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The DARPA Cyber Grand Challenge (CGC) pit autonomous machines against one another in a battle to
discover, mitigate, and take advantage of software vulnerabilities. The competitors repeatedly formulated
and submitted binary software for execution against opponents, and to mitigate attacks mounted by
opponents. The US Government sought confidence that competitors legitimately won their rewards (a
prize pool of up to $6.75 million USD), and competitors deserved evidence that all parties operated in
accordance with the rules, which prohibited attempts to subvert the competition infrastructure. To
support those goals, we developed an analysis system to vet competitor software submissions destined
for execution on the competition infrastructure, the classic situation of running untrusted software.

In this work, we describe the design and implementation of this vetting system, as well as results
gathered in deployment of the system as part of the CGC competition. The analysis system is imple-
mented upon a high-fidelity full-system simulator requiring no modifications to the monitored operating
system. We used this system to vet software submitted during the CGC Qualifying Event, and the CGC
Final Event. The overwhelming majority of the vetting occurred in an automated fashion, with the
system automatically monitoring the full x86-based system to detection corruption of operating system
execution paths and data structures. However, the vetting system also facilitates investigation of any
execution deemed suspicious by the automated process (or indeed any analysis required to answer
queries related to the competition). An analyst may replay any software interaction using an IDA Pro
plug-in, which utilizes the IDA debugger client to execute the session in reverse.

In post-mortem analysis, we found no evidence of attempted infrastructure subversion and further
conclude that of the 20 vulnerable software services exploited in the CGC Final Event, half were exploited
in ways unintended by the service authors. Six services were exploited due to vulnerabilities accidentally
included by the authors, while an additional four were exploited via the author-intended vulnerability,
but via an unanticipated path.
© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Proactive forensics often blurs the lines between traditional
forensics, pedantically requiring the application of a legal system,
and similar techniques that may not ever be used to a legal end. In
the digital space, such processes are increasingly common, with the
use of similar, sometimes identical tools and procedures as those
found in digital forensics, but to pursue a wide range of situations
from corporate policy violations to complex computer adminis-
tration troubleshooting. In many cases, adopting the relatively high
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standards demanded by legal systems early, even before demanded
by circumstance, leads to not only a smooth transition into a digital
forensics case, but in some cases the a priori action enables a case to
form that otherwise might be impossible. For instance, if no digital
artifacts were created as a result of some computer crimes, prose-
cution may be difficult, indeed in some cases the offense might
even go unnoticed. However, observation and prosecution may be
straightforward if the entity had previously put in place proper
logging, netflow collection, and/or host-based software security
agents. The level of preparation any entity might undergo varies
drastically, with some proactively collecting data that may even-
tually become evidence (Shields et al., 2011), others physically
installing hardware to enable future evidence collection (Carrier
and Grand, 2004), or preparing tools and procedures in effort to
achieve a state of readiness (Rowlingson, 2004).

1742-2876/© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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The US Department of Defense Advanced Research Projects
Agency (DARPA) created the Cyber Grand Challenge (CGC) to push
the boundary of technology in “autonomous cyber defense capa-
bilities that combine the speed and scale of automation with
reasoning ability exceeding those of human experts (DARPA,
2016).” The challenge was framed around vulnerabilities in binary
software. To encourage focused research, a concentrated, repre-
sentative software environment was created: the DARPA Experi-
mental Cyber Research Evaluation Environment, or simply DECREE.
Concomitant with this focused environment, and due to the
competitive nature of the challenge, many architectural and
implementation design decisions made throughout program aimed
to ensure the highest standards of integrity (Vidas et al., 2017). The
mechanics of the challenge, in particular the final portion of the
competition, was modeled heavily after attack-defend style cyber-
security Capture-the-Flag (CTF) competitions. The competition was
structured as a “brokered” environment. That is, instead of com-
petitors directly administering the hosts that required defense, or
directly leveraging offensive actions upon one another, competitors
uploaded software and minor metadata on how the software
should be used (e.g. targeting information) to competition infra-
structure services. This mediation afforded many desirable prop-
erties, among them more organizer control over the competition
operations and the ability to catalog and inspect every input into
the competition.

The CGC infrastructure development team built an analysis
system to vet competitor submissions as one piece of a broad
strategy to protect the competition integrity. The challenge orga-
nizers did not expect any of the CGC Final Event (CFE) competitors
to attempt to subvert the competition infrastructure. Even so, there
was desire for convincing evidence supporting the assertion that
competition integrity was not compromised in violation of CGC
rules (DARPA, 2016), and in the event that competition forensics
were required, the unusual environment and relative urgency for
results required investigative tools and processes to be foresight,
not afterthought.

The competition consisted principally of two events, a quali-
fying event and for those that progressed, a final event. Participa-
tion in the CGC Qualifying Event (CQE) was open to any applicant
who met a relatively open set of criteria (DARPA, 2014), and this
accessibility motivated the vetting of CQE submissions. The analysis
system, known as the CGC Monitor is built upon a full system
simulator. An early goal was to simulate the entire competition
infrastructure software execution environment and execute
competitor-provided software within the simulated system prior to
its introduction onto the actual competition infrastructure. The
simulator is instrumented to detect attempts to compromise the
operating system execution control paths or its data structures,
(e.g., credentials used to identify a process and its permissions). For
CQE, the goal of vetting all software prior to its reaching the
infrastructure was realized. For CFE, time constraints required
vetting of competitor software concurrently with execution on the
actual competition infrastructure. Even though this vetting was not
a prerequisite for introducing software into the competition, all
submitted software was vetted prior to the naming of the CFE
winners.

In addition to automated vetting of competitor-supplied soft-
ware, an analysis system was developed to facilitate investigation of
any executed competition submission. That is, an analyst can
investigate any particular execution that occurred during the
contest using a novel IDA Pro debugger client alongside an IDA-
Python plug-in (Eagle, 2008). The analysis tool was available to
further investigate sessions flagged during automated vetting, and
was utilized after CFE to better understand which flaws were suc-
cessfully exploited during the competition. The analyst tool

includes reverse execution, automated identification of successful
proofs of vulnerabilities (PoVs), and the ability to bookmark and
return execution to points of interest.

During CQE, vetted submissions included each replacement
challenge binary (RCB), and each proof of vulnerability (PoV), which
in CQE was an XML file that controls network traffic sent to
vulnerable Challenge Binaries (CBs). For CFE, every PoV was run
against the RCB and IDS rule-set pair specified by the Cyber
Reasoning System (CRS), that submitted the PoV. And every RCB
was exercised using a sample of the service polls created for that
CB. The competition infrastructure provides CBs with a repeatable
source of simulated entropy, potentially leading to divergent
execution between two sessions for the same service poll. The
entropy sources used within the competition infrastructure were
re-used in the simulated system to align code paths followed on
each system.

For the purposes of this paper the term “malicious” is defined as
attempts to subvert the competition infrastructure or scoring sys-
tem, ultimately in violation of one or more of the CGC Rules
(DARPA, 2016). The remainder of this paper first describes the
simulated architectures in section 2 and the implementation of the
CGC Monitor using the Simics full system simulation including
strategies for detecting specific malicious activity in section 3. The
analyst support functions and implementation of reverse execution
features are then described in section 4. Details from at scale ex-
periments of the CGC Monitor are provided in section 5. Experi-
mental results are presented along with a discussion of
performance in section 6. Finally, related work is described in
section 7 and concluding remarks are provided in section 8.

2. Emulated architecture

CQE scoring occurred on a set of isolated virtual machines
(VMs), each of which ran a single session, e.g., a reference PoV
thrown against a competitor-provided RCB. Each VM included the
two primary infrastructure software components: a player that
replayed XML files to simulate client network traffic, and a launcher
that spawned RCBs or CBs. CQE did not include an IDS component
(DARPA, 2016). The CGC Monitor for CQE was similarly constructed,
with individual simulated computers running the very same player
and launcher software to replay CGC sessions.

Each team in the CFE had its own defended host upon which all
of its services executed. When a team's CRS submits a RCB, that
program eventually executes on that team's defended host. Each
team also has its own PoV Thrower, which is a server that executes
the PoVs submitted by that team's competitors, specifically tar-
geting the team. Alongside the PoV thrower is a poller that sends
service polls to the team's defended host and assesses responses to
ensure the team's services are functional. All traffic that flows be-
tween a team's defended host and its PoV thrower and poller
passes through an IDS. A CRS can submit IDS filters to block or
modify traffic flowing to the services executing on a defended host.
Each team's suite of components included a negotiator with which
an executing PoV negotiates attributes of the proof of vulnerability.
These negotiated attributes include whether the PoV is Type 1
(controlled crash), or Type 2 (memory disclosure).

For CFE, the system simulated by the CGC Monitor includes
three distinct simulated computers that correspond to specific per-
team servers in the competition infrastructure: the defended host;
the IDS; and, the PoV thrower. To reduce the quantity of simulated
computers, service polls were originated on the simulated IDS
server rather than a separately simulated server. Similarly, within
the simulated system, the negotiation service runs on the IDS
rather than a distinct server. The simulated computers run the
exact operating system, (and custom hypervisor), deployed on the
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competition infrastructure and the exact services, e.g., the pro-
grams that launch CBs and PoVs. While the CFE competition
infrastructure computers include multi-core processors, the simu-
lated computers are configured as single-core processors because
these are more efficient for Simics to simulate, and none of the
deliberately planted vulnerabilities in CGC relied on multiprocess
race conditions. (The CGC Monitor is configurable to use multi-core
processors and to run many CGC sessions concurrently on a single
set of simulated computers, and this was done to help identify a
race condition in the DECREE infrastructure Kkernel during its
development.)

As in the CFE infrastructure, the simulated systems include
ethernet links dedicated for in-competition data and separate links
for exchange of control information.

3. CGC monitor design and implementation

The design goal for the CGC Monitor was to monitor all CGC
infrastructure software that could be compromised by malicious
competitor submissions. This naturally includes the operating
system that hosts executables provided by a CRS.

The range of strategies considered for monitoring the CGC
included, at one extreme, conducting the entire competition upon a
simulated system with real-time introspection into the infrastruc-
ture software. Another option was to conduct the competition on
real hardware, and then repeating the entire competition on a
simulated system. This second run of the competition would have
been performed using a record/replay tool such as Panda (Dolan-
Gavitt et al., 2015), facilitating inspection and analysis of compet-
itor software through iterative replays, looking for signs of mali-
cious activity. After trivial analysis it was apparent that true real-
time monitoring of CGC infrastructure through introspection
would lead to competitions with very long durations, for reasons
summarized in section 6.1. Nevertheless, the competition infra-
structure team held to the general goal of approaching real-time
monitoring, and sought a design that could play individual CGC
sessions and monitor events as they happened.

The Simics full system simulation is the core of the monitoring
system. Simics includes a simulated Intel-based computer platform
that broadly corresponds to those deployed in the CGC infrastruc-
ture. All monitoring is implemented by functions that non-
intrusively observe the state of the simulated system. No instru-
mentation exists within the simulated execution environment,
which is monitored using scripts developed for use with the Simics
Hindsight product (Wind River, 2015c). The only portions of the
CGC Monitor that execute within the simulated environment are
functions to support coordination, such as the transfer of CGC
competitor submissions into the execution environment, and
invocation of the CGC competition infrastructure services, (e.g., the
launcher that spawns CBs).

Though Simics also includes an “Operating System Awareness”
feature to aid in monitoring selected Linux kernel environments,
use of that feature significantly degrades performance by disabling
hardware assisted acceleration. Because of that, and because Simics
OS awareness does not include FreeBSD, the CGC Monitor required
development of a novel OS awareness function using the basic
Simics building blocks of breakpoints and callbacks.

3.1. CGC monitor OS awareness implementation

As a brief introduction to the strategy, consider a full system
simulation environment, (e.g., Simics) that allows a developer to set
breakpoints on selected memory accesses, and associate developer-
programmed callbacks with each breakpoint. Setting a “modify”
breakpoint on the memory address at which the kernel maintained

a pointer to the currently scheduled thread causes the associated
callback to be invoked whenever the scheduled thread changed.
Depending on the context referenced by the current thread pointer,
the callback sets additional breakpoints to monitor actions taken
while that specific thread is scheduled, e.g., setting an “execute”
breakpoint on addresses that handle syscall entry into the kernel to
invoke an associated callback each time a process makes a system
call. Similarly, catching invocations of execve, (by breaking on
execution of the address of that function in the kernel), discovers
parameters passed when selected processes are started, facilitating
the tracking of the execution of specific programs. This strategy is
sufficient because execve is the only mechanism within the DE-
CREE execution environment that causes execution of programs of
interest. These breakpoint/callback primitives are tied to addresses
taken from kernel link maps, and offsets calculated from kernel
internal data type declarations.

The CGC Monitor uses three types of Simics callbacks other than
the breakpoint callbacks described above. These callback types are:

e Processor exceptions are used to monitor events raised by the
CPU. Monitoring page fault exceptions provides the analysis
function with the execution address at which a segmentation
fault occurs. An execution breakpoint within the kernel's signal
handler generates a callback when the kernel generates a signal.
If the signal type reflects a segmentation fault, then the previous
page fault for that process is assumed to have caused the signal.
Page faults are also monitored by analysis functions to identify
when physical memory is about to be mapped to a process's
address space, thereby enabling the setting of breakpoints on
physical memory in user mode as soon as the kernel returns to
user mode i.e., after the kernel has mapped the referenced
memory. Illegal instruction (s1cILL) faults are recorded
directly by these callbacks, without reference to operating sys-
tem instrumentation, other than to identify the offending
process.

e Mode change callbacks are used extensively in the Simics

Hindsight product's OS awareness feature, contributing to the

aforementioned performance degradation. Use of these call-

backs causes Simics to disable its “VMP” kernel module, which
uses hardware virtualization to run much of the simulation
natively on the host processor. The CGC Monitor uses these
callbacks sparingly, e.g., during the window of execve pro-
cessing to catch the first return to user mode within a process.

Mode change callbacks are also used as described above to catch

returns to user mode after physical memory is mapped

following a page fault.

Simulation stopped callbacks are invoked when the simulated

execution stops, e.g., because a breakpoint is reached for which

there is no corresponding callback. These callbacks are utilized
within analysis functions in support of reverse execution. Simics
breakpoint and mode change callbacks are not generally useful
when executing in reverse (as described in 4.3). If breakpoints
are set without corresponding callbacks, reverse execution will
find the most recent breakpoint, stop execution at that point,
and execute the corresponding “simulation stopped” callback.
This is done in lieu of breakpoint callbacks.

3.1.1. Breakpoints on linear vs physical addresses

Simics x86 processor models support the setting of breakpoints
on physical addresses and “linear”, i.e., virtual, addresses. The
monitor uses linear address breakpoints when monitoring the
kernel. When monitoring user space for analysis functions, CGC
Monitor employs physical address breakpoints because linear ad-
dresses are shared between processes. Use of physical address
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breakpoints requires the monitor to detect the mapping of physical
pages, which it does by catching processor page fault exceptions as
described earlier. DECREE provides no interfaces via which a pro-
cess could cause remapping of page table entries or copy-on-write,
thereby simplifying the management of breakpoints on physical
memory. Support for monitoring a more general execution envi-
ronment would require suitable extensions to the breakpoint
management.

3.2. Fidelity

Vetting software with a simulator requires code paths followed
on the simulated system to match those on the target system. If
malicious software can detect differences between the target sys-
tem and the simulated system, the software can mask its malicious
intent when running on the simulated system. The limited number
of system calls within DECREE reduces the opportunities for pro-
grams to identify differences in the two environments. Addition-
ally, the use of a custom hypervisor allows DECREE to produce
identical responses to machine instructions that might otherwise
reflect hardware differences (Vidas et al, 2017). At least one
competitor demonstrated the ability to detect the difference be-
tween DECREE executing on CFE competition infrastructure and
DECREE within the publicly available VM, and they used this
detection capability to diverge execution of their RCBs between the
two platforms. The CGC Monitor execution paths purposefully only
matched those of the CFE competition infrastructure.

Simics employs processor models to emulate execution of code
on specific processors. The fidelity of the processor model to the
physical processor is critical to avoiding potential execution
divergence. DARPA previously contracted with Intel to develop a
suite of application monitoring tools, and while those tools did not
become part of the CGC Monitor, the CGC Monitor did incorporate
the high-fidelity processor model from that project (Intel
Corporation, 2015). This processor model replaced the processor
model within the standard Simics “Intel Core i7” model library.

Simics processor models simulate time such that all instructions
take a single unit of time, i.e., one clock cycle, to run. DECREE
processes have no direct ability to observe the passing of clock
cycles, however this might result in kernel scheduling divergence
(e.g., differences in how many instructions get executed during a
specific time slice). Timing differences between the simulated
system and the target environment might be exploited to distin-
guish between the two environments. While DECREE does not give
a process access to an explicit clock, processes do have opportu-
nities to observe some implications of time passing. For example,
the receive call may return different quantities of bytes on
different implementations. Another opportunity for divergence
occurs because some CBs contain multiple binaries that execute
concurrently. Results of IPC operations (transmit/receive using
shared file descriptors) can vary due to differences in kernel
scheduling. For example, one process may transmit a large number
of bytes using a shared descriptor. The number of bytes seen during
a single receive operation performed by another process may
depend on how long the transmitting process was scheduled.

3.3. CGC monitor operating systems

As noted earlier, the choice to not rely on the limited Simics OS
Awareness support was driven by more than just performance
considerations. While CQE was hosted on a 32-bit Linux kernel
(similar to those supported by the Simics OS Awareness), the DE-
CREE execution environment includes a set of system calls that
differ from those provided by Linux. Additionally, CFE was hosted
on a 64-bit FreeBSD kernel, (that includes the 32-bit DECREE

execution environment.) The CGC Monitor is configurable to
simulate systems containing 32-bit or 64-bit versions of either
operating system, including a heterogeneous mix within the same
monitored system.

3.4. What is monitored?

Kernel execution is monitored for signs of malicious behavior
while any of the following processes are scheduled: RCBs; PoVs;
and, IDS software (because it consumes competitor-provided IDS
filter rules). Signs of malicious behavior include: instances of return
oriented programming (ROP), process credential manipulation,
writing to kernel page table structures, and unexpected execution
of code within the kernel, (e.g., execve functions while a challenge
binary is scheduled), or execution at any address outside of defined
text sections. The set of monitored actions resulted from discus-
sions with veteran CTF players and individuals with experience
subverting platforms.

e Kernel ROP Execution of a ret instruction in kernel mode whose
destination address does not follow a call instruction. This is
implemented by setting execution breakpoints over the entire
kernel executable linear address space, qualified via the Simics
set-prefix function, which masks the breakpoints to ignore any
instructions whose mnemonic does not begin with a given
string. Thus, execution of each ret instruction in the kernel
generates a callback to a function that inspects the destination
address to ensure it follows a call. DECREE infrastructure kernels
are configured to use address space layout randomization
(ASLR). The breakpoint range is associated with addresses of
kernel module code by recording the random kernel address
ranges during a provisioning step which creates a snapshot of a
booted system image that then serves as the baseline for all
instances of the monitor. Kernel ROP monitoring is only engaged
while targeted processes are scheduled.

e Kernel Page Tables Page directories and table modification is
detected via modify breakpoints set on the linear address of
pages containing these structures. Transitions to use different
operating systems with different page management schemes,
e.g., Intel physical address extensions (PAE), resulted in several
variations of this monitoring.

e Credentials Modify breakpoints are set on the pointers to user
credentials within the thread structures of monitored processes,
and on the structures containing the credentials.

e Unexpected Execution Sections of kernel code that were not ex-
pected to execute during PoV or RCB sessions were monitored
with execute breakpoints. These kernel text sections were
identified manually based on coarse analysis of functions an
attacker would value.

4. Analyst support functions

In addition to automated vetting of competitor submissions, the
CGC Monitor includes functions to support investigation of
competitor submissions as they execute during simulated compe-
tition sessions. These functions use the very same simulated ar-
chitecture as the vetting functions.

A goal of developing the analysis functions was to aid in deter-
mining the root causes of foul play or successful PoVs. The existence
of a successful PoV in CFE simply reflects that there is a vulnera-
bility, but does not indicate which vulnerability, (e.g., some PoVs
had more than one), or the path followed to exploit the vulnera-
bility. The challenge is related to the real world situation where a
fuzzer generates a program input that causes a crash, leaving an
analyst to find the bug that created the vulnerability.
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4.1. Capturing session events

When enabled, analysis functions record all system calls made
by a binary executing on DECREE. The CGC Monitor records all
parameters, including data read and written with receive and
transmit calls. The system can optionally generate a full instruction
trace, including data accesses, for any session. CGC-specific events
are automatically caught and recorded as they occur, including:

e Generation of operating system signals, e.g., a segmentation
fault that occurs as part of a Type 1 PoV.

e Negotiation of PoVs. PoV interaction with the negotiator,
including negotiated register values and submission of Type 2
protected memory values.

e Type 2 PoVs. The record of these events includes execution
addresses at which the memory was read.

e Execution of ret instructions whose target address does not
follow a call, reflecting potential use of ROP by a PoV.

e Execution of any address outside of defined text sections or
memory allocated as executable.

4.2. Interactive program analysis with reverse execution

The analyst interacts with a simulated CGC competition session
under control of the IDA Pro GDB debug client. This “IDA Client” was
extended using IDAPython scripts to interact with the CGC Monitor,
supporting reverse execution to breakpoints and events of interest.
A typical IDA Client session begins with the analyst naming a session
to replay. The CGC Monitor executes the session and automatically
pauses the simulation at a point of interest, e.g., reading protected
memory as part of a Type 2 PoV. The IDA Pro interactive dis-
assembler launches and connects to the CGC Monitor's GDB server
functions, displaying the execution point at which the simulation
paused. The analyst can then use standard IDA debugger commands
to interact with the program. The tool supports extended hot-key
and menu selections to include operations such as shown in Table 1.

The analyst can set and jump to bookmarks anywhere within
the session. Initial, pre-generated bookmarks include the point at
which the process begins execution, the point at which the simu-
lation was initially paused, and events such as the first execution of
an address within the stack. The final item in the above list of op-
erations generates a set of bookmarks, one for each instruction that
transfers the tracked value from/to memory and registers. The
operation is similar to taint tracking, only in reverse and it halts
upon any manipulation that is not a strict load, move or indirect
memory transfer. An example use case tracks the providence of a
faulting return address on the stack. When analyzing successful CFE
PoVs, this operation will usually halt at the receive system call that

Table 1
Analyst tool hotkeys. Convenience key combinations for investigation using the IDA
Pro tool described in section Interactive program analysis with reverse execution.

Hotkey Operation

Alt-Shift-F9 reverse

Alt-Shift-F8 reverse step over

Alt-Shift-F7 reverse step into

Alt-Shift-F4 reverse to cursor

Alt-F6 reverse until just before current function is called
Alt-Shift-r reverse to previous write (selected register)
Alt-Shift-a reverse to previous write (selected address)
Alt-Shift-s reverse to previous write (selected stack address)
Alt-Shift-o jump to initial debug eip (just before fault)
Alt-Shift-t jump to start of process

Alt-Shift-p set an execution bookmark

Alt-Shift-j jump to a bookmark (chosen from list)
Alt-Shift-u run forward until in user space

reads the address from the PoV, leaving a series of bookmarks
denoting execution points at which the faulting address was
copied. This sequence of bookmarks, starting at the fault and
ending at the ingest of the faulting address, gives the analyst spe-
cific locations in which to look for memory corruption.

The analyst support function includes an automated operating
mode that runs without an IDA client, and creates reports of events
associated with a successful PoV session. These reports summarize
events in the session, e.g., execution from the stack region, and
include the reverse data trace bookmarks. This capability was used
to create reports for all of the successful CFE PoVs, and the results
can be seen in the archive of the CGC CFE corpus (Caswell, 2017).

4.3. Debugger implementation considerations

Simics includes a GDB server function via which remote GDB
clients can control the simulated execution of processes. When
used for analysis of applications, the GDB server is typically com-
bined with Simics OS awareness functions to maintain the context
of the target process. As previously noted, the CGC Monitor does
not use Simics OS awareness functions, and thus it maintains the
necessary process context information to ensure that the state of
the proper process is returned to the GDB client.

Simics reverse execution support significantly slows down the
simulation and is only enabled for IDA Client sessions. The CGC
Monitor enables the feature once the target process begins execu-
tion. Simics creates the appearance of reverse execution by recording
a series of “micro checkpoints” that are referenced during any
reverse operation to move the state of the simulation backwards in
time. The actual backwards progression of the simulation is not
strictly serial, and there is no specification of the sequence or fre-
quency at which callback events might be encountered. For example,
if a breakpoint is set at an executable address five instructions prior
to the point at which the reverse operation commences, any callback
associated with that breakpoint may be invoked several times before
Simics identifies the correct, (i.e., most recent), encounter with the
breakpoint address. While the Simics reverse operation does not
respect the ordering of callbacks, it does eventually identify the
proper simulated execution state for breakpoints. If the breakpoint in
the proceeding example had no associated callback, then the simu-
lation will stop after reversing to the most recent state at which the
breakpoint memory address is the EIP for any process. Thus, prior to
invoking the Simics reverse operation, all callbacks are removed, and
a “Simulation Stopped” callback is added.

The IDA Pro GDB client (as of version 6.8) does not include
support for reverse execution. However, IDA Pro can be extended via
scripts and plug-ins. Support for reverse execution within the IDA
debugger client was added using IDAPython. Reverse operations are
out of band with standard client/server GDB communication. The
IDA GDB client includes a sendGDBMoni tor function that forwards
a given command to the GDB server. The Simics GDB server simply
passes these to the Simics command interpreter. Since the CGC
Monitor is treated by Simics as a nameable object, its methods can
be invoked by the Simics command line arguments, thus CGC
Monitor functions can be invoked remotely by IDAPython scripts.

To illustrate the flow, imagine the analyst wishes to reverse
execution to an address indicated by the current cursor position.
The sequence of events are shown in Fig. 1. First, the IDA Client
plug-in uses sendGDBMoni tor to send a command that causes the
CGC Monitor to be invoked via a function that reverses execution to
the given address. The function is implemented by defining a stop
callback, then setting a breakpoint at the given address and
directing Simics to reverse. When the breakpoint is reached, Simics
stops the simulation. When the simulation stops, the stopped
callback executes and checks if the simulation has reached the
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Reverse to
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2
Set stop
callback

IdaPro

Simics Engine

Fig. 1. The flow sequence to reverse to cursor address. The IDA Client directs Simics to
reverse execution (1). In turn, the CGC Monitor defines a stop callback (2) and sets an
address breakpoint (3) at the address specified in step 1. Simics processes execution
until the breakpoint is reached at which point simulation is stopped (4), triggering the
stop breakpoint set in step 2, which verifies that simulation has reached the desired
address. The IDA Client, which after step 1 polls the CGC Monitor, receives a status
update that Simics has reversed execution to the desired addressed. The IDA Client
then sets a breakpoint at the current EIP and starts execution (6) which forces (via a
GDB IDA Pro function) all the register states to be updated in IDA Pro.

desired state, and if so, it updates a status message that will be read
by the client. The sendGDBMonitor function is not synchronous,
so while the CGC Monitor is coordinating the reverse execution, the
IDA Client polls the CGC Monitor, again with the SendGDBMoni tor
command, but this time via a function that returns the status
message maintained by the CGC Monitor. Once the polled message
indicates that the simulation has stopped, the IDA Client plug-in
calls the standard GDB IDA function to set a breakpoint on the
current EIP, and run forward. This final step forces the IDA GDB
client to query the GDB server for an update on the current register
state, thus presenting the correct execution state to the analyst. To
our knowledge, no other method exists to force the IDA GDB client
to update its representation of the target register state, and so this
trick of setting a breakpoint at the current EIP and continuing is
employed throughout the tool. If a provided address is not
encountered (meaning a faulty address was provided in step 1 - one
that had not been previously executed), the CGC Monitor halts
reverse execution at the very first recorded user space instruction
and breaks in an error condition.

5. Scaling and evaluation

The CGC Monitor was designed to vet submissions in a CFE
simulation consisting of 100 roughly five-minute rounds having at
most twenty services (CBs) per round, where seven teams submit
replacements for each service and PoVs targeting each of the other
six teams. This leads to a potential total of 14,000 different RCBs,
with 140 concurrent per round, and up to 120 different PoVs per
round, for a total of 12,000 PoVs. To meet this load, the CGC Monitor
can scale to hundreds of concurrent emulated instances of CGC
systems. Each instance consists of a Simics simulation of one or
more emulated computers (e.g., each simulation of CFE includes
three networked computers per instance), and each simulates a
single CGC session at any time.

Two blade enclosures host the CGC Monitor, each enclosure
contains 16 blade servers having a single quad core Intel Xeon
processor running at 3.5 GHz and 4 GB of RAM. Twenty-nine blades
each hosted six instances of emulated systems, and three hosted
three instances each, (these three blades were shared with the
application coordination service). The hardware performance

determines the duration required to emulate the set of sessions, it
does not affect the execution of CBs.

During CFE, CPU utilization varied depending on properties of
the sessions being simulated. Some of the more pathological ses-
sions described in section 6.1 led to sustained CPU utilization of
100% on the individual blade core allocated to the session. Even
though a blade core load would reach 100%, the queuing system
described below ensured that all sessions were eventually evalu-
ated. Memory usage did not exceed 50%, and did not vary notice-
ably between sessions.

Distributed synchronization, configuration management, and
low level queuing functions are implemented with the Apache
ZooKeeper application coordination service (Hunt et al., 2010).
ZooKeeper is installed as a three node cluster on three of the blade
servers, and CGC Monitor relies on this clustering to provide
redundancy and fault tolerance for the automated vetting results.
Authoritative results of each CGC session are written to individual
ZooKeeper nodes, and are eventually transferred to a MySQL data-
base. A distinct “Monitor Slave” manages each Simics simulation
instance, using a ZooKeeper client to lock and retrieve CGC sessions
for simulation within its associated Simics session. Each blade server
contains one or more Monitor Slaves, one per Simics session. All
monitor slaves draw CGC sessions from a common pool, maintained
in a ZooKeeper node hierarchy. A single “Monitor Master” populates
this pool with CGC session data obtained from the CGC competition
infrastructure. The Monitor Master copies competitor submissions,
e.g., RCBs, into a forensics repository mounted via NFS by the other
blades. Metadata about the sessions (e.g., entropy seeds) are stored
in ZooKeeper nodes created by the Master for each session.

Blade servers can be dynamically added and removed while the
CGC Monitor runs. Newly added blade servers automatically
reference ZooKeeper nodes to retrieve their configuration and
begin processing GCG sessions. Any session initiated but not
completed by an absent Monitor Slave is returned to the pool for
processing by some other Monitor Slave.

Each Monitor Slave also uses ZooKeeper nodes to coordinate
with CGC Monitor functions executing within its associated simu-
lated environment to spawn the CGC competition infrastructure
services, e.g., the CB launcher. These ZooKeeper clients obtain their
configuration information and session replay metadata from
ZooKeeper nodes. Programs within the simulated environment
communicate with real world computers, (e.g., to ingest competitor
submissions or to create a ZooKeeper node to signal completion of a
session), using the Simics real network interfaces (Wind River,
2015b). Each emulated computer includes multiple emulated
Ethernet interfaces, one of which is dedicated for this communi-
cation with real world processes.

Simics optimizes simulations by detecting and skipping idle
loop processing. As a result, running ZooKeeper clients within the
simulated environment presents interesting implementation
challenges because the speed of clocks in those environments vary
drastically from the real-world clocks referenced by the ZooKeeper
server cluster. During a CGC replay having little processing, or while
idle, the clock in the simulated system may run several times faster
than the clocks in the server cluster and, during a CPU-intensive
replay, (e.g., a CB looping on a failed system call), the simulated
clock may run hundreds of times slower than the clocks in the
cluster. One side or the other of the ZooKeeper client-server pro-
tocols will often see session expirations or timeouts. Fortunately,
ZooKeeper employs robust session management reporting within
the client, enabling the client to reliably detect the loss of, and
subsequently reinitiate, a session. Some CGC replays experience
several ZooKeeper session timeouts in the course of the replay, but
are able to recover with no loss of data or noticeable performance
degradation resulting from frequent session reestablishment.
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6. Results

The primary objective of the CGC Monitor was to identify and
subsequently analyze any attempt to undermine the competition
infrastructure. No team submissions were found to have been
designed to subvert the CGC competition infrastructure.

During CFE, the CGC Monitor did flag 41 occurrences of “returns
without calls” (ROP) within the kernel. Each instance occurred at
the same location in the freeBSD kernel, specifically within a return
to the fork trampoline function (cpu_switch. s) during creation of
a RCB process. This occurred with several different multi-binary
challenge sets, in about three percent of the sessions for those
challenge sets. CGC referees determined these events were false
positives. That is, the intended execution of this kernel trampoline
function is to return to a code sequence that had not made a call.
The CGC Monitor should not have monitored execution of these
events because they occurred during fork processing rather than
during execution of an RCB.

Following CFE, and not pertinent to the integrity of the
competition, the CGC Monitor was used to analyze competitor
submissions. Each CFE vulnerable software service had one or more
reference PoVs, patched versions of the services, and descriptions
of how their vulnerabilities could be exploited all provided by the
service author. In this post-CFE analysis, the objective was to
identify which vulnerability was exploited. Though some services
include multiple vulnerabilities, no more than one vulnerability in
any given service was exploited during CFE. Of the 20 services
exploited in CFE, (listed in Table 2), 10 were exploited in unintended
ways. Six (30%) were due to vulnerabilities that were not intended
by the service author. Further, four (20%) of the exploited services
were exploited through paths not identified by the author, and
these paths were often much simpler than those envisioned by the
author. For example, the cRoMU_00055" service had a deliberate
heap management bug that returns a buffer of size zero in response
to a request for a buffer of size 0xff+1. The author's documenta-
tion describes an exploit that carefully constructs data structures
within the heap, which are then used to corrupt the execution
control path. The competitor systems did not deploy heap exploits
for this service, rather, they discovered the zero length buffer led to
direct disclosure of values copied from protected memory.

6.1. Performance

The CGC Monitor is configurable to monitor different types of
events, and in general, more monitoring results in slower simula-
tion of CGC sessions. Vetting does not require monitoring of
application or user space operations, e.g., syscalls need not be
logged to vet competitor submissions. However, syscall logs are
convenient to have when reviewing competition activity. Similarly,
monitoring of PoV negotiation and access to protected memory is
not necessary for vetting. But, again, it is convenient to have those
results without having to separately rerun sessions. Since it was
previously established that vetting would be concurrent with CFE,
and not a prerequisite to running submissions on CFE competition
infrastructure, additional application-level monitoring was enabled
at the cost of longer simulated sessions. The additional logging
allowed referees to compare PoV success as seen on the analysis
system with that seen in the actual competition, and confirm the
consistency of those results.

Vetting during CFE was fully automated, though humans
monitored the results and were able to adjust the monitoring

! The source and readme for this service can be found at https://github.com/
CyberGrandChallenge/samples/tree/master/examples/CROMU_00055.

Table 2

Author Intention of Exploited CFE Services: Of the 20 exploited services in CFE,
half were exploited in ways unintended by the author of the vulnerable service. Six
services included a vulnerability unknown to the author, yet discovered by com-
petitors, and an additional four vulnerabilities found were intended, but exploited
via unintended means.

CBID As intended Description

YANO1_00015
YANO1_00016

CROMU_00046 Y
CROMU_00051 N unintended path
CROMU_00055 N unintended path
CROMU_00058 Y
CROMU_00064 Y
CROMU_00065 N unintended path
CROMU_00073 N unintended path
CROMU_00088 N unintended vuln
CROMU_00094 Y
CROMU_00095 N unintended vuln
CROMU_00096 N unintended vuln
CROMU_00097 N unintended vuln
CROMU_00098 Y
KPRCA_00065 N unintended vuln
KPRCA_00094 Y
NRFIN_00052 N unintended vuln
NRFIN_00059 Y
NRFIN_00063 Y

Y

Y

based on system performance. Using the monitoring configura-
tion selected for CFE, many sessions completed vetting within a
few seconds. Some would take days to complete, (if monitoring
continued for the duration of the simulated session). Some CGC
sessions are long-running due to several conditions, some
of which led us to prematurely terminate monitoring of some
sessions:

1. The Simics product includes an optional Accelerator, intended to
improve the performance of multi-computer simulations (Wind
River, 2015a). The Accelerator uses multithreading to run multi-
machine simulations in parallel on multiprocessor hosts. Ex-
periments with simulations of CGC sessions showed no perfor-
mance improvement when using the Accelerator. Simics
includes several tunable parameters to optimize performance of
multi-threaded simulations, including the latency controlling
how frequently threads are synchronized. No tested configura-
tion offered significant performance over the single threaded
implementation which may well simply be a property of the
CGC sessions being simulated.

2. Errored Syscalls A process spinning on calls to receive passing a
closed file descriptor invokes the kernel many times in fifteen
seconds (all CGC sessions are terminated after fifteen seconds).
Large numbers of syscalls slow down the simulation. The CGC
Monitor was configured to terminate monitoring after several
hundred failed syscalls. This situation generally occurred when a
competitor CRS incorrectly reformulated a RCB, resulting in the
poller exiting and insufficient error handling within the CB
communication protocol.

3. Long running PoVs PoVs may be more reliable if they execute for
the duration of the session, because premature exiting can result
in the target RCB failing to read some data that had been written
by the PoV. Keeping a PoV alive by using fdwait to sleep for a
long period would be the CGC Monitor's preference to keep a
PoV executing because Simics skips noop cycles. Unfortunately,
competitors had PoVs spin on syscalls or just spin in user space,
which requires simulation.

4. Denial of Service Scores are affected by the wall-time required to
complete polls. Thus, if a competitor PoV can consume resources
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on another's defended host, that might increase the wall-time
required to service polls on that defended host. One way to
consume defended host resources is to cause an RCB to
continuously read bytes, one at at time, from a PoV until the
fifteen second limit is reached. In the most extreme example of
this, a competitor threw a PoV that caused the RCB to read
1,188,880 individual bytes in 1,188,883 system calls. Those
fifteen seconds of real-time require 62 h of monitored simula-
tion time. (Turning off kernel ROP monitoring reduces the replay
time for that session to eighty-four minutes.) That particular
PoV did not score (other than perhaps indirectly by consuming
resources on the defended host). A strategy followed by at least
one team was to score with a PoV (direct benefit), and then enter
an infinite loop (indirect benefit by hindering an opponent).

Attempts to slow down defended hosts by consuming
their resources were so prevalent that about halfway into the
competition it became clear that some sessions were consuming
all CGC Monitor resources, with no visible progress being made.
The CGC referees therefore reconfigured the system to only
monitor events necessary for vetting, and they bounded execu-
tion. Roughly halfway through CFE, the starting configuration
was altered to:

1. Terminate sessions after execution of 136,000,000 instructions
(roughly fifteen minutes, session dependent).

2. Monitor only kernel events as listed in section 3.4.

3. Disable syscall logging

Immediately following CFE, changes 2 and 3 were rescinded (the
instruction upper bound remained), and the remaining sessions
were replayed through the CGC Monitor in order to secure inde-
pendent confirmation of PoV success.

Competitive advantages gained by creating resource intensive
executables, or subverting RCBs to consume resources, reduces
the prospects for running a CGC-type capture-the-flag compe-
tition on simulated hardware. Even when all monitoring is
disabled, some of the more pathological sessions required fifteen
minutes to reach a fifteen second timeout. These cases appear to
have resulted from large quantities of single byte transmits and
receives.

6.2. Limitations

The CGC Monitor primarily screened for attempts to subvert the
DECREE operating system. CGC Monitor did not monitor the IDS
service in CFE in an IDS-specific way, (an application written in Go),
though that service did consume competitor submissions in the
form of IDS filter rule sets. The CGC Monitor did monitor the DE-
CREE infrastructure kernel on the IDS host while the IDS service
processed rule sets. Similarly, the CGC Monitor was not used to
monitor the poller nor the DECREE kernel on the poller host,
though the host consumed competitor data in the form of poll
responses.

As noted in section 3.2, malicious functions could use timing
differences to detect the use of Simics as a simulated vetting plat-
form, and branch away from exhibiting symptoms of maliciousness.
The use of Simics in CGC was a relatively closely held secret, which
might not be the case if there were subsequent competitions. The
authors see no solution to the problem of malicious software
detecting timing differences between the simulated platform and
the target hardware.

The CGC Monitor was written to act upon CGC binaries exclu-
sively and therefore does not readily work with commodity soft-
ware. However, Simics is a full system x86 simulator and the

principles (and open source software) of the CGC monitor could be
extended to work on software other than CGC binaries.

7. Related work

Significant research has been performed toward efficient and
correct execution virtualization (Barham et al., 2003), simulation,
replay and reversal (Engblom, 2012). Analogous to CGC monitor,
systems like Aftersight (Chow et al., 2008) log nondeterministic
inputs, in this case to Virtual Machines, in order to replay, foren-
sically log, or parallelize execution at the machine level. Since
Aftersight is implemented at the Virtual Machine Monitor, the
recording and analysis can be performed regardless of the software
stack — including the operating system. CGC Monitor benefits from
similar operating system portability and can be expanded to work
with systems beyond those employed in CGC.

Numerous dynamic analysis systems exist, often used
commercially for “malware detonation,” or “malware forensics”
(Deng et al., 2012) — as a “sandbox.” Such systems (Willems et al.,
2007) typically report akin to forensics or incident response tools
in that they instrument a commodity operating system and report
upon the effects of executing either a suspicious or known-bad file.
Anubis is an example of an academic dynamic malware analysis
system built using the QEMU full system emulator. (Bellard, 2005;
Bayer et al., 2009). Monitoring is performed outside of the analysis
environment. The emulator performs execution monitoring by
observing the execution of pre-computed memory addresses cor-
responding to system API functions. As with the Panda system
mentioned in section 3, the reliance on QEMU leads to the system
inheriting limitations of the emulator fidelity, and its vulnerability
to anti-analysis techniques such as those deployed by competitors
during CFE (Shellphish, 2017).

DRAKVUF is a dynamic malware analysis system designed to
use Intel hardware virtualization extensions and the Xen hyper-
visor (Lengyel et al., 2014). DRAKVUF does not require agents to
run on the monitored operating system, i.e., it monitors from
outside the VM. It enables kernel monitoring using breakpoints
and callbacks somewhat similar to those used within the CGC
monitor, except that DRAKVUF injects breakpoints by writing
INT3 instructions directly into the virtual memory of the guest.
The Simics support for setting breakpoints on simulated memory
avoids any need for modifying guest memory. Ether is another
dynamic malware analysis system that uses Intel virtualization
hardware and the Xen hypervisor to facilitate execution tracing
from outside of a VM, through use of VvMEntry and VMExit to
transition between the guest and the VMX root mode (Dinaburg
et al., 2008). These hypervisor-based analysis systems are typi-
cally used to create traces that are then separately analyzed to
detect malicious activity. In contrast, the CGC Monitor detects
malicious activity during execution of the simulated session,
which includes all networked components that contribute to the
sessions.

8. Conclusion

The architecture and time constraints of the Cyber Grand
Challenge prompted a unique investigative challenge grounded in
established problem spaces. The competition itself sought to create
a representative, but minimal environment for software attack and
defense. Consequently, a need existed for proactive collection of
competition records, and concurrent development investigative
tools to maintain a state of readiness.

Monitoring CGC sessions on an instrumented full-system
simulator ultimately provided confidence that software generated
by competitors did not attempt to subvert the competition
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infrastructure. Choices made in the design of the competition (e.g.,
the use of wall time to assess the impact of the IDS) led teams to
deliberately consume resources on their competitor's defended
hosts, and this limited the ability for the instance of CGC Monitor to
fully vet the competition in real time.

The Simics full-system simulator allowed the CGC Monitor to
simulate the key CGC infrastructure components, including the
exact CGC software stack. Limiting monitor design to the use of
breakpoints and callbacks required that the CGC Monitor fully
bridge the “semantic gap” without assistance from the simulator,
but this also afforded the flexibility necessary to monitor a range of
different operating systems. Further, the Simics support for reverse
execution enabled the creation of an analyst support tool, facili-
tating investigation of suspicious sessions. In addition to auto-
matically vetting most competitor software, the CGC Monitor
analyst tool aided analysts in determining which particular vul-
nerabilities were exploited during the competition. For instance, in
the CGC Final Event half of the vulnerabilities exploited were either
gratuitous or accessed via unintended execution paths.

The CGC Monitor is available at https://github.com/mfthomps/
cgc-monitor. Analysis results from CFE, generated by the monitor,
are at https://github.com/mfthomps/CGC-Analysis.
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