
DIGITAL FORENSIC RESEARCH CONFERENCE

HookTracer: A System for Automated and Accessible API Hooks Analysis

By

Ryan Maggio, Mohammad Jalalzai, Md Firoz-Ul-Amin, Golden Richard, Mingxuan Sun (Louisiana State
University), Aisha Ali-Gombe (Towson University), and Andrew Case (The Volatility Foundation)

From the proceedings of
The Digital Forensic Research Conference

DFRWS 2019 USA
Portland, OR (July 15th - 19th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in
2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical

working groups, annual conferences and challenges to help drive the direction of research and development.

https://dfrws.org

HookTracer: A System for Automated
and Accessible API Hooks Analysis

Ryan Maggio, Mohammad Jalalzai, Md Firoz-Ul-Amin, Golden Richard, Mingxuan Sun (Louisiana State University)

Aisha Ali-Gombe (Towson University)

Andrew Case (The Volatility Foundation)

What are API Hooks?
• API hooking is the runtime replacement of the original

implementation of a function with that of another

• Future calls (usage) of the hooked function then run the new
implementation

• API hooking is done transparently to code that calls hooked functions

How Are API Hooks Implemented?

Code

IAT

user32.dll

R/W Data

R/O Data

Address of Imported Function #1

Address of Imported Function #2

…

Address of Imported Function #3

Code

IAT

R/W Data

R/O Data

Code

IAT

R/W Data

R/O Data

explorer.exe kernel32.dll

EAT EAT

Address of Export Function #1

Address of Export Function #2

…

Address of Export Function #3

Legitimate Windows API Hooks
• Debugging / Instrumentation / Performance Monitoring

§ Microsoft Detours [2]

• System monitoring by security software
§ Every AV/EDR

• Backwards compatibility
§ Application compatibility cache (shimcache)
§ Internet Explorer/Edge

Malicious API Hooks

• Processes
• Network Connections
• Files/Directories
• Logged-in Users
• Services
• Registry keys/values

• Credentials
• Certificates/Keys
• Keystrokes
• Web cameras
• Microphones

Filtering/Removing: Monitoring/Recording:

These are just a few examples…

API Hooks and Memory Forensics
• Memory forensic algorithms recover data without relying on system

APIs

• Detection of code hooking techniques is/was one of the main drivers
of the prominence of memory forensics

• With memory forensics, we can not only find the data that is hidden
on a live system, but also the exact code performing the hiding

Limitations of Current API Hooks Algorithms
1. Analysis is extremely manual

2. Analysis (in almost all cases) requires deep knowledge of operating
systems internals and reverse engineering

3. The results of analyzing one hook are not easily transferable to
analysis of other hooks (requires the investigator to “remember”)

4. Modern Windows versions have an overwhelming number of
legitimate hooks

Examining an API Hook with apihooks
Hook mode: Usermode
Hook type: Import Address Table (IAT)
Process: 880 (svchost.exe)
Victim module: sppcomapi.dll (0x7fefac20000 - 0x7fefac5d000)
Function: slc.dll!SLGenerateOfflineInstallationId
Hook address: 0x7fefac695cc
Hooking module: sppc.dll

Disassembly(0):
0xfac695cc 48 DEC EAX
0xfac695cd 895c2410 MOV [ESP+0x10], EBX
0xfac695d1 48 DEC EAX
0xfac695d2 896c2418 MOV [ESP+0x18], EBP
0xfac695d6 56 PUSH ESI
0xfac695d7 57 PUSH EDI
<snip>

Examining a Second API Hook
Hook mode: Usermode
Hook type: Inline/Trampoline
Process: 3068 (iexplore.exe)
Victim module: ntdll.dll (0x77640000 - 0x7777c000)
Function: ntdll.dll!LdrLoadDll at 0x776a22b8
Hook address: 0x74c601f8
Hooking module: <unknown>
Disassembly(0):
0x776a22b8 e93bdf5bfd JMP 0x74c601f8
<snip>
Disassembly(1):
0x74c601f8 e9c3daabeb JMP 0x6071dcc0
<snip>

Is this hook malicious or benign?

Overwhelming Number of Legitimate Hooks

Operating System Number of Legitimate API Hooks

Windows XP 36

Windows 7 296

Windows 8 623

Windows 10 32, 456

Notes:

1) This is the average number of hooks over five (5) reboot/log in/acquire memory cycles

2) The number of legitimate, default hooks will never be exactly the same due to paging, processes
starting/exiting, and other related reasons

Research Goals

• Automated & scalable API hook analysis

• Remove the need for expert investigators

• Automatically filter out legitimate hooks

• Allow previously seen hooks to be recognized/filtered
• Think: IOCs

Applying Emulation to Memory Forensics
• We built a memory forensics emulation engine on top of Unicorn and

Volatility

• By emulating hooks, we automatically uncover their entire code flow

• Unicorn [3] is a CPU emulation library that can emulate arbitrary data
• Written in C
• Bindings for every major language
• The emulation code was originally stripped from QEMU

Emulation for Malware Analysis is not New

• There is significant prior research into categorizing malware’s
behavior based on “whole system” emulation

• This requires an original executable and an entire Windows install to
be emulated and analyzed, hence ”whole system”

• Unfortunately, whole system emulation is not directly applicable or
particularly usable in most memory forensics investigations

Why Whole System Emulation Does Not Apply

1. Loaded executables in memory undergo substantial transformation
and cannot later be extracted and run again

2. Memory-only malware does not have an original executable to fully
recover

3. Even if you could somehow work around 1) and 2), which you
cannot, then whole system emulators are still not the original
environment where the malware was active

Introducing HookTracer
• Implements a complete API for making Unicorn usable in conjunction

with Volatility
• Since we do not have a “whole system”, we have to do our best to fake it
• This includes a significant amount of low-level memory and hardware state

manipulation - see the paper if interested in details

• Consumes the json formatted output of Volatility’s apihooks plugin

• For each hook, emulates the entire hook procedure and reports on
the code flow

HookTracer’s Default Output Per Hook

992 svchost.exe cryptnet.dll!CryptUninstallCancelRetrieval at 0x634c80f0
PAGE_EXECUTE_WRITECOPY \Device\HarddiskVolume2\Windows\System32\crypt32.dll
PAGE_EXECUTE_WRITECOPY \Device\HarddiskVolume2\Windows\System32\ntdll.dll (4)
PAGE_EXECUTE_WRITECOPY \Device\HarddiskVolume2\Windows\System32\crypt32.dll (9)

Conclusion: The hook is legimate as all the DLLs are in System32 and PAGE_EXECUTE_WRITECOPY is the default
state of legitimiately loaded DLLs – any that were hooked would be PAGE_EXECUTE_READWRITE or similar

HookTracer’s “All Containing” Filters

• These filters exclude a hook from being reported if all the VADs in its
control flow match the filter

• On our Windows 10 test system, by filtering out hooks whose VADs all
mapped to DLLs in System32, the amount of reported hooks went
from 32,458 to 178 (over 99% reduction).

• By adding two more filters, one for vcruntime and the other for
OneDrive components, the amount of reported hooks went to zero

Security Software & “Any Containing” Filters

3068 iexplore.exe ntdll.dll!LdrLoadDll at 0x776a22b8
PAGE_EXECUTE_READWRITE <Non-File Backed Region: 0x74c60000 0x74c6afff>
PAGE_EXECUTE_WRITECOPY \Device\HarddiskVolume1\Program Files\AVG\Antivirus\snxhk.dll (2)
PAGE_EXECUTE_READWRITE <Non-File Backed Region: 0x74c60000 0x74c6afff> (46)
PAGE_EXECUTE_WRITECOPY \Device\HarddiskVolume1\Program Files\AVG\Antivirus\aswhookx.dll (2)
PAGE_EXECUTE_READWRITE <Non-File Backed Region: 0x6f670000 0x6f67ffff> (4)
PAGE_EXECUTE_WRITECOPY \Device\HarddiskVolume1\Windows\System32\ntdll.dll (2)

<snip>

Hook mode: Usermode
Hook type: Inline/Trampoline
Process: 3068 (iexplore.exe)
Victim module: ntdll.dll (0x77640000 - 0x7777c000)
Function: ntdll.dll!LdrLoadDll at 0x776a22b8
Hook address: 0x74c601f8
Hooking module: <unknown>
Disassembly(0):
0x776a22b8 e93bdf5bfd JMP 0x74c601f8
<snip>
Disassembly(1):
0x74c601f8 e9c3daabeb JMP 0x6071dcc0
<snip>

apihooks output: HookTracer output:

Building API Hook IOCs with HookTracer
ntdll.dll!NtCreateUserProcess at 0x779f5778

<Non-File Backed Region: 0x850000 0x87bfff>
<Non-File Backed Region: 0x9a0000 0x9a0fff> (2)
\Device\HarddiskVolume1\Windows\System32\ntdll.dll (2)
<Non-File Backed Region: 0x850000 0x87bfff> (5)

1024 iexplore.exe
ntdll.dll!ZwCreateUserProcess

kernel32.dll!GetFileAttributesExW

CRYPT32.dll!PFXImportCertStore

[hook listing truncated]

2468 explorer.exe

ntdll.dll!ZwCreateUserProcess

kernel32.dll!GetFileAttributesExW

CRYPT32.dll!PFXImportCertStore

[hook listing truncated]

Research Goals Recap

• Automated & scalable
• Very close, but not finished yet

• Remove the need for expert investigators

• Automatically filter out legitimate hooks

• Allow previously seen hooks to be recognized/filtered

Questions/Comments?

• My contact information:
• andrew@dfir.org
• @attrc

• Golden’s information:
• golden@cct.lsu.edu
• @nolaforensix

• This work supported in part by NSF grant “SaTC: CORE: Medium:
Robust Forensics Techniques for Userland Malware Analysis”, Award
#1703683, $1,113,426.

mailto:andrew@dfir.org
mailto:golden@cct.lsu.edu

References

[1] https://attack.mitre.org/techniques/T1179/
[2] https://www.microsoft.com/en-us/research/project/detours/
[3] https://www.unicorn-engine.org

https://attack.mitre.org/techniques/T1179/
https://www.microsoft.com/en-us/research/project/detours/
https://www.unicorn-engine.org/

