
DFRWS 2018

CGC Monitor
A vetting system for the DARPA Cyber Grand

Challenge
Michael F. Thompson & Timothy Vidas (@tvidas)

DFRWS 2018

CGC Monitor: Presentation outline
DARPA Cyber Grand Challenge overview

Motivation for infrastructure integrity assurances (proactive forensics)

Software vetting on a full system emulator

Running a computer backwards to analyze vulnerabilities

2

DFRWS 2018

CTF?
3

DFRWS 2018

What is CTF in this context?
● A cyber security based Capture-the-Flag

contest (aka exercise, event, game)

● Typically these contests involve
demonstrating proficiency or excellence in
one or more areas of computer and
network security

● There are different models for architecting
these contests, which can stress different
skills, lend to particular objectives

● Increasingly popular, common

It is not:

● A game kids play with physical flags on hills
● A first-person shooter video game CTF

(usually)
● Focused in the field of Social Engineering
● A hackathon

Though there are certainly similarities to these
other games.

Today, the characters “CTF” are appended to
many contests, in most cases this simply means
“contest,” sometimes there are flags involved

4

Game Flow

5

● Brokered game
○ Infrastructure mediates

everything
○ API designed for

autonomous systems
● Download binary software
● Upload binary software

(replacements)
● Register “moves” against

targets

https://github.com/CyberGrandChallenge/cgc-release-documentation/blob/master/ti-api-spec.txt

Game Flow

6TAP feed to CRS

DEFHOST
IDS

POLLER

POV

CB CB CB CB

POV

POV

POV

Polls Polls

Rules Rules
sofr

Uploaded by

opponents

DFRWS 2018

CTF: Hollywood style (well, USA Network)

7

USA Network 2017

DFRWS 2018
8

DFRWS 2018

CTF: real life DEF CON 2002

9

DEF CON 2016

DEF CON’s CTF is often cited as the
“world series” or “superbowl” of CTFs

DFRWS 2018
10DEF CON 2011?

DEF CON 2008

DEF CON 2012

CTF: real life

DFRWS 2018

CGC?
11

DFRWS 2018

Could a purpose-built super
computer play in DEF CON’s
Capture-the-flag (CTF)?

Autonomous...

○ Binary analysis
○ Binary patching
○ Vulnerability discovery
○ Service Resiliency (availability)
○ Network Defense (IDS)

12

DFRWS 2018

CGC: Real life

13
Image: DARPA

DFRWS 2018

CGC: Real life

14
Image: DARPA

DFRWS 2018

Competition Overview

15

CQE (Qualifier)
2015.06.03

CFE (Finals)
2016.08.04

CGC Announced
2013.10.22

Scored Event
2014.12.02

Scored Event
2015.04.16

2013 2014 2015 2016

CFE Trials
2016.03.14-2016.04.03

Finalist Site Visits
2015.06.10-2015.07.17

Qualification Finals

104 applicants
2014.11..2

(7 Funded Track)

28 Scored Event
participants

7 Finalists

(3 Funded Track)

13 CQE participants

DFRWS 2018

Building the Competition
● Design concerns from the outset

○ Repeatability
■ Anyone should be able to verify CFE results

○ Competition integrity
■ Concerns with running competitor-provided code (POV/RCB)
■ Concerns with parsing competitor-provided data (IDS filters)

○ Data collection
■ Desire to publish corpus to serve as a reference for program analysis going forward

16

DFRWS 2018

Competition Integrity
● Given the amount of prize money at stake, integrity of the competition was a

grave concern and drove many design decisions
● Randomness was limited and/or made to be deterministically pseudorandom
● However, nobody should be able to predict aspects of CFE

○ The entire event was seeded with input from DARPA and all competitors (XORed)
(Collected between June 10-17, 2016)

○ To ensure that DARPA did not select a particular input after knowing all competitor inputs
DARPAs input was cryptographically committed to early (June 10,2016)

● Similarly, the CFE event plan (including challenge set schedule was
committed to on Aug 2, 2016)

○ Organizers could not change the schedule in order to influence the event outcome

17
https://github.com/CyberGrandChallenge/Event-FAQ/blob/master/event_faq.md
http://archive.darpa.mil/cybergrandchallenge_competitorsite/Files/CGC_FAQ.pdf

Weeks of my

life were lost

to this

DFRWS 2018

Competition Integrity
● Committed to kernels versions released prior to announcement of CGC
● Designed DECREE syscall environment / file format to reduce attack surface
● All game infrastructure components released to the public had private internal

implementations
○ Notably, CFE ran on 64-bit FreeBSD 10 with a custom hypervisor module

18

I run on
Linux

I prefer BSD
..and a custom
hypervisor would
be nice...

7 system calls
_terminate, transmit, receive, fdwait,

allocate, deallocate, random

DFRWS 2018

Competition Integrity
● Air Gap

○

19
Image: Vidas

DFRWS 2018

Competition Integrity
● Air Gap

○ Power, cooling

20
Image: Vidas

Image: Vidas

DFRWS 2018

Competition Integrity
● Air Gap

○ One-way data

21

Image: Vidas

Image: Vidas

DFRWS 2018

Competition Integrity
● Competitors were required to be autonomous, organizers weren’t
● Referees
● However, air gap

● Redundant HW
● Power/cooling
● Monitoring

22
Image: DARPA

DFRWS 2018

Competition Integrity: Forensics

● Real-time forensics harness to vet software
○ Monitor OS for execution & data integrity
○ Built upon a full system emulator (Simics)
○ High fidelity x86 model from Intel

● Evaluated non-trusted code (POV/RCB) for attempts to breakout of DECREE
environment

● Analyst replay tool
○ Replay any CFE session via IDA Pro gdb client
○ Reverse execution & scoring event detection

23

DFRWS 2018

CGC Monitor vetted all competitor submissions
CGC infrastructure duplicated on the Simics full system simulator

Multiple components; all game services
Monitor OS for execution & data integrity
High fidelity x86 model from Intel

GCG Monitor built upon Simics primarily from breakpoints and callbacks
Implementation similar to dynamic VM introspection
No monitoring functions execute on monitored systems
Built custom “OS awareness” subsystem based on OS internals
Variations for 32/64 bit Linux and FreeBSD (and combinations thereof)

Implemented on 32 blade servers with multiple instances of CGC systems
24

DFRWS 2018

What was monitored?
Competitor-supplied software

Proofs of vulnerabilities executing on PoV throwers
Replacement challenge binaries on the defended host
IDS subsystem while consuming competitor’s filters

While scheduled for execution:
Kernel ROP -- execution of a “ret” not following a “call”
Page tables allocated to the kernel
Process credentials -- e.g., effective user ID
Unexpected code sections -- e.g., process create while an RCB runs

25

DFRWS 2018

Artifacts generated by monitoring
Anomalous events from kernel monitoring

Full execution traces, including data references

System call logs, including all parameters

Successful Proofs of Vulnerabilities (PoVs) against services

ROP or stack area execution in services

Faults in services, e.g., segmentation violations leading to crashes

26

DFRWS 2018

CGC Analysis Tool: Running a computer backwards
Real world analogy: Your hybrid fuzzer found a vulnerability: But what is the bug?

Competitors found 20 vulnerabilities in 82 challenge sets. But what flaws?

Analysis of effective patches would not help: they were all generic

Instrumented the full system simulator for analysis of application exploitation

Automatically detect a successful exploit and pause the session

Analyst can then use reverse execution to track the bug

IDA Pro debugger client as a front end to the CGC Monitor
27

DFRWS 2018
28

DFRWS 2018

IDA Pro Extensions for Reverse Execution
Reverse (e.g., until a breakpoint is encountered)
Step backwards over or into a function
Reverse to cursor
Reverse to previous write of selected register or address
Set or jump to an execution bookmark managed by the user
Back trace the source of data in address or register

Often leads all the way back to the syscall that received data

Halts on computed assignments (e.g., addition -- but not increment)

29

DFRWS 2018
30

DFRWS 2018

Simics illusion of reverse execution
Resource intensive, enable only for analyst sessions

Records “micro-checkpoints” referenced during reverse execution

Iterates from checkpoints, running forward until “most recent” breakpoint

Warning: backwards progression is not serial

Callback for one breakpoint may be invoked many times
Breakpoint callbacks are therefore not useful when reversing
Associate callback with simulation “stop” event
Then figure out where you are and why you stopped

31

DFRWS 2018

Analysis of CGC Final Event
82 Challenge sets, having 109 intended vulnerabilities

20 challenge sets had working POVs in CFE

Half of these working POVs were not what the author intended

Six were different vulnerabilities (2 services exploited via same bug)

Four were the intended bug, exploited via an simpler alternate path

All exploits of each challenge set used the same vulnerability and path

32

DFRWS 2018

Fully automated back trace of data
Back trace sources of data, e.g., to a receive syscall (like backwards taint
analysis)
Corrupted return addresses
Corrupt values of call registers
Executable payloads
General register values negotiated in Type 1 PoVs
The source of protected memory addresses

Traces available in the CGC Corpus at: http://www.lungetech.com/cgc-corpus/

33

DFRWS 2018

Future Work & Availability
Extend for general application environments (currently DECREE)

Package Analysis Tool as a remotely accessible service

CGC Monitor at https://github.com/mfthomps/cgc-monitor

BYOS (bring your own Simics)

Analysis results at https://github.com/mfthomps/CGC-Analysis

34

https://github.com/mfthomps/cgc-monitor
https://github.com/mfthomps/CGC-Analysis

