacks and anonymous VADs pointed to by threads.

malfofind (Pshoul, 2017a) Detects Process Hollowing attacks.

e Psinfo (Monnappa, 20163, 2016¢) Detects suspicious processes

by checking parent processes, command line arguments,

executable paths and VAD protections.

malthfind (Pshoul, 2017b) Detects call stack addresses pointing

to anonymous memory regions.

e gargoyle (Countercept, 2018; Hammond, 2018) Detects the

Gargoyle hiding technique. During our tests, the plugin failed

very often with exceptions and hence, we excluded it from the

evaluation.

malfind (Ligh et al.,, 2014) Detects VADs with execute permis-

sion. This plugin is available for Volatility (The Volatility

Foundation, 2017) and Rekall (Google Inc, 2019).

1.4. Outline

This work is structured as follows: Section 2 covers several code

injection techniques and especially fundamentals about Page
Table entries, which are required for the analysis and algorithm
presented in Section 4. In Section 3 we describe how injected code
can be hidden from detection tools/plugins, Section 5 covers the
evaluation of our and other detection plugins on the code injection
techniques and real-world malware examples which utilize the
hiding techniques, and Section 6 concludes this paper.

2. Fundamentals

This section describes the basics of our work. The first part
covers the code injection techniques that are used for the evalua-
tion. As already mentioned, we are in general interested in
executable pages but not in all kinds, as for example unmodified
pages of mapped image files are not interesting in the context of
code injections. Thus, the subsequent sections describe how we can
retrieve the information needed to get the executable state of each
page and differentiate interesting from uninteresting pages.

2.1. Code injection techniques

This section shortly describes several publicly known injection
techniques, against which we evaluate our approach in Section 5.1.
We concentrated on injection techniques that use anonymous
memory regions, as it is the focus of this work.

2.1.1. Remote Shellcode Injection
Remote Shellcode Injection is the simplest code injection tech-
nique, which consists of only three steps:

1. Allocate memory in the target remote process with EXECU-
TE_READWRITE protection.

2. Write the shellocde into the target process.

3. Execute the injected code.

2.1.2. Reflective DLL injection

The result of this technique (Fewer, 2013) is similar to a call of
LoadLibrary by a victim process: A new library is loaded in the
context of the victim process. The loading process is, however, not
performed by an Operating System API but instead by a loader
function within the DLL itself. The attack steps are similar to Remote
Shellcode Injection except that the DLL is written into the allocated
memory region. When the reflective loader within the DLL is
executed, it loads itself (the DLL) into a new memory region by
performing the same tasks as LoadLibrary. The result of a successful
Reflective DLL Injection are hence typically two new VADs in the
victim process with EXECUTE_READWRITE protection and one
loaded DLL but without the unwanted side effects that result from a
LoadLibrary call (the DLL will for example not show up in the list of
loaded DLLs).

2.1.3. Atom Bombing

The part, which the injection technique AtomBombing (enSilo
inc, 2016) got its name from, is the usage of Windows’ global
atom table. An atom table is an indexed table, storing strings, while
the atom (a 16-bit integer) serves as the index (Microsoft
Corporation, 2018b). This table is exploited in order to make data,
originating from one process, accessible to another process. By
combining the atom table with the ability to instruct the target
process to call a specific API (GlobalGetAtomName), it is possible to
write code from one process to another and hence, in essence, re-
builds the functionality of the API WriteProcessMemory. The more
interesting part of this technique for this work is where and how
the injected data is stored, which consists of two parts. The firstis a

E Block, A. Dewald / Digital Investigation 29 (2019) S3—S12 S5

ROP chain that gets written to an already existing RW memory
region and the second is the result of executing the ROP chain: a
newly allocated RWX memory region where the shellcode gets
copied to and executed.

2.14. Process Hollowing

The general approach of this technique has not changed
significantly from the first known description in 2004 by Keong
(2004) and boils down to the following steps:

1. Create a process in the suspended state (ideally with a benign
executable).

2. Unmap the memory region of the original executable (e.g. via
the ZwUnmapViewOfSection API).

3. Write the new executable to the victim process (e.g. via the
WriteProcessMemory API).

4, The start address of the suspended thread is patched with the
one from the new executable.

5. Thread is resumed (e.g. via the ResumeThread API).

2.1.5. Gargoyle

Gargoyle is not an injection but a hiding technique that can
however be applied to injected code. The trick of Gargoyle is to set
the permissions of all pages containing the malicious code to non-
executable as long as the code doesn't need to run and only sets
them executable as long as the code is running.

Now that we have shortly revisited those different injection
techniques, the next sections describe fundamentals about private
and shared memory, PTEs, transition state and further basics.

2.2. Private and shared memory

Private memory is described by a VAD, only visible to the
owning process and does only contain anonymous memory (no
mapped files). While the creation of private memory specifies a
certain protection for the resulting memory pages, it is possible to
change the protection of all or specific pages, belonging to the VAD,
later on. This change can either restrict the access (e.g. from EXE-
CUTE_READWRITE to READWRITE) or extend it (e.g. from initially
READONLY to EXECUTE_READWRITE).

Shared memory on the other hand is, as the name suggests,
intended to be shared among different processes to allow an easy
exchange of data. It is, however, also used by the image loader to
map the executables, DLLs and device drivers into memory
(Yosifovich et al., 2017, p. 316). The image loader typically uses
Copy-on-write protection for them, so a memory modification will
not affect other processes or the file itself.

Besides this automatic creation of shared memory, it is also
possible to create shared memory manually, which applies to files
and anonymous memory. This memory is normally shared among
multiple processes but can also be used by just one process
(Yosifovich et al., 2017, p. 315). The shared memory is represented
by a so called section object (Yosifovich et al., 2017, p. 405), created
with a specific protection. There seems to be, however, no docu-
mented way to change that protection after creation. In order to
access shared memory, a process must map at least one view of the
section object, which creates a VAD and maps it into the process’
virtual address space. This view can have a different, but not an
arbitrary protection: It is possible to assign a protection less or
equal to that of the section object (e.g. from EXECUTE_READWRITE
to READWRITE but not the other way around) (Martignetti, 2012b, p.
310). The same applies for protection changes of the corresponding
memory pages later on.

2.3. Page Table Entries and the Page Frame Number database

A Page Table Entry (short PTE) is part of the translation process
from a virtual to a physical address and consists of a 64 bit value,
split into bitfields and flags (Cohen, 2014) (Intel Corporation, 2018a,
p. 4—27). For an active page, it contains the so called Page Frame
Number (short PFN), which points at the physical page containing
the content for the virtual page. The Page Frame Number database
(short PEN DB) is an array of _MMPFN structs with the PFN as an
index, which keeps track of physical pages and is maintained by the
Windows Operating System (Yosifovich et al., 2017, p. 425). It is
primarily used to accelerate the process of finding available phys-
ical pages but serves also valuable information for our purposes.
Every PFN DB entry describes one physical page and contains a field
called PrototypePte (accessible via its u4 member), which is a bit flag
that is set when the physical page belongs to shared memory.

There are two major types of PTEs to distinguish: The ones that
are accessed by the MMU to translate a virtual into a physical
address and the so called prototype PTEs, which are used in the
context of shared memory and are stored in a different area of the
kernel address space (Cohen, 2016). Throughout this paper we call
the first type MMU PTE and the second prototype PTE. A prototype
PTE tries to solve the problem of updating the information for a
page shared among different processes (Martignetti, 2012b, p.
295—-300) (the details on how a prototype PTE works are not
important for this work). The PFN DB entry has a member called
PteAddress which points to the physical page's describing PTE. For
private memory, this is a MMU PTE and for shared memory it is a
prototype PTE in which case the PrototypePte flag indicates just that
and hence, allows us to differentiate private from shared memory.

Pages belonging to mapped image files (loaded executable or
DLL) have this flag set as long as they are not modified. As soon as
they are modified, the Copy-on-write protection comes into play
and a new private page is mapped for this page and process, pre-
venting modification side effects on other processes. With the new
page comes also a new PFN DB entry, which now has the Proto-
typePte flag unset (Cohen, 2016) and allows us to identify modified
pages for mapped image files.

2.4. The different states of Page Table Entries

For each state, a MMU PTE can be in, there is a specific struct in
Windows, describing its bitfields and flags. Depending on the state
respectively applied struct, the same bits can have a different
meaning so it is important to apply the correct struct before
interpreting a MMU PTE value. We refer to a certain state in the
following sections also as an instance of a specific struct. While the
knowledge about the translation process is considered common
knowledge and not in particular required to understand the rest of
this work, the different states and their function within Windows
are fundamental and are explained in more Detail in the following
sections.

The following sections will also cover the Protection member
which is a bit field, storing a value defined by Windows' memory
manager and represents a page's protection. The value corresponds
to Windows' memory protections (Microsoft Corporation, 2019a)
but uses different constants (Martignetti, 2012b, p. 104) (for
example a value of 6 means EXECUTE_READWRITE (ReactOS
Foundation, 2013)).

2.4.1. Hardware state

There is one flag that is shared among all MMU PTEs: The Valid
flag. Only if this flag is set, the virtual address belongs to an active
physical page and the MMU will process the PTE. The struct that can
be applied in this case to interpret the PTE is _MMPTE_HARDWARE,

S6 E Block, A. Dewald / Digital Investigation 29 (2019) S3—S12

which contains a member called NoExecute that corresponds to bit
63 (Intel Corporation, 20183, p. 4—27) (the NX bit). By checking this
bit we can determine a page's executable state as an unset NX bit in
this case allows the CPU to fetch and execute instructions. A MMU
PTE in hardware state can belong to a private page or to shared
memory (anonymous, mapped data or image file) and can't be
distinguished solely on the PTE value. For this differentiation, the
PrototypePte flag of the PFN DB entry must be examined.

2.4.2. Transition state

If the Valid flag is unset, the MMU does not process the PTE any
further but a page fault is generated where the Operating System
will interpret the state of the PTE and act accordingly (Cohen, 2014).
While a MMU PTE in transition state is not valid (has an unset Valid
flag), the corresponding physical page is still available and the
PageFrameNumber still points to it. This state is, as the name sug-
gests, a transition phase from an active state into another one (the
next state depends on the type of memory) and gives the process a
last chance to access the page before it is removed from its working
set and the physical page freed for other content. This state can,
similar to the hardware state, be reached for private and shared
memory. The struct to apply in this case is _MMPTE_TRANSITION
and a MMU PTE in this state has the Valid and Prototype flag unset
and the Transition flag set. Regarding the executable state for this
case see Section 4.1.

2.4.3. Proto-pointer PTE

In this state, the MMU PTE is an instance of _MMPTE_PROTOTYPE
and should not be confused with a prototype PTE: It serves in fact as
a pointer to a prototype PTE and hence is called in this work a
proto-pointer PTE (Martignetti, 2012b, p. 297). A proto-pointer PTE
has the Valid flag unset and the Prototype flag set. The proto-pointer
PTE is only used in the context of shared memory and only occurs
when the corresponding physical page has been accessed before,
but is currently not anymore in the working set (a MMU PTE for a
not yet accessed shared memory page would be in the unaccessed
state; see Section 2.4.5).

There are two cases to differentiate:

o Ifthe ProtoAddress field has a value of Oxffffffff0000 (or Oxffffffff for
x86), the ProtoAddress does not directly point to a prototype PTE
(its address must be gathered from the VAD (Martignetti, 2012b, p.
311)) and the page protection has to be gathered in a special way:
The _MMPTE_SOFTWARE struct must be applied to the MMU PTE in
order to extract its executable state from the Protection field. The
differentiation isimportant since the Protection field is on different
positions for _MMPTE_PROTOTYPE and _MMPTE_SOFTWARE.

In all other cases, the ProtoAddress points to a prototype PTE. The
protection value can then not be read from the MMU PTE and
must be gathered through the prototype PTE (see Section 4.2.4).

2.4.4. Pagefile state

Another invalid state occurs when the physical page has been
written to the pagefile (paged out). This state is represented by a
MMU PTE instance of _MMPTE_SOFTWARE, where the Valid, Proto-
type and Transition flags are all unset but the PageFileHigh field has a
non-zero value (Yosifovich et al., 2017, p. 384). In this case, the
page's content cannot be read anymore from RAM but must be
gathered from the pagefile.

2.4.5. Unaccessed state

When a VAD has been created but its page(s) not yet been
accessed, there is no need to actually map a physical page and
hence, the MMU PTE value does not need to be set (there isn't a PFN

that can be set anyways). This initial MMU PTE value is in this case
zero and changed when the page is accessed for the first time. For
private memory, such a PTE state is also called demand zero, as on
access, a page of zeros is mapped in the process' address space
(Yosifovich et al., 2017, p. 384). The unaccessed state also occurs for
all types of shared memory, while in this case a page access typi-
cally leads to the mapping of already existing memory into the
process' address space. Besides the MMU PTE value of zero, there
are two known cases where a not yet accessed page has a non-zero
PTE value. The first is the result of changing the protection of a page
in the unaccessed state. The new protection is then stored in the
Protection field (can be read by applying the _MMPTE_SOFTWARE
struct), while all other fields remain zero. The only exception from
this are mapped image files. When the protection of a not yet
accessed image file's page is changed, it goes into the proto-pointer
state.

The second case are so called guard pages which technically are
also demand zero pages. Guard pages allow to reserve a huge
memory space while not having to commit much of it (the mini-
mum would be one page for the guard page itself), which comes at
alower cost (Martignetti, 2012b, p. 173). On access to a guard page, a
STATUS_GUARD_PAGE_VIOLATION exception is thrown which can be
reacted on (e.g. committing more pages). This mechanism is used
by the Virtual Memory Manager to automatically increase the user
mode stack (Martignetti, 2012b, p. 402) and when used by appli-
cations can be handled in the code. These pages share the same
characterstic as demand zero pages with modified protections: In all
our tests, the MMU PTE had only the Protection field set.

2.5. Large and huge pages

It is possible to allocate large and huge pages that have a size of
2-Mbyte and 1-Gbyte accordingly on x86 architectures (Yosifovich
et al,, 2017, pp. 303—304). “Some processors support configurable
page sizes, but Windows does not use this feature.” (Yosifovich
et al, 2017, p. 405) While the physical page for normal sized
pages are referenced by the entries in the Page-Table (ignoring all
special cases right now), large pages are referenced by an entry in
the Page-Directory Table and huge pages by an entry in the Page-
Directory-Pointer Table (see Intel's Documentation (Intel
Corporation, 2018a, p. 4—21). Large and huge pages have bit 1
(Valid or Present flag) and 7 (LargePage or PS flag) set, marking them
as a large/huge page (Intel Corporation, 20183, pp. 4-24—4-27), are
non-pageable and not part of the working set (Yosifovich et al.,
2017, p. 304).

3. (Un)Intentionally hiding injected code

This Section will primarily describe the hiding techniques in the
context of the malfind and hashtest plugins, as they implement a
generic approach of detecting injected code respectively executable
pages. The results for the other plugins are described in Section 5.1.

Volatility and Rekall's malfind plugin examines the protection
field of VADs in order to identify injected code. When a VAD has,
besides a few other criteria, a specific protection that includes the
WRITE and EXECUTE rights, malfind will identify this VAD as
potentially malicious and report it. That means, all VADs without
these rights are not considered by this plugin. As already stated in
2014 by Ligh et al. (2014), the VAD's protection field only contains
the initial protection, set during its allocation. So a VAD, with a
specific protection can contain pages with differing protections. It is
for example possible to allocate a VAD with a protection of
READONLY and later on, change the protection of all containing
pages (e.g. via VirtualProtectEx (Microsoft Corporation, 2019¢)) to
EXECUTE_READWRITE (KSL group, 2017a). So in order to hide its

E Block, A. Dewald / Digital Investigation 29 (2019) S3—S12 S7

code from malfind and other plugins relying on the protection field,
the attacker just has to allocate the memory initially with a pro-
tection without the WRITE or EXECUTE right and later on, add this
right to the pages containing the malicious code. As an alternative,
malware can also use an already existing VAD, without the WRITE
or EXECUTE right, and inject its code in an unused area while adding
these rights to the corresponding page(s). Because the WRITE right
is only required as long as code needs to be written, the final page
protection does not require this right at all. There is one further
scenario: Injected code can be hidden from malfind by using shared
memory (in particular anonymous) with a protection of EXECU-
TE_WRITECOPY (Monnappa, 2017), as it is explicitly omitted by the
plugin. These hiding techniques, except for the EXECUTE_WRITE-
COPY trick, also work for hashtest.

The other way to hide injected code is to make it unavailable,
from a memory forensics perspective. As paged out pages are not
present in RAM anymore but only in the pagefile(s), they are per
default not part of a memory dump. The problem with plugins such
as malfind and hashtest occurs when they try to access the data
behind an executable page. malfind on the one hand wants to
ignore empty pages, as there is nothing to investigate, and hence
does not report a VAD at all, if all pages appear empty. hashtest's
purpose on the other hand is to compare memory pages and hence
is not interested in unavailable memory. Since both, an actual
empty page and a paged out page that might contain malicious
content, appear to malfind's internal check for empty pages as
empty, a VAD with e.g. EXECUTE_READWRITE protection is not re-
ported by malfind if all pages are paged out. hashtest's output shows
the VAD in this case in its output, but reports that no page for that
VAD is executable.

Paging out pages can for example be triggered manually with
the SetProcessWorkingSetSize APl (Martignetti, 2012a; Microsoft
Corporation, 2019b), which allows to set the minimum and
maximum working set size of a given process and if both values are
set to —1, “removes as many pages as possible from the working set
of the specified process” (Microsoft Corporation, 2019b). The result
from a successful function call is, for private pages, typically first, a
PTE state change from hardware to transition, and afterwards to
pagefile state: The pages are written to the pagefile. While the
change from transition to pagefile can sometimes take some time, it
is possible to accelerate this process by allocating and accessing
new memory.

This hiding might, however, also happen unintentionally
(without any assistance by the malware). When the Operating
System e.g. requires physical pages for new processes and the pages
containing malicious code haven't been accessed lately, they can
get paged out. This automatic and the manual hiding works for
both, private and shared memory and hence can also be used to
hide modified mapped image files from hashtest (it is, however, not
perfectly reliable as the Windows Operating System decides if and
when it writes pages to the pagefile). While Rekall supports the
integration of pagefiles and hence can prevent this hiding tech-
nique, Volatility does not.

It should be noted that e.g. malfind prints a VAD referring to
non-empty pages, despite the fact that the memory has never been
accessed by the process. This happens when a process maps a view
of shared memory with active physical pages (they are not paged
out) but has not yet accessed them itself. While this behavior
doesn't hide any potential malicious content, it adds data to the
investigation which has never been part of the associated process.

4. Analysis

In order to detect executable pages of interest despite any of the
hiding techniques described in the previous Section, the MMU PTEs

must be examined. Its state and the information stored in the
corresponding PFN DB entry help us decide, whether or not we are
interested in the according page, and dictates how we have to
gather its protection information. The following sub sections
describe our analysis on PTEs and the page protection, an algorithm
to retrieve all executable pages of interest and an analysis on pro-
cesses with deactivated Data Execution Prevention. All analysis
results are based on extensive tests on Windows 7 x64 and Win-
dows 10 x64 VMs, primarily using the memory allocation tool
MemTest by Martignetti (2012a), WinDbg and Rekall (Google Inc,
2018a) (see also the documentation for test setups in our public
repository (Block, 2019)).

4.1. Retrieving the protection for a page in transition

There is more than one source that offers a Protection field for a
page in transition state, which includes at least the PFN DB's Orig-
inalPte member (used by hashtest (White et al., 2013, p. 63)) and the
MMU PTE (instance of _MMPTE_TRANSITION). The OriginalPte field
is for example used to store the protection value while the page is
active, especially when the permission of a page is changed
(Martignetti, 2012b, pp. 198,310). In order to find the correct and
fastest source for the page's protection (the MMU PTE would be
faster regarding the plugin runtime, as we already have its PTE
value and wouldn't have to read and examine the PFN DB entry), we
set up several experiments to see when and how the MMU PTE's
and OriginalPte's Protection field are set (the details about the setup
and tests are documented in our repository (Block, 2019)). The re-
sults for private memory can be summarized as follows:

e When a page in transition state gets active again (hardware
state), the old MMU PTE's Protection field defines the resulting
MMU PTE's protection (NX flag and so on). The OriginalPte does
not influence the final protection.

e When the page goes from active into transition state, the new
MMU PTE's Protection field is copied from the OriginalPte. In this
case, the old MMU PTE value does not influence the Protection
field.

So, as a private page in transition state has the same Protection
value as OriginalPte and moreover, the MMU PTE's Protection field
dictates the protection for the page when it is getting active again,
we use the MMU PTE to retrieve the page's protection.

While the OriginalPte's Protection field would be safe to use for
private pages, the situation changes for shared memory. A PFN DB
entry describes one physical page, which, however, can be shared
among various processes with different protections for their view.
When, for example, mapping a view with READWRITE protection of
a EXECUTE_READWRITE section object, the OriginalPte's Protection
field will state EXECUTE_READWRITE, while the page in the process’
address space is not executable. The reason why hashtest uses the
OriginalPte is probably the fact that the MMU PTE for shared
memory does not seem to ever enter the transition state but
directly changes into the proto-pointer state, in which case the
protection is, in particular for mapped image files, not always
available from the MMU PTE. When and how the protection must
be retrieved for these cases is described in Section 4.2.4.

4.2. Executable page detection algorithm

Fig. 1 illustrates the algorithm used to retrieve executable pages.
As mentioned in Section 1, we are not interested in not yet allocated
memory pages and unmodified pages of mapped image files. So,
there are further tests for some pages, besides their executable
state, that have to be done before they are included in the

S8 E Block, A. Dewald / Digital Investigation 29 (2019) S3—S12

Follow each PML4
entry and iterate over
all referenced PDPT
entries

lterate over all
referenced Page
Directory entrie

Yes Huge Page

Large Page

Yes

Page

Iterate over all o
referenced Page N a edgima
Table Entries PP 2

file

Yes
No

Unaccessed state
O

PFN
entry has

Prototype

Valid bit set bit set

Print Warning

Unknown/ No

Transition
bit set

== Oxffffffff or
OxffffffffO00

Transition state

Protection
field says

Protection
field ==

Examine
prototype PTE

Valid bit set NX bit set

Protection
field says

belongs to
apped imagge
file
No, Yes

Ignore No

No Yes Yes

Transition
bit set

Fig. 1. PTE decision diagram.

collection. It should be noted that, while we don't examine the
pages for being writable (as the attacker could have removed the
write permission after writing to the page), this algorithm can also
be used to retrieve that information.

While it would have been easier to enumerate the memory
pages via the VAD address information, our algorithm enumerates
the paging structures for the following reasons:

e Runtime: When using VAD ranges, it would be necessary to
translate every virtual address to a physical one by traversing all
the levels of paging structures again and again. Furthermore,
various virtual addresses would have to be translated, for which
either yet no page table (or a higher table) has been created or
their paging structures have been paged out. This can be pre-
vented by enumerating the paging structures directly and hence
reduces the required runtime.

More reliable: Since all VADs combined don't necessarily
describe the whole user space (White et al., 2012, p. 7) and an
attacker might alter the VAD's start and end address through
DKOM to hide certain pages, the PTEs are a more reliable
resource since they must be accessible and point to the correct
physical space in order for injected code to get executed by the
CPU.

The following sub sections describe the steps of our algorithm
from top to bottom according to Fig. 1.

4.2.1. Large and huge pages

Starting with the PML4 entries, we get references to Page-
Directory-Pointer Table entries (short PDPT entries), which we
examine for huge pages: A huge page has bit 1 (Valid flag) and 7
(LargePage flag) set. While large and huge pages are not referenced
by a Page-Table entry, the format of their bit fields is almost the
same as for a PTE in Hardware state, as illustrated in Intel's Docu-
mentation (Intel Corporation, 2018a, pp. 4-24—4-27) (the main
difference is the PS/LargePage flag). This means we can get the
executable state of a large and huge page similar to the approach in
Section 2.4.1 by applying the _MMPTE_HARDWARE struct to an table
entry and examining the NoExecute flag. If the NoExecute flag for the
huge page is unset, we include it.

For each valid PDPT entry that is no huge page, we iterate over
all referenced Page-Directory Table entries and perform the same
steps as for huge pages. As large and huge pages are non-pageable,
we don't have to care for special cases such as transition state.
When a Page Directory Entry (short PDE) is valid but no large page,
it references a Page Table and we iterate over all entries.

4.2.2. Unaccessed state

If the PTE value is zero, the entry can be ignored and skipped
directly. This is done for private but also shared memory (both
anonymous and mapped files) which in our tests had always a PTE
value of zero when the page has not been accessed so far. The other
case are not yet accessed pages with modified protections and
guard pages. So, while the executable state could be read directly
from the Protection field, a MMU PTE in this state with only the
Protection field set can also be skipped, as the actual page does not
yet exist. Skipping these PTE values also prevents the printing of
never accessed shared memory (see Section 3).

4.2.3. Hardware state
This is the simplest case, where the executable state can be
retrieved by applying the _MMPTE_HARDWARE struct to the PTE
value and checking the bit flag NoExecute (this field is missing for
x86 and we just check bit 63): If unset, the page is executable.
Before we include a page, we first have to consider unmodified

E Block, A. Dewald / Digital Investigation 29 (2019) S3—S12 S9

pages of mapped image files, which we don't want to include. As we
can't distinguish a private from a shared page solely from its PTE
value, we have to examine the PFN DB via the PTE's Page-
FrameNumber field. If the PFN DB entry has not the PrototypePte bit
field set, it belongs to a private page (which includes modified
pages from mapped image files) and we can include it. If it is set, the
page belongs to shared memory and we examine the correspond-
ing VAD for a mapped image file. We only include the page if it is
not related to a mapped image file, which includes, besides shared
anonymous memory, also mapped data files (see Section 4.3 for
further details).

4.2.4. Proto-pointer PTE

If the Valid flag is not set but, when applying the
_MMPTE_PROTOYPE struct, the Prototype field is set, the MMU PTE is
a proto-pointer PTE. This state is, depending on our tests and ob-
servations, in most cases the default for shared memory as soon as
the page is not valid anymore. The PTE containing the actual page's
state is the prototype PTE, which in some cases has to be accessed in
order to get a page's protection as the MMU PTE does not always
contain the protection for this state. If, however, the MMU PTE
contains the protection, it must be gathered from here as the pro-
totype PTE might not contain the correct protection (see Section 4.1).

If the ProtoAddress field has a value of Oxffffffff0000 (or Oxffffffff
for x86), we can get the page's protection by applying the
_MMPTE_SOFTWARE struct and reading the Protection field. If it is
executable and the page does not belong to a mapped image file, we
include it.

If the ProtoAddress field has another value, it normally means the
MMU PTE belongs to a mapped image file and could be ignored.
Besides pages of image files with changed protections (for those,
the ProtoAddress value is changed to Oxffffffff0000 and we could
read the protection as explained before), we observed in Windows
10 single instances of memory that are no mapped image files but
still have a ProtoAddress different from Oxffffffff0000, so we have to
further examine this state as we want to test these pages for being
executable. It should be noted that, in the following cases, the page
is tested for being part of a mapped image file and only included if it
is not. First, we read the MMU PTE's Protection field by applying the
_MMPTE_PROTOTYPE struct. If this field is not zero we check it for
being executable. If it is, we have to read the prototype PTE in order
to get the page's protection. The states, the prototype PTE can be in
are similar to the MMU PTE and also examined in a similar way (as
explained in the other sections and shown in Fig. 1), with one
exception: If the Prototype flag is set, the prototype PTE is an
instance of _MMPTE_SUBSECTION and its protection can be read
from the Protection field.

4.2.5. Transition state

As described in Section 4.1 we can retrieve the protection for a
page in this state from the MMU PTE by applying the
_MMPTE_TRANSITION struct and reading its Protection value. If the
value corresponds with any protection containing EXECUTE rights,
we perform the same checks regarding shared memory as
described in Section 4.2.3, before including the page. Regarding this
state and shared memory, see Section 4.2.4.

4.2.6. Pagefile state

If the Valid, Prototype and Transition flags are all unset, the MMU
PTE is in the pagefile state. Reaching this state at this point of the
algorithm should happen only for one reason: The MMU PTE be-
longs to memory which has been paged out (see also Section 4.2.4)
and the PageFileHigh field points to the page in the pagefile. As
there is no active PFN DB entry anymore (the physical page has been
paged out), it leaves us with only one source for the protection

information: The Protection field of the MMU PTE (instance of
_MMPTE_SOFTWARE). If the PageFileHigh value is greater than zero,
we examine the Protection field for an EXECUTE right and include
the page on a positive match. If the field has at this point a value of
zero, it would mean an unknown state and will be reported with a
warning.

4.3. Mapped data files

While loading an executable/DLL is done by the Windows
Loader and involves several tasks (resolving the imported func-
tions, aligning the PE sections in memory, ...) and the Copy-on-
write protection, mapping a file as data file does not. A mapped data
file is typically used to perform read/write operations with the
speed advantage of an in-memory file (called mapped file 1/O
(Yosifovich et al., 2017, p. 405). It is, however, also possible to map a
data file with the EXECUTE_READWRITE protection and execute
code contained in that file. As in this case no Copy-on-write is used,
a modification to a page will not lead to a new physical page
respectively PFN DB entry and also not to a change of the Proto-
typePte field (this flag will remain set). So while we ignore pages
belonging to mapped image files with the PrototypePte flag, we
include mapped data files for two reasons: We can't be sure if the
pages have been modified and a mapped data file with EXECUTE
permission is something to look into (we did not find a single
benign instance in all our test environments).

4.4. Data Execution Prevention

When DEP is not active for a running process, which is the
default for non-essential x86 programs and services on Windows
client versions (Yosifovich et al., 2017, p. 320), it can execute code
from pages with e.g. READWRITE protection. Active MMU PTEs
(instances of _MMPTE_HARDWARE), however, had the NX bit set for
non-executable pages during our analysis and hence, a CPU with
Hardware NX support will not fetch and execute instructions from
those pages. The way this still works is as follows: When the
Windows Operating System gets an access violation from the CPU
for a non-executable page belonging to a process without DEP, it
unsets the NX bit for that page and the CPU is now able to execute
the containing code.

This behavior makes it, with our approach, pretty easy to spot
for example code execution triggered by stack buffer overflows. If
the shellcode is stored and executed in a page from the stack, only
this page is marked as executable (NX bit unset) and stands out
from otherwise only READWRITE pages. The VAD's protection stays
unaffected by this behavior and hence has still its initial value
(typically READWRITE for VADs containing stacks). There is,
however, one caveat: When the page is for example paged out, the
MMU PTE's (instance of _MMPTE_SOFTWARE) protection field is
set with its actual protection, which is READWRITE and not
EXECUTE_READWRITE since its protection has not been changed
explicitly. The same goes for this page when it is paged in again: The
NX bit will be set again (because the protection field does not say
EXECUTABLE), until a new code execution attempt occurs. So in
those cases, we can't detect the former executable page.

5. Evaluation

The algorithm described in the previous Section has been
implemented as a Rekall (Google Inc, 2018b) plugin (called ptenum)
and evaluated with Rekall version 1.7.2.rc1 using Python version 3.7
on both, x86 and x86_64 Windows 7 and Windows 10 VMs. The
Volatility plugins have been run with Volatility on commit 9df8aa6
(The Volatility Foundation, 2019). As the output of Volatility's and

S10 E Block, A. Dewald / Digital Investigation 29 (2019) S3—S12

Rekall's malfind didn't differ in our evaluation for the identification
of suspicious memory regions, we don't differentiate them in the
following sections. Regarding the hashtest plugin we used a modi-
fied version (Block, 2019) because the one from the author's re-
pository (White, 2013) was not compatible with a more current
version of Volatility and had a bug in the interpretation of PTE
values. The result of each plugin for a specific executable can be
read as follows: The first letter (in capitals) indicates if all processes
with injected executable code have been identified and the second
letter (in non capitals) indicates if all injected executable memory
regions/pages have been identified.

e A or a All processes/pages have been identified.

e N or n None of the processes/pages have been identified.

e Por p At least one process/page has been identified, but not all.

e FThe process has been identified by the plugin as malicious but
results from a False Positive.

We also evaluated the code injection techniques with paged out
pages (see Section 3). If those results differ from the results without
paged out pages, the differing result is also given in Table 1,
included in brackets after the original result (e.g. “P/a (N/m)”). If no
differing value is provided in brackets, the result was the same as
without paged out pages.

5.1. Evaluation with code injection PoCs

The executables listed in Table 1 implement the injection
techniques described in Section 2.1 and are available in our re-
pository (Block, 2019). Most of them are only slight modifications of
the original author's code. Among the executables are also some
additions, demonstrating the hiding techniques described in Sec-
tion 3:

e RS Implements the Remote Shellcode Injection (Block, 2019).

e DEP Stores and executes shellcode on the stack (a PoC for the
scenario described in Section 4.4).

« selfmodify This executable modifies its own executable code,
serving as a test scenario for hashtest and paged out pages.

e atombombing AtomBombing PoC by Liberman (2016).

o loadExe The Process Hollowing PoC by Keong (2004).

e procHollow A newer implementation of Process Hollowing by
Leitch (2014).

o reflectiveDLL The Reflective DLL Injection PoC by Fewer (2013).

e Gargoyle The Gargoyle hiding technique PoC by Lospinoso
(2017).

An appended _m to an executable name means that it has been
modified to initially allocate the memory with READONLY protec-
tion and afterwards changes it to EXECUTE_READWRITE. The addi-
tional _h and _a for Gargoyle indicates, whether the page containing
the shellcode is currently hidden (not executable) or active
(executable).

As can be seen in Table 1, no plugin detected all memory regions
containing the injected code. Also our plugin did not detect the
memory pages containing the shellcode while they are hidden by
Gargoyle, which is however the expected behavior since those
pages are not executable in these cases. The P/a status for malthfind
and threadmap means that they were not always able to detect the
injected code, but when, they detected all executable memory re-
gions. When looking for the differences between the original code
injectors and our modification, we can see that it was possible to
hide from malfind, Psinfo (except Process Hollowing attacks) and
hashtest.

The detection rate gets worse when the malicious pages are
paged out. In this case, malfind, malthfind and hashtest do report
none of the executable pages (only hashtest does at least print the
memory region, but states that zero executable pages are contained
in it) while Psinfo does now only report the Process Hollowing
related pages. Furthermore, atombombing and Gargoyle_a/Gargoy-
le_m_a are not detected by any plugin, except ptenum. The fact that
ptenum does not detect DEP with paged out pages is, again, the
expected result, as the pages are not executable anymore (see
Section 4.4).

5.2. Evaluation with malware

The malware samples evaluated in this Section have been picked
for their code injection behavior, as they implemented some hiding
techniques. Their analysis was done with APl monitoring and a
before and after comparison of memory dumps. In the following we
describe the code injection/hiding specific behavior of each mal-
ware sample that was present at the time of the memory dump
with a focus on anonymous memory. If not specified otherwise, the
allocated memory is private.

e Rig Exploit Kit (Muhammad et al., 2018; Security, 2018b) Cre-
ates two new processes with EXECUTE_READWRITE memory
regions.

e Formbook (Jullian, 2018; Security, 2017b) Creates one new
process with several EXECUTE_READWRITE shared memory re-
gions and one READWRITE region but with executable pages in
it.

Table 1

Evaluation of Code Injection Detection plugins with Code Injection PoCs (without and with paged out pages; the results for the latter case are given in brackets if the results

differ).

malfind hollowfind threadmap malfofind Psinfo malthfind hashtest ptenum

RS A/a (N/n) N/n (F/n) Pla N/n Ala (N/n) P/a (N/n) Ala (N/n) Ala
RS_m N/n F/n P/a N/n N/n P/a (N/n) N/n Ala
DEP N/n N/n (F/n) N/n N/n F/n P/a (N/n) N/n Ala (N/n)
selfmodify — — — — — — Ala (N/n) Ala
atombombing Ala (N/n) N/n N/n N/n Ala (F/n) N/n Ala (N/n) Ala
loadExe Ala (N/n) Ala P/n Ala Ala P/a (N/n) Ala (N/n) Ala
loadExe_m N/n Ala P/n Ala Ala P/a (N/n) N/n Ala
procHollow A/a (N/n) Ala Pla Ala Ala P/a (N/n) Ala (N/n) Ala
procHollow_m N/n Ala P/a Ala Ala P/a (N/n) N/n Ala
reflectiveDLL Ala (N/n) N/n (F/n) P/p N/n Ala (F/n) P/p (N/n) Ala (N/n) Ala
reflectiveDLL_m N/n N/n (F/n) P/p N/n F/n (N/n) P/p (N/n) N/n Ala
Gargoyle_h Ala (N/n) N/n N/n N/n Ala (N/n) N/n Ala (N/n) N/n
Gargoyle_m_h N/n N/n N/n N/n N/n N/n N/n N/n
Gargoyle_a Ala (N/n) N/n N/n N/n Ala (N/n) Ala (N/n) Ala (N/n) Ala
Gargoyle_m_a N/n N/n N/n N/n N/n Ala (N/n) N/n Ala

E Block, A. Dewald / Digital Investigation 29 (2019) S3—S12 S11

Table 2
Evaluation of Code Injection Detection plugins with Malware Samples.
malfind hollowfind threadmap malfofind Psinfo malthfind hashtest ptenum

Rig Exploit Kit Ala N/n P/p N/n Ala P/p Ala Ala
Formbook Alp N/n N/n N/n Alp N/n Alp Ala
Form Grabber P/p N/n P/p N/n P/p P/p Alp Ala
Ghostminer Alp N/n N/n N/n Alp N/n Alp Ala
Kronos Alp Ala Alp Alp Ala N/n Ala Ala
Olympic Destroyer N/n N/n N/n N/n F/n N/n A/n Ala

e Form Grabber (Jullian, 2017; Security, 2017a) Has a READWRITE
memory region in its own address space with executable pages
and allocates a new EXECUTE_READWRITE memory region
within an existing, benign process.

e Ghostminer (Aprozper and Bitensky, 2018; Chronicle, 2018a)
Creates a new process with several EXECUTE_READWRITE and
READWRITE memory regions, all containing executable pages.

e Kronos (Chronicle, 2018b; Lechtik, 2018) Creates one new pro-
cess with a EXECUTE_WRITECOPY shared memory region and a
EXECUTE_READWRITE memory region.

e Olympic Destroyer (Mercer and Rascagneres, 2018; Security,
2018a) Creates one new process with a READWRITE memory
region containing one executable page.

As we don't possess the source code for the malware samples
and hence were not able to influence the memory allocation pro-
cess or reliably force the process to page out the injected code (see
Section 3), we evaluated the samples only as is.

As can be seen in Table 2, no plugin, except ptenum, was able to
detect all memory regions containing executable pages created by
the malware samples. Especially the executable page of Olympic
Destroyer was revealed by no other plugin (in particular malfind and
hashtest). Only hashtest did at least indicate the containing process,
as the malware sample drops a new executable which is not part of
hashtest's database.

6. Conclusion and future work

In this work, we demonstrate that it is possible to prevent
injected code from being reported by current code injection
detection plugins. We introduce a novel approach that is able to
detect executable pages despite any intentional (or unintentional)
hiding technique described in Section 3. Only DEP with paged out
pages and Gargoyle were successful in hiding from our plugin, but
this behavior is expected as the affected pages are not executable in
these cases (see Sections 4.4 and 2.1.5). We implemented a Rekall
plugin that leverages our introduced approach, which we publicly
release alongside with this paper.

Because our plugin reports all executable pages (with the
mentioned exclusions), no matter if they are part of a code injection
or benign, it can produce a huge amount of data that would need to be
investigated. The main problem are modified pages of mapped image
files as described in the work by White et al. (2013). As the plugin
supports to omit those, it can be used as an improved malfind plugin
(but would miss code injections in mapped image files). Otherwise, it
is not suitable for large processes but can be used for small ones orina
before vs. after comparison. This is why our plugin should be inte-
grated with code injection detection plugins, in particular hashtest, in
order to strip benign data and improve their results.

As we rely on the paging structures to identify executable pages,
our approach does not work if the page tables are paged out and the
pagefile is not given. For these cases, a fallback mechanism should
be implemented which investigates all VADs, similar to the existing
malfind plugin. This fallback will, however, again be prone to the
hiding techniques described in this work. While it would be

possible to enumerate the PFN DB in order to gather page pro-
tections (see Section 4.1), this will only work for pages in hardware
and transition state, as all others have no associated PFN DB entry.

References

Aprozper, A., Bitensky, G., 2018. Ghostminer: Cryptomining Malware Goes Fileless
[Visited on 22.11.2018]. URL. https://blog.minerva-labs.com/ghostminer-
cryptomining-malware-goes-fileless.

Block, F,, 2019. The Public Repository Containing the Code and Binaries Used in This
Work [Visited on 25.03.2019]. URL. https://github.com/f-block/DFRWS-USA-
2019.

Chronicle, 2018. Virustotal - ghostminer sample [Visited on 22.11.2018]. URL.
https://www.virustotal.com/#/file/
40a507a88ba03b9da3de235c9c0afdfcf7a0473c8704cbb26e16b1b782becd4d/
detection.

Chronicle, 2018. Virustotal - kronos sample [Visited on 22.11.2018]. URL. https://
www.virustotal.com/#/file/
9806d1b664c73712bc029e880543dfa013fdd128dd33682c2cfe5ad24de075b9/
detection.

Cohen, M., 2014. Windows Virtual Address Translation and the Pagefile [Visited on
19.12.2018]. URL. http://blog.rekall-forensic.com/2014/10/windows-virtual-
address-translation-and.html.

Cohen, M., 2016. Rekall and the Windows Pfn Database [Visited on 19.12.2018]. URL.
https://web.archive.org/web/20170906073820/http://blog.rekall-forensic.com/
2016/05/.

Countercept, 2018. Gargoyle volatility plugin [Visited on 24.12.2018]. URL. https://
github.com/countercept/volatility-plugins/blob/master/gargoyle.py.

Dolan-Gavitt, B., 2007. The vad tree: a process-eye view of physical memory. Digit.
Invest. 4, 62—64.

enSilo inc, 2016. Atombombing: Brand New Code Injection for Windows [Visited on
20.09.2018]. URL. https://blog.ensilo.com/atombombing-brand-new-code-
injection-for-windows.

Fewer, S., 2013. Reflective DIl Injection - Github [Visited on 09.01.2019]. URL.
https://github.com/stephenfewer/ReflectiveDLLInjection.

Google Inc, 2018. Rekall memory forensic framework [Visited on 23.09.2018]. URL.
http://www.rekall-forensic.com.

Google Inc, 2018. Rekall memory forensic framework - github [Visited on
23.09.2018]. URL. https://github.com/google/rekall.

Google Inc, 2019. Rekall's Malfind Plugin [Visited on 16.01.2019]. URL. https://
github.com/google/rekall/blob/master/rekall-core/rekall/plugins/windows/
malware/malfind.py.

Hammond, A., 2018. Hunting for Gargoyle Memory Scanning Evasion [Visited on
24.12.2018]. URL. https://www.countercept.com/blog/hunting-for-gargoyle/.
Intel Coporation, 2018. Intel® 64 and ia-32 Architectures Software Developer's
Manual. Volume 3A: System Programming Guide. Part 1 [Visited on 28.12.2018].
URL. https://software.intel.com/sites/default/files/managed/7c/f1/253668-sdm-

vol-3a.pdf.

Jullian, R., 2017. Analyzing a Form-Grabber Malware [Visited on 22.11.2018]. URL.
https://thisissecurity.stormshield.com/2017/09/28/analyzing-form-grabber-
malware-targeting-browsers/.

Jullian, R, 2018. In-depth Formbook Malware Analysis - Obfuscation and Process
Injection [Visited on 22.11.2018]. URL. https://thisissecurity.stormshield.com/
2018/03/29/in-depth-formbook-malware-analysis-obfuscation-and-process-
injection/.

Keong, T.C., 2004. Dynamic Forking of Win32 Exe [Visited on 20.09.2018]. URL.
https://web.archive.org/web/20070808231220/http://www.security.org.sg/
code/loadexe.html.

KSL group, 2017. Threadmap Documentation [Visited on 20.01.2019]. URLhttps://
github.com/kslgroup/threadmap/raw/master/threadmap/%20documentation.
pdf.

KSL group, 2017. Threadmap Volatility Plugin [Visited on 20.10.2018]. URL. https://
github.com/kslgroup/threadmap.

Lechtik, M., 2018. Deep Dive into Upas Kit vs. Kronos [Visited on 22.11.2018]. URL.
https://research.checkpoint.com/deep-dive-upas-kit-vs-kronos/.

Leitch, J., 2014. Process Hollowing Poc - Github [Visited on 21.09.2018]. URL. https://
github.com/mOnOph1/Process-Hollowing.

Liberman, T., 2016. Atombombing: Brand New Code Injection for Windows - Github
[Visited on 20.09.2018]. URL. https://github.com/BreakingMalwareResearch/
atom-bombing.

https://blog.minerva-labs.com/ghostminer-cryptomining-malware-goes-fileless
https://blog.minerva-labs.com/ghostminer-cryptomining-malware-goes-fileless
https://github.com/f-block/DFRWS-USA-2019
https://github.com/f-block/DFRWS-USA-2019
https://www.virustotal.com/#/file/40a507a88ba03b9da3de235c9c0afdfcf7a0473c8704cbb26e16b1b782becd4d/detection
https://www.virustotal.com/#/file/40a507a88ba03b9da3de235c9c0afdfcf7a0473c8704cbb26e16b1b782becd4d/detection
https://www.virustotal.com/#/file/40a507a88ba03b9da3de235c9c0afdfcf7a0473c8704cbb26e16b1b782becd4d/detection
https://www.virustotal.com/#/file/9806d1b664c73712bc029e880543dfa013fdd128dd33682c2cfe5ad24de075b9/detection
https://www.virustotal.com/#/file/9806d1b664c73712bc029e880543dfa013fdd128dd33682c2cfe5ad24de075b9/detection
https://www.virustotal.com/#/file/9806d1b664c73712bc029e880543dfa013fdd128dd33682c2cfe5ad24de075b9/detection
https://www.virustotal.com/#/file/9806d1b664c73712bc029e880543dfa013fdd128dd33682c2cfe5ad24de075b9/detection
http://blog.rekall-forensic.com/2014/10/windows-virtual-address-translation-and.html
http://blog.rekall-forensic.com/2014/10/windows-virtual-address-translation-and.html
https://web.archive.org/web/20170906073820/http://blog.rekall-forensic.com/2016/05/
https://web.archive.org/web/20170906073820/http://blog.rekall-forensic.com/2016/05/
https://github.com/countercept/volatility-plugins/blob/master/gargoyle.py
https://github.com/countercept/volatility-plugins/blob/master/gargoyle.py
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref13
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref13
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref13
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://github.com/stephenfewer/ReflectiveDLLInjection
http://www.rekall-forensic.com
https://github.com/google/rekall
https://github.com/google/rekall/blob/master/rekall-core/rekall/plugins/windows/malware/malfind.py
https://github.com/google/rekall/blob/master/rekall-core/rekall/plugins/windows/malware/malfind.py
https://github.com/google/rekall/blob/master/rekall-core/rekall/plugins/windows/malware/malfind.py
https://www.countercept.com/blog/hunting-for-gargoyle/
https://software.intel.com/sites/default/files/managed/7c/f1/253668-sdm-vol-3a.pdf
https://software.intel.com/sites/default/files/managed/7c/f1/253668-sdm-vol-3a.pdf
https://thisissecurity.stormshield.com/2017/09/28/analyzing-form-grabber-malware-targeting-browsers/
https://thisissecurity.stormshield.com/2017/09/28/analyzing-form-grabber-malware-targeting-browsers/
https://thisissecurity.stormshield.com/2018/03/29/in-depth-formbook-malware-analysis-obfuscation-and-process-injection/
https://thisissecurity.stormshield.com/2018/03/29/in-depth-formbook-malware-analysis-obfuscation-and-process-injection/
https://thisissecurity.stormshield.com/2018/03/29/in-depth-formbook-malware-analysis-obfuscation-and-process-injection/
https://web.archive.org/web/20070808231220/http://www.security.org.sg/code/loadexe.html
https://web.archive.org/web/20070808231220/http://www.security.org.sg/code/loadexe.html
https://github.com/kslgroup/threadmap/raw/master/threadmap/%20documentation.pdf
https://github.com/kslgroup/threadmap/raw/master/threadmap/%20documentation.pdf
https://github.com/kslgroup/threadmap/raw/master/threadmap/%20documentation.pdf
https://github.com/kslgroup/threadmap
https://github.com/kslgroup/threadmap
https://research.checkpoint.com/deep-dive-upas-kit-vs-kronos/
https://github.com/m0n0ph1/Process-Hollowing
https://github.com/m0n0ph1/Process-Hollowing
https://github.com/BreakingMalwareResearch/atom-bombing
https://github.com/BreakingMalwareResearch/atom-bombing

S12 E Block, A. Dewald / Digital Investigation 29 (2019) S3—S12

Ligh, M.H., Case, A., Levy, J., Walters, A., 2014. The Art of Memory Forensics:
Detecting Malware and Threats in Windows, Linux, and Mac Memory. John
Wiley & Sons.

Lospinoso, J., 2017. Gargoyle - a Memory Scanning Evasion Technique - Github
[Visited on 20.12.2018]. URL. https://github.com/]Lospinoso/gargoyle.

Martignetti, E., 2012. What makes it page? sample programs [Visited on
13.01.2019]. URL. http://www.opening-windows.com/wmip/testcode/
download|/license.html.

Martignetti, E., 2012. What makes it page? Windows 7 (x64) Virtual Memory
Manager. CreateSpace Independent Publishing Platform.

Mercer, W., Rascagneres, P., 2018. Olympic Destroyer Takes Aim at Winter Olympics
[Visited on 22.11.2018]. URL. https://blog.talosintelligence.com/2018/02/
olympic-destroyer.html#more.

Microsoft Corporation, 2018. About Atom Tables [Visited on 09.01.2019]. URL.
https://docs.microsoft.com/en-us/windows/desktop/dataxchg/about-atom-
tables.

Microsoft Corporation, 2019. Memory Protection Constants [Visited on 19.01.2019].
URL. https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-
protection-constants.

Microsoft Corporation, 2019. Setprocessworkingsetsize Function [Visited on
18.01.2019]. URL. https://docs.microsoft.com/en-us/windows/desktop/api/
winbase/nf-winbase-setprocessworkingsetsize.

Microsoft Corporation, 2019. Virtualprotectex function [Visited on 09.01.2019]. URL.
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366899
(v=vs.85).aspx.

Monnappa, KA., 2016. Detecting malicious processes using psinfo volatility plugin
[Visited on 25.10.2018]. URL. https://cysinfo.com/detecting-malicious-
processes-psinfo-volatility-plugin/.

Monnappa, K.A., 2016. Hollowfind Volatility Plugin [Visited on 11.10.2018]. URL.
https://github.com/monnappa22/HollowFind.

Monnappa, K.A., 2016. Psinfo Volatility Plugin [Visited on 25.10.2018]. URL. https://
github.com/monnappa22/Psinfo.

Monnappa, K.A., 2017. Detecting Deceptive Process Hollowing Techniques Using
Hollowfind Volatility Plugin [Visited on 09.01.2019]. URL. https://cysinfo.com/
detecting-deceptive-hollowing-techniques/.

Muhammad, I, Ahmed, S., Faizan, H., Gardezi, Z., 2018. A Deep Dive into Rig Exploit
Kit Delivering Grobios Trojan [Visited on 22.11.2018]. URL. https://www.fireeye.
com/blog/threat-research/2018/05/deep-dive-into-rig-exploit-kit-delivering-
grobios-trojan.html.

Pshoul, D., 2017. Malfofind Volatility Plugin [Visited on 20.10.2018]. URL. https://
github.com/volatilityfoundation/community/blob/master/DimaPshoul/

malfofind.py.

Pshoul, D., 2017. Malthfind Volatility Plugin [Visited on 20.10.2018]. URL. https://
github.com/volatilityfoundation/community/blob/master/DimaPshoul/
malthfind.py.

ReactOS Foundation, 2013. Techwiki:memory protection constants [Visited on
22.11.2018]. URL. https://www.reactos.org/wiki/Techwiki:Memory_Protection_
constants.

Russinovich, M.E., Solomon, D.A., Allchin, J., 2005. Microsoft Windows Internals:
Microsoft Windows Server 2003, Windows XP, and Windows 2000, vol. 4.
Microsoft Press Redmond.

Security, Payload, 2017. Hybrid analysis - form grabber sample [Visited on
22.11.2018]. URL. https://www.hybrid-analysis.com/sample/9cdb1a336d111
fd9fc2451f0bdd883f99756da12156f7e59cca9d63c1c1742ce?environmentld.

Security, Payload, 2017. Hybrid analysis - formbook sample [Visited on 22.11.2018].
URL. https://www.hybrid-analysis.com/sample/
6edec3712cf641a31f4e9edaf7d9d7a84fd7dadcc2875c6aceb9a283ed0330d7?
environmentld=100.

Security, Payload, 2018. Hybrid analysis - olympic destroyer sample [Visited on
22.11.2018]. URL. https://www.hybrid-analysis.com/sample/edb1{f2521fb4bf74
8111f92786d260d40407a2e8463dcd24bb09f908ee13eb9?environmentld=100.

Security, Payload, 2018. Hybrid analysis - rig exploit kit sample [Visited on
22.11.2018]. URL. https://www.hybrid-analysis.com/sample/8b86662ab617d110
79f16d95d4d584e8ach4a374b87edf341195ab9e043ed1d2?
environmentld=100.

The Volatility Foundation, 2017. Volatility's Malfind Plugin [Visited on 16.01.2019].
URL. https://github.com/volatilityfoundation/volatility/blob/master/volatility/
plugins/malware/malfind.py.

The Volatility Foundation, 2019. Volatility [Visited on 15.01.2019]. URL. https://
github.com/volatilityfoundation/volatility/tree/
9df8aa6daabc29c74bf261574ffb5cde2315c¢718.

White, A., 2013. Hashtest Volatility Plugin [Visited on 16.01.2019]. URL. https://
github.com/a-white/Hashtest.

White, A., Schatz, B., Foo, E., 2012. Surveying the user space through user alloca-
tions. Digit. Invest. 9. S3—S12, [Visited on 15.01.2019]. URL. https://www.dfrws.
org/sites/default/files/session-files/paper-surveying_the_user_space_through_
user_allocations.pdf.

White, A., Schatz, B., Foo, E., 2013. Integrity verification of user space code. Digit.
Invest. 10, S59—S68.

Yosifovich, P., Solomon, D.A., Ionescu, A., 2017. Windows Internals, Part 1: System
Architecture, Processes, Threads, Memory Management, and More. Microsoft
Press.

http://refhub.elsevier.com/S1742-2876(19)30157-4/sref28
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref28
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref28
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref28
https://github.com/JLospinoso/gargoyle
http://www.opening-windows.com/wmip/testcode/download/license.html
http://www.opening-windows.com/wmip/testcode/download/license.html
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref31
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref31
https://blog.talosintelligence.com/2018/02/olympic-destroyer.html#more
https://blog.talosintelligence.com/2018/02/olympic-destroyer.html#more
https://docs.microsoft.com/en-us/windows/desktop/dataxchg/about-atom-tables
https://docs.microsoft.com/en-us/windows/desktop/dataxchg/about-atom-tables
https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/desktop/Memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-setprocessworkingsetsize
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-setprocessworkingsetsize
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366899(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366899(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366899(v=vs.85).aspx
https://cysinfo.com/detecting-malicious-processes-psinfo-volatility-plugin/
https://cysinfo.com/detecting-malicious-processes-psinfo-volatility-plugin/
https://github.com/monnappa22/HollowFind
https://github.com/monnappa22/Psinfo
https://github.com/monnappa22/Psinfo
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://www.fireeye.com/blog/threat-research/2018/05/deep-dive-into-rig-exploit-kit-delivering-grobios-trojan.html
https://www.fireeye.com/blog/threat-research/2018/05/deep-dive-into-rig-exploit-kit-delivering-grobios-trojan.html
https://www.fireeye.com/blog/threat-research/2018/05/deep-dive-into-rig-exploit-kit-delivering-grobios-trojan.html
https://github.com/volatilityfoundation/community/blob/master/DimaPshoul/malfofind.py
https://github.com/volatilityfoundation/community/blob/master/DimaPshoul/malfofind.py
https://github.com/volatilityfoundation/community/blob/master/DimaPshoul/malfofind.py
https://github.com/volatilityfoundation/community/blob/master/DimaPshoul/malthfind.py
https://github.com/volatilityfoundation/community/blob/master/DimaPshoul/malthfind.py
https://github.com/volatilityfoundation/community/blob/master/DimaPshoul/malthfind.py
https://www.reactos.org/wiki/Techwiki:Memory_Protection_constants
https://www.reactos.org/wiki/Techwiki:Memory_Protection_constants
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref41
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref41
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref41
https://www.hybrid-analysis.com/sample/9cdb1a336d111fd9fc2451f0bdd883f99756da12156f7e59cca9d63c1c1742ce?environmentId
https://www.hybrid-analysis.com/sample/9cdb1a336d111fd9fc2451f0bdd883f99756da12156f7e59cca9d63c1c1742ce?environmentId
https://www.hybrid-analysis.com/sample/6e4ec3712cf641a31f4e9e4af7d9d7a84fd7da4cc2875c6aceb9a283ed0330d7?environmentId=100
https://www.hybrid-analysis.com/sample/6e4ec3712cf641a31f4e9e4af7d9d7a84fd7da4cc2875c6aceb9a283ed0330d7?environmentId=100
https://www.hybrid-analysis.com/sample/6e4ec3712cf641a31f4e9e4af7d9d7a84fd7da4cc2875c6aceb9a283ed0330d7?environmentId=100
https://www.hybrid-analysis.com/sample/6e4ec3712cf641a31f4e9e4af7d9d7a84fd7da4cc2875c6aceb9a283ed0330d7?environmentId=100
https://www.hybrid-analysis.com/sample/edb1ff2521fb4bf748111f92786d260d40407a2e8463dcd24bb09f908ee13eb9?environmentId=100
https://www.hybrid-analysis.com/sample/edb1ff2521fb4bf748111f92786d260d40407a2e8463dcd24bb09f908ee13eb9?environmentId=100
https://www.hybrid-analysis.com/sample/edb1ff2521fb4bf748111f92786d260d40407a2e8463dcd24bb09f908ee13eb9?environmentId=100
https://www.hybrid-analysis.com/sample/8b86662ab617d11079f16d95d4d584e8acb4a374b87edf341195ab9e043ed1d2?environmentId=100
https://www.hybrid-analysis.com/sample/8b86662ab617d11079f16d95d4d584e8acb4a374b87edf341195ab9e043ed1d2?environmentId=100
https://www.hybrid-analysis.com/sample/8b86662ab617d11079f16d95d4d584e8acb4a374b87edf341195ab9e043ed1d2?environmentId=100
https://www.hybrid-analysis.com/sample/8b86662ab617d11079f16d95d4d584e8acb4a374b87edf341195ab9e043ed1d2?environmentId=100
https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/malware/malfind.py
https://github.com/volatilityfoundation/volatility/blob/master/volatility/plugins/malware/malfind.py
https://github.com/volatilityfoundation/volatility/tree/9df8aa6daabc29c74bf261574ffb5cde2315c7f8
https://github.com/volatilityfoundation/volatility/tree/9df8aa6daabc29c74bf261574ffb5cde2315c7f8
https://github.com/volatilityfoundation/volatility/tree/9df8aa6daabc29c74bf261574ffb5cde2315c7f8
https://github.com/a-white/Hashtest
https://github.com/a-white/Hashtest
https://www.dfrws.org/sites/default/files/session-files/paper-surveying_the_user_space_through_user_allocations.pdf
https://www.dfrws.org/sites/default/files/session-files/paper-surveying_the_user_space_through_user_allocations.pdf
https://www.dfrws.org/sites/default/files/session-files/paper-surveying_the_user_space_through_user_allocations.pdf
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref50
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref50
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref50
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref51
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref51
http://refhub.elsevier.com/S1742-2876(19)30157-4/sref51

	Windows Memory Forensics: Detecting (Un)Intentionally Hidden Injected Code by Examining Page Table Entries
	1. Introduction
	1.1. Motivation
	1.2. Contributions
	1.3. Related work
	1.4. Outline

	2. Fundamentals
	2.1. Code injection techniques
	2.1.1. Remote Shellcode Injection
	2.1.2. Reflective DLL injection
	2.1.3. Atom Bombing
	2.1.4. Process Hollowing
	2.1.5. Gargoyle

	2.2. Private and shared memory
	2.3. Page Table Entries and the Page Frame Number database
	2.4. The different states of Page Table Entries
	2.4.1. Hardware state
	2.4.2. Transition state
	2.4.3. Proto-pointer PTE
	2.4.4. Pagefile state
	2.4.5. Unaccessed state

	2.5. Large and huge pages

	3. (Un)Intentionally hiding injected code
	4. Analysis
	4.1. Retrieving the protection for a page in transition
	4.2. Executable page detection algorithm
	4.2.1. Large and huge pages
	4.2.2. Unaccessed state
	4.2.3. Hardware state
	4.2.4. Proto-pointer PTE
	4.2.5. Transition state
	4.2.6. Pagefile state

	4.3. Mapped data files
	4.4. Data Execution Prevention

	5. Evaluation
	5.1. Evaluation with code injection PoCs
	5.2. Evaluation with malware

	6. Conclusion and future work
	References

