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ABSTRACT

Keywords:

Memory forensics is now a standard component of digital forensic investigations and incident response
handling, since memory forensic techniques are quite effective in uncovering artifacts that might be
missed by traditional storage forensics or live analysis techniques. Because of the crucial role that
memory forensics plays in investigations and because of the increasing use of automation of memory
forensics techniques, it is imperative that these tools be resilient to memory smear and deliberate
tampering. Without robust algorithms, malware may go undetected, frameworks may crash when
attempting to process memory samples, and automation of memory forensics techniques is difficult. In
this paper we present Gaslight, a powerful and flexible fuzz-testing architecture for stress-testing both
open and closed-source memory forensics frameworks. Gaslight automatically targets critical code paths
that process memory samples and mutates samples in an efficient way to reveal implementation errors.
In experiments we conducted against several popular memory forensics frameworks, Gaslight revealed a
number of critical previously undiscovered bugs.
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Introduction

In recent years memory forensics has become a standard
component of digital forensic investigations and incident response
handling. This popularity has occurred because memory forensic
algorithms can find artifacts and detect system state anomalies that
would go undetected by traditional disk forensics or live analysis of
a running system. Because of its power and prevalence in the in-
dustry, as well as its crucial role in investigating suspicious insiders,
malware, and active attackers, it is crucial that memory forensics
frameworks utilize robust algorithms that are capable of with-
standing tampering by malware as well as the effects of memory
smear. Without robust algorithms, malware may go undetected,
frameworks may crash when attempting to process memory sam-
ples, and automation of memory forensics techniques is difficult.

Memory smear (Carvey, 2005) is a common problem when non-
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atomic acquisition of forensic data is performed. Although it can
occur when acquiring files from the local disk of a running system,
it occurs more frequently when acquiring memory from an active
system. Particularly on systems under heavy load, smear can result
in corruption of significant portions of a memory sample. Since the
contents of memory changes as the acquisition tool runs, in-
consistencies in the acquired data will be present. This can result in
the hardware page tables describing a memory layout that does not
match what the sample contains, and it can also result in virtual
memory pointers referencing invalid data. Malware that wishes to
disrupt memory analysis can also freely tamper with in-memory
data. These possibilities include being able to zero memory re-
gions, overwrite regions with random bytes, and purposely
manipulate pointers and data structures to reference invalid ad-
dresses or addresses that will prevent the memory forensic algo-
rithms from uncovering malicious components.

Incorrectly handling smear and malicious tampering can lead to
many undesirable outcomes, such as the framework crashing when
processing input, triggering of infinite loops, or extremely long
runtimes, as well as the reporting of distorted artifacts. These
conditions are often obvious when an experienced investigator is
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interacting with a memory forensics framework directly, such as
when running Volatility (Foundation, 2016) or Rekall (Google et al.,
2016) on the command line, but they are less obvious when the
framework is used indirectly by the investigator, e.g., by an auto-
mated processing harness, such as DAMM (Marziale, 2014) or
VolDiff (aim4r, 2015), or in GUI or web frontends, such as VolUtil
(Breen, 2015) or Evolve (Habben, 2015). In these cases, errors pro-
duced by the library are not always obvious to the investigators,
since errors may be simply written to a log file, which might be
examined closely only if no results are produced. In the worst cases,
the frontend or automation harness does not correctly catch ex-
ceptions or error conditions from the memory framework and the
errors go silently unnoticed. All of these situations are unacceptable
when performing forensic analysis that must withstand legal re-
view as well as when hunting sophisticated attackers and malware
with anti-forensics capabilities.

Remedying the previously described issues requires strenuously
testing the memory parsing components of analysis frameworks for
handling of edge cases and corrupt memory regions. The size of the
codebase and the complexity of modern memory analysis frame-
works, which can process samples from a wide variety of versions of
Windows, OS X, and Linux, necessitates that this testing be auto-
mated. As an example, Volatility, one of the most widely used
frameworks, contains support for four hardware architectures, four
operating systems, and over 200 analysis plugins. Combined, this
functionality spans over 60,000 lines of code. Manual analysis of such
a large code base is error-prone and clearly does not scale. Further-
more, the code base is continuously changing and as such would need
constant manual review. Focusing efforts on one framework or tool is
also shortsighted as there are now numerous available frameworks,
both open and closed source, and all require testing.

The term “fuzzing” refers to testing programs by generating
random or semi-random input to cause programs to crash or to
behave incorrectly. In this paper we describe an automated fuzzing
architecture named Gaslight, which can strenuously test critical
components of memory forensics frameworks. Gaslight addresses
all of the previously described concerns and is very efficient in
terms of both processing and disk storage requirements. Specif-
ically, we had the following goals in mind when designing Gaslight:

e Support fuzzing of both open- and closed-source memory fo-
rensics tools, without requiring modifications to the framework
itself.

e Fuzz memory forensics tools written in any programming
language.

e Fuzz as quickly as possible, using all available computing
resources.

o Intelligently discover and report a variety of implementation
errors for memory forensics tools, including crashes, infinite
loops, and resource exhaustion issues.

The following sections discuss related work, describe the
implementation of Gaslight, and discuss several previously undis-
covered programming bugs that Gaslight automatically uncovered
in the latest versions of Volatility and Rekall. The paper concludes
with a discussion of our ongoing work on improving Gaslight.

Related work
Fuzzing for Security Vulnerabilities

The idea of fuzzing applications for security vulnerabilities has a
long history, dating back to 1988 when Bart Miller assigned his

students the task of fuzzing UNIX programs (Miller, 1988). Since
then, fuzzing has become an integral part of application security

testing to find bugs and vulnerabilities that would be difficult to
manually spot or for which manual analysis is not always possible
or scalable (Google, 2016). The most complete fuzzer currently
available is american fuzzy lop (AFL) (Zalewski, 2016a), which has
been used to find numerous significant vulnerabilities in widely
used applications (Zalewski, 2016b).

Unfortunately, AFL, along with other similar fuzzers, are not
directly applicable to memory forensics for several reasons. First,
these tools require access to the source code of tools that will be
tested to instrument them for analysis. This requirement violates an
important goal in the design of Gaslight, specifically, that we do not
require access to nor modify the source code of memory forensics
frameworks being tested.

Second, AFL mutates the entire file being tested and its docu-
mentation recommends files under 1 KB in size for performance
reasons. Such limitations are obviously not feasible with memory
forensics, and Gaslight not only avoids making copies of files, but
also targets only the portions of a memory sample that the memory
forensics framework actually processes, as we discuss in the section
Fuzzer Architecture.

The last issue with AFL and other similar fuzzers is that they are
geared toward targeting native code (e.g., C and C++ applications).
As many digital forensics tools are written in Python, these fuzzers
are not immediately usable as they would be fuzzing the Python
runtime instead of the tool. There was an effort (Gaynor, 2015) to
make AFL operable with Python applications, but it requires sig-
nificant changes to the application being tested.

Gaslight is language-independent and efficient and is capable of
fuzzing any memory forensics tool or framework.

Fuzzing forensics tools

Although not directly related to our research goals, there have
been two notable efforts to incorporate fuzzing into memory fo-
rensics and one major effort to fuzz disk forensics tools.

The first of these efforts was documented by Brendan Dolan Gavitt
in his paper “Robust Signatures for Kernel Data Structures” (Dolan-
Gavitt et al., 2009). The purpose of Brendan's effort was to deter-
mine which members of Windows' process descriptor data structure
(EPROCESS) were critical to system stability. To test each member,
virtual machine guests running Windows XP were used and indi-
vidual members were mutated. After each mutation, the running
guest was monitored to determine if it remained stable, crashed, or
otherwise acted undesirably. The end result of this fuzzing effort was
the development of scanning signatures for memory analysis that
utilized only members whose values were critical. Such signatures
are extremely valuable as malware cannot trivially interfere with
them while also keeping an infected system stable.

A more recent effort leveraged the same workflow as Brendan to
test additional structures (Prakash et al., 2015) and explored the
trustworthiness of memory forensics frameworks by determining
which members of structures could be mutated while still keeping
the machine stable. This is essentially the inverse of Brendan's work
in that Brendan focused on finding stability-critical members. This
new research also supports Linux.

Although both of these efforts involve mutating volatile mem-
ory data, they do not significantly overlap the goals of the research
described in this paper. Furthermore, these previous efforts cannot
easily be adapted to meet our research goals, for several reasons:

1. They do not directly test memory forensics frameworks, but
instead the stability of an operating system to remain stable
after data is mutated.

2. Reliance on a virtual machine for mutations is significantly
slower than our architecture.
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3. Since Gaslight mutates all the data processed by a memory fo-
rensics framework, it is not limited to only certain members of
certain data structures.

At Black Hat and Defcon 2007, Newsham, Palmer, and Stamos
presented their efforts in using fuzzing to break the parsers of
Encase and The Sleuthkit (Newsham et al., 2007). In particular, this
effort focused on fuzzing partition tables, NTFS file systems, and
common file types. This work revealed multiple issues in Encase
and the Sleuthkit, including infinite loops, program crashes, and
memory allocation errors.

Similar to Gaslight, which has mutation sets that target
memory-forensic specific issues, the 2007 effort focused on com-
mon errors in file system related parsing. This effort did not
attempt to minimize the amount of disk space required for fuzzing,
however, and mutated entire copies of files before processing.

Dynamic taint analysis

Similar to fuzzing, dynamic taint analysis (Newsome and Song,
2005) is able to find inputs and conditions that cause programs
to behave erratically. Taint analysis is more focused than vanilla
fuzzing, however, since it closely monitors programs as they
execute and filters inputs to reach desired portions of a program's
state. Due to its power, dynamic taint analysis is now used in nearly
every commercial product that tests applications for security vul-
nerabilities (Edward et al., 2010).

Unfortunately, while extremely powerful, dynamic taint anal-
ysis does not meet the design goals for Gaslight for two main rea-
sons. The first is that this analysis requires modification to the
source code of any memory forensics framework except those
written in C or C++. This is true as otherwise the taint analysis
would be performed on the interpreter instead of the memory
framework. As with fuzzing, efforts have been made to utilize dy-
namic taint analysis in interpreted languages like Python, but these
require modification to source code of the application being tested.
Conti and Russo's research effort describes this approach for Python
applications (Conti and Russo, 2010).

The second reason is that, even if dynamic taint analysis could
be directly performed on a wide variety of programming languages,
memory forensics frameworks would still have to be modified to
meet the design goals for our fuzzing architecture. This is because
dynamic taint analysis engines mark (meaning taint) untrusted
inputs, such as those coming from a user or the network, to test
them. Trusted inputs are not tested. Because of this design, without
modification, all portions of a memory forensics framework driven
by the user, such as parsing command line options, reading of
environment variables and configuration files, and so on would be
tested. This violates our design goal of only testing the portions of
memory frameworks that actually process the memory sample.

Fuzzer Architecture

In this section we elaborate on the design goals and imple-
mentation of Gaslight.

Goals
Gaslight was designed to achieve the following goals:

e Seamless support of any memory forensics framework, whether
open or closed-source, without modification to the framework.
This allows for wide coverage of all existing and future memory
forensics frameworks.

e Automatic scaling to utilize all available cores. Since Gaslight can
generate millions of fuzzing states, it is imperative that its
processing fully utilizes all available resources. In the Conclu-
sions and Future Work section we discuss current efforts to also
support distributed fuzzing.
Perform fuzzing operations only against the portions of tested
frameworks that directly process memory samples. We are not
interested in fuzzing Ul elements, command line parsing, and so
on. The reasoning behind this decision is to concentrate on
testing the portions of a framework under an attacker's control
as well as code that will be utilized by automated frameworks.
e Only mutate the portions of a memory sample actually pro-
cessed by the targeted framework. Since memory samples are
often very large, this improves efficiency and ensures that mu-
tations applied to a memory sample are actually processed by
the analysis framework.
Apply fuzzing mutations dynamically at runtime to avoid
creating extra copies of a memory sample. Again, since memory
samples are often many gigabytes in size, this requirement en-
sures that only the original copy of the sample is needed, and
not thousands or hundreds of thousands of duplicates, each of
which might have only a few bytes changed.

e Support automated identification of the following error condi-
tions caused through fuzzing:

— Inelegant crashes of the memory forensics framework.

— Infinite loops or excessively long run times when processing a
memory sample.

— File-system resource exhaustion (i.e., the memory framework
writing a large amount of data to the local disk due to insuffi-
cient sanity checking of processed data).

— Memory resource exhaustion (i.e., the framework consuming an
excessive amount of memory, which might affect stability).

Design and implementation

To achieve the previously described goals, the architecture
depicted in Fig. 1 was designed and implemented. The main
component is the fuzzing harness, which is responsible for creating
and managing fuzzing tasks. This includes generating the muta-
tions to be tested, running the tested memory forensics framework
with the mutations active, and monitoring for long running tasks.
The harness is currently written in Python, and is able to fully
utilize all cores of the local system. Fully distributed operation is the
subject of ongoing work.

Harness setup

To configure the harness, the user must specify which directories
to use for storing results and temporary FUSE mount points, which
plugin(s) to run, and which memory samples to mutate.

Generating fuzzing states

The first job of the fuzzing harness is to generate the fuzzing
states that will be applied to the memory sample. These mutations
are stored in a queue that is then processed by the fuzzing algorithm.
To determine how many states to generate for a given plugin, the
harness must know how many times the plugin reads from the
memory sample. This is required for the fuzzer to activate mutations
upon each read, as described in more detail in the following section.
To accomplish this, each plugin is first run through a custom FUSE
file system implementation that simply counts the number of read
operations performed on the file descriptor for the memory sample.
The number of reads is then saved into the results directory.
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Fig. 1. High-level architecture of Gaslight. The fuzzing harness emits mutation sets, which define modifications to a memory sample that simulate smearing and malicious
tampering. A custom FUSE filesystem exposes versions of the original memory sample with these mutations applied. The use of a virtual, FUSE-based file system allows Gaslight to
present a mutated memory sample to an instance of a memory forensics framework (MFF in the diagram), without copying the original sample. As illustrated in the diagram, the
harness spawns multiple instances of the memory forensics framework being tested in parallel to increase performance.

Once the number of read operations required for a plugin is
known, generation of the fuzzing states for a plugin is accom-
plished with the following algorithm, incorporated into our custom
file system implemented in pyfuse (Conti and Russo, 2013).

1 for fuzz_past in [0, 1]:

1. Fill the given buffer with all zero (0x00) values.

2. Fill the given buffer with all hex 0xff values.

3. Fill the given buffer with all randomly generated values.

4, On each boundary of 2, 4, 8, and 128 bytes, fill the boundary byte

2 for read_number in range(number_of_reads):

3 for mutation_index in

range(len(mutations. mutations)):

4 data_set = (sample, profile, plugin, fuzz_past,
read_number, mutation_index)
5 wq.put_-nowait (data_set)

On Line 1, the loop is started with each possible value (0 or 1) for
the fuzz_past variable. This variable specifies whether or not to
perform mutations past the read_number variable set on Line 2.
This is the core of the fuzzing logic as when fuzz_past is disabled,
the fuzzer mimics one smear or malicious change to memory
during one of the plugins reads. If fuzz_past is enabled, then it will
mutate on every read starting with read_number. This mimics
smear in many places, but only those that the plugin targets and not
random locations throughout physical memory.

Line 3 of the algorithm simply iterates through each mutation
currently implemented in the framework. Mutations are simple
functions that are passed a buffer read from the memory sample
and which return the buffer in a mutated state. Gaslight currently
uses seven categories of mutations, as described in the next section.
On Line 4 and Line 5, the wait queue is filled with all the parameters
needed for the fuzzing component to properly test the memory
sample. By running the fuzzer through every variation of fuzz_past,
read_number, and implemented mutation, the fuzzing harness
successfully and fully mutates each read operation performed by
the memory forensics framework being tested.

Currently implemented mutations

The following list describes the mutations currently imple-
mented in our fuzzing framework:

with 0x00, 0xff, or a randomly generated byte.

5. On each boundary of 2, 4, 8, and 128 bytes, fill the entire
boundary (2, 4, 8, or 128 bytes) with 0x00, 0xff, or randomly
generated bytes.

6. On each boundary of 2, 4, 8 and 128 bytes, fill the boundary byte
with the current boundary value plus or minus 2, 4, 8,128, or 4096.

7. On each boundary of 2, 4, 8 and 128 bytes, fill the entire
boundary with the current byte value plus or minus 2, 4, 8, 128,
or 4096.

The mutation sets described in 1, 2, and 3 were chosen as they
closely mimic the effects of smear inside memory captures.

Generating buffers of random values simulates what memory
forensics tools must process when smearing of page table entries
results in a page being replaced with one corresponding to a different
application or operating system memory region during acquisition.

Mutation sets 4 and 5 mimic smear that occurs when data struc-
tures are partially overwritten. Instead of overwriting the entire
buffer, only select portions are. This occurs frequently in memory
samples as memory forensic tools will either find the beginning of
data structures through carving memory or by following pointers
whose dereferenced data is now stale and partially overwritten.
Handling and detecting this condition in memory forensics frame-
works requires careful programming as some members of a data
structure might be valid while others might not be.
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Mutation sets 6 and 7 mimic a very difficult situation in
memory forensics where a smeared pointer refers to a valid
memory address, but not to the correct data. This is hard for
memory forensics tools to detect as the referenced address will
still pass physical address translation, but the data stored at the
address is not actually associated with the data structure being
processed.

Applying mutations

Once the work queue of fuzzing states is filled, the fuzzing
harness then runs the configured memory forensics framework
against each list of configuration options in the queue. The queue is
processed by a Python worker pool, where each worker runs in a
separate process. One worker is generated per available CPU core.

Each configuration operation per queue item is handled in the
following manner:

def open(self , path,
full_path =

fds[fd] =

int (os.environ |
fds[fd]. fuzz_past =

int (os.environ |
mutation_index =

These three options are passed to the configured memory foren-
sics framework. The following values are passed using environment
variables that are handled by the custom FUSE implementation that
performs the fuzzing. The use of environment variables allows the
fuzzing harness to pass information to the FUSE handler without
modifying the memory forensic framework being tested:

e fuzz_past, as FUZZER_FUZZ_PAST
e read_number, as FUZZER_WHICH_TIME
e mutation_index, as FUZZER_WHICH_MUTATION

As the memory forensics framework parses the memory sample
exposed by the FUSE filesystem, the custom filesystem's read
operation handler consults the environment variables to perform
the proper mutations. This can be seen in Gaslight's FUSE open
handler, which is called when the memory forensics framework
opens a handle to the sample:

flags):
self. _full_path (path)
fd = os.open(full_path ,

flags)

fuzz_tracking ()
fds [fd ]. which_time =
'FUZZER-WHICH_TIME’ | )

"FUZZER FUZZ_PAST )

int (os.environ [ "FUZZER_-WHICH MUTATION" | )

fds [fd ]. mutation =

mutations. mutations [ mutation_index ]

return fd

e sample — The path to the memory sample, relative to the FUSE
mount point.

e profile — The profile that describes the data structures for the
sample. This is the convention used by both Volatility and
Rekall.

e plugin — Which plugin to run. This can also include any plugin-
specific options.

def read(self, path, length
offset , os.SEEK_SET)
buf = os.read(fh,

os.lseek (fh,

As this code snip illustrates, when the open() system call is
invoked, the file descriptor that's returned is associated with the
environment variables passed by the fuzzing harness. When the
memory analysis framework subsequently reads data from the
sample on the opened file descriptor, the following code is
executed:

offset , fh):

length)

if fds[fh].read_counter =—
fds [fh]. which_time:

do_fuzz =

True

elif fds[fh].read_counter >
fds[fh]. which_time:

do_fuzz =
else:

do_fuzz =
if do_fuzz:

fds[fh]. fuzz_past

:1

False

buf = fds[fh]. mutation (buf)
fds[fh].read_counter =
fds[fh].read_counter + 1

return buf
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The read handler tracks the number of reads on the file
descriptor and applies mutations, depending on whether the read
counter has reached the value of the which_time variable and/or if
fuzz_past is set once the counter is passed.

Automated detection of errors

As plugins are run through the fuzzer, their output, including
data written to both the standard error and standard output file
descriptors, is written to a unique file in an output directory. This
file is named using the following convention:

<plugin-name>-<read number>-<mutation index>-<fuzz past
value>

This naming scheme is unique to all plugin runs and ensures
that output from one run does not overwrite the output of a pre-
vious run. Furthermore, the name encapsulates the exact state of
the fuzzer when it caused the tested memory forensics framework
to produce a processing error. Being able to recreate this state on
demand substantially reduces the effort needed to triage process-
ing errors.

To automatically detect errors generated by the fuzzer, the
following steps are taken:

1. When the fuzzing harness executes the memory forensics
framework, it implements a timeout value that triggers if a
plugin has taken too long to run. The default value for this
timeout is 5 min. We are aware, of course, that many memory
scanning plugins can take much longer to run. Fuzz testing these
plugins currently requires disabling the timer or significantly
increasing its value.

2. The output files of all the plugin runs are searched for a case-
insensitive set of strings, e.g., “traceback”, “exception”, etc.
This step is useful for Python frameworks that produce back
traces when unhandled exceptions are triggered. It can trivially
be modified for other frameworks that implement global
exception handlers and custom output when exceptions are
caught.

3. The size of the output files is checked. For plugins with text-
based output, they are filtered for sizes over 1 KB. For file
extraction plugins, the size check is 1 MB. The purpose of this
check is to look for plugin errors that do not crash the program,
but for which processing produces large, erroneous output. An
example is a plugin that walks a mutated loop pointer and
produces hundreds or thousands of lines of output instead of
detecting and avoiding the bad pointer. File extraction plugins
are checked to ensure that they validate metadata related to file
sizes and offsets before extraction. Otherwise, file system
exhaustion attacks are possible.

Fuzzing setup
Hardware

Our fuzzing efforts were performed on commodity hardware.
Initial testing was performed using an Alienware 13 R3 laptop with
32 GB RAM and an Intel i7 processor with 4 cores (8 threads) and a
desktop with 32 GB of RAM and an Intel i7 processor with 6 cores
(12 threads). Performance of the current harness is related directly
to the number of cores available on the system used for testing. The
memory analysis plugins we tested all use less than 1 MB of RAM,
so memory constraints were not a factor. We've deferred an
extensive performance analysis until the fully distributed version of
Gaslight is ready.

Memory samples

To illustrate the usefulness of our framework, we chose one
memory sample per major operating system to test against. The
following table lists the memory size and operating system version
of each sample. The 32-bit Linux sample is presented simply for
variety, not because of limitations in Gaslight.

Operating system version Memory size

Windows 7 SP1 64-bit 2 GB
Debian Wheezy 32-bit 2GB
Mac OS X Sierra 64-bit 4 GB

In the Future Work section we discuss our ongoing research to
identify the variety of operating systems needed for full memory
forensic testing coverage.

Memory forensics frameworks

As a proof of concept, we chose to test two widely used memory
forensics frameworks, both of which are commonly utilized in real-
world investigations.

The bulk of our effort focused on the Volatility framework, since
it is widely used in the field and because we have extensive
experience with it. To show wide applicability, we also tested
Rekall. The results of testing each framework are described next.

Fuzzing results — volatility

The following sections list the plugins for which Gaslight trig-
gered an anomalous or error condition within a particular Volatility
plugin. We note that our tests were not exhaustive for each oper-
ating system in that we only chose 10—12 plugins per operating
system to test. For this study, we chose frequently used plugins,
while purposely avoiding plugins that would generate a very large
number of read operations, such as those that scan all of physical
memory or that scan the entire virtual address space of each active
process. This was simply to maximize the number of plugins we
could test in our research timeframe. This was not a result of any
limitations of our fuzzing architecture or testing harness.

Results against linux plugins
The following plugins crashed because of mutations by Gaslight:

e linux_library_list — Crashed because of insufficient checks by the
list enumeration code, leading to processing of invalid data.

e linux_dmesg — Crashed due to not checking if log structures were
instantiated on a valid page before referencing members.

e linux_arp — Crashed because of no checks for integer overflow
(Python's OverflowError) when performing a bit shifting oper-
ation to determine an array's size. The fuzzer mutated the buffer
holding the number being shifted and caused the calculation to
overflow.

The following plugins entered infinite loops due to mutations
applied by Gaslight:

e linux_bash — Entered an infinite loop because the mutation
applied by Gaslight coerced two list members to point back to
each other and the list enumeration code did not check for this
condition.
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e linux_arp — Entered an infinite loop due to inadequate corrup-
tion checking by the list walking code, specifically, not checking
if a pointer to be processed was already processed. This bug was
found after fixing the previous bug in linux_arp.

Mutations introduced by Gaslight caused the following plugins
to produce extraordinarily large amounts of data:

e linux_psaux — This plugin relies on non-critical members of the
memory mapping data structure, mm_struct, which specifies
where in userland memory the command line arguments start
and stop. When the fuzzer mutated the buffer holding these
values, the resulting size calculation caused the plugin to output
gigabytes of erroneous data.

e linux_psenv — When attempting to process the starting and
ending addresses of the process' environment variables, it pro-
duced large amounts of data due to the same issue as
linux_psaux.

The following plugins attempted to generate extremely large
files because of mutations applied by the fuzzer and no bounds
checking on the size of the ELF files being produced.

e linux_procdump — This plugin extracts process executables to
disk and generated enormous output files because a function it
relied on, write_elf file, did not perform adequate bounds
checking.

e linux_librarydump — write_elf_file is also used by this plugin, to
extract the process executable as well as loaded shared libraries,
so it is impacted in the same way by lack of proper bounds
checking.

Results against OS X plugins
The following plugins crashed because of mutations by Gaslight:

e mac_check_syscall — Crashed because the system call table array
was instantiated without validating that it resided on a mapped

page.

The following plugins entered infinite loops due to mutations
applied by Gaslight:

e mac_Ismod — Entered an infinite loop because the plugin did not
check for previously seen list members. We have seen this type
of corruption happen frequently in memory samples from real
investigations, and Volatility already checks for this condition in
other list walking algorithms that it implements.

e mac_Isof — Entered what was essentially an infinite loop as the
fuzzer mutated the structure member that specified how many
file handles a process had opened. In our test case, the fuzzer
mutated the buffer to be a value over 3 billion, which forced the
plugin to attempt to loop and process memory that many times.

Mutations introduced by Gaslight caused the following plugins
to produce extraordinarily large amounts of data:

e mac_dyld_maps — Entered an infinite loop and did not validate
the library structure before printing it to the command line. This
led to a file system resource exhaustion issue.

e mac_psaux — This plugin did not validate the number of argu-
ments as specified in the memory map data structure. The
fuzzer mutated this member to a very large integer, which
caused the plugin to produce a huge amount of incorrect output.

Results against windows plugins

Our testing was not able to produce any crashes against the
subset of Windows plugins we evaluated. We believe that this
occurred because Volatility's Windows plugins are substantially
more mature and have received more testing in the field than the
Linux and Mac plugins. As a result, many Windows plugins are
quite robust against corrupt data. An example which backs this
argument is a recently closed bug in Volatility's vaddump plugin
(Govers, 2016; Ligh, 2016). This bug was brought to the attention of
the developers when a user reported that the vaddump plugin was
attempting to produce huge (2 TB) output files. To remedy this
issue, the developers set a maximum size limit of 1 GB for output
files.

Since this patch was applied before we started testing Volatility
with Gaslight, we obviously did not find it. To test the validity of our
fuzzing architecture, we ran a custom instance of the fuzzer which
only executed the vaddump plugin against a version of Volatility
with the patch reverted. In this testing, the size issue with vaddump
was triggered. This result illustrates that Gaslight is effective
against frameworks that analyze Windows samples.

Summary of results

As discussed, Gaslight automatically found numerous issues in
Volatility plugins that would lead to incomplete processing. The
programming errors discovered by Gaslight include crashes
resulting from a lack of exception handling, infinite loops due to
insufficient memory corruption checks, and the generation of
output files so large that they were unable to be reasonably
examined. We are currently working with the developers to resolve
these issues.

Fuzzing results — rekall

After finding numerous programming bugs in Volatility plugins,
we then wanted to verify the flexibility of Gaslight to test other
memory forensics frameworks. Due to time constraints, we were
unable to test a large number of Rekall plugins. Instead, we chose to
test its arp plugin, which targets Linux memory samples, since two
crashes were found in the Volatility implementation. We do plan to
perform comprehensive tests of both Volatility and Rekall in the
future.

During our testing of Rekall's arp plugin, three issues were
discovered. The first issue was the same as one from Volatility, in
which a corrupted list will lead to infinite processing due to list
members pointing to valid, non-repeating memory addresses. The
second issue was similar to Volatility's issue in handling the bit
shifting operation, but with an interesting twist.

Upon inspection of the source code of Volatility and Rekall, we
determined that Volatility uses Python's integer type, which is
limited to 32 bits. This 32 bit value is what overflowed when the
mutated shift value was too large. Rekall, on the other hand, uses
Python's long type, which can be extended to infinity. This led to
Rekall running in essentially an infinite loop when the fuzzer
mutated the shift result to grow to many trillions. Gaslight was able
to automatically detect both the crash of Volatility as well as the
long runtime of Rekall.

The last issue found was the insufficient validation of the data
structures that track ARP entries. This issue led to a filesystem
exhaustion issue, where a nearly infinite loop continuously wrote
malformed data structures to disk. The Volatility plugin did not
exhibit this behavior. Examination of the source code of the Vola-
tility plugin shows that it validates several structure members,
which eliminates this issue.
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The ability for Gaslight to quickly be configured for and find
bugs in different frameworks highlights its high degree of usability
and applicability both now and in the future. The difference in
handling of Python's integers and longs in Volatility versus Rekall
also shows how Gaslight is able to find a variety of programming
issues and to automatically detect a framework's anomalous
behavior when encountering such discrepancies.

Conclusions and future work

In this paper, we have described a robust fuzzing architecture
named Gaslight, which supports seamless testing of any memory
forensics framework. To show the framework's efficacy, we
demonstrated that Gaslight was able to find crashes in numerous
core Volatility plugins. We also showed that Gaslight can be utilized
against other memory analysis frameworks.

Gaslight is currently able to utilize all local cores in an efficient
manner, so our next performance improvement is to automate
scaling to as many systems as are available. To meet this goal, and to
allow for testing of all Volatility and Rekall plugins against a wide
range of memory samples, we are currently developing a cluster-
based, distributed implementation of Gaslight. The implementa-
tion will run a large number of tasks in a distributed computing
environment in parallel and include a task manager to coordinate
creation and management of individual fuzzing tasks across the
cluster. It will also include the scheduling of individual workers to
check the output of plugins to determine crashes and suspiciously
large amounts of output data. The reporting of such conditions will
be automated, such as through email and/or a creation of a support
ticket on GitLab. Our eventual goal is to have Gaslight running 24/7/
365 against a wide variety of memory samples and utilizing a wide
variety of frameworks.

We are also reviewing the source code bases of Volatility and
Rekall to identify which kernel versions of Linux, Mac, and Win-
dows made changes that broke existing algorithms implemented
by memory forensic plugins. For example, Microsoft has frequently
changed its implementation of how a process’ memory regions
(VADs) are tracked. Each of these implementation changes in
Windows has required updates to memory forensic frameworks to
support the new operating system version. Similar updates across
operating systems has affected nearly every memory forensic plu-
gin. For Gaslight to fully test the algorithms of a memory forensics
plugin, it is necessary for its testbed of memory samples to include
each operating system version where such changes occurred. Once

this study is complete, we plan to generate memory samples for all
the operating systems versions needed to fully test each plugin.
Finally, after some code cleanup, Gaslight will be released as an
open source project.
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