
Distributed Analytics and Security
Institute (DASI)

1

Insights Gained From Constructing a Large Scale Dynamic Analysis
Platform

DFRWS 2017| Austin,TX | Aug 7, 2017

Cody Miller, Dae Glendowne, Henry Cook,
DeMarcus Thomas, Chris Lanclos, Patrick Pape

Mississippi State University

Distributed Analytics and Security
Institute (DASI)

2

Outline

• Introduction
• Related Work
• System Overview
• Experiments
• Lessons Learned
• Future Work

Distributed Analytics and Security
Institute (DASI)

3

Introduction

• Significant increases in malware reaching over
500 million in 2016 [1].

• Need for reliable, scalable and simple to use
systems for analysts.

• Developed a scalable dynamic analysis
platform and recorded the lessons learned

Distributed Analytics and Security
Institute (DASI)

4

Related Work

• Effective dynamic analysis has visibility, is
resistant to detection and scalable [2].

• Extracting information:
– Most systems track API calls
– Some follow steps between API calls
– Some use taint analysis,
– Some use multiple OS, bare-metal systems and

hardware emulation

Distributed Analytics and Security
Institute (DASI)

5

Related Work cont..

• Previous work compared number of
samples executed per minute [3]
– Execution time of 15 seconds
– Barebox (2.69), VirtualBox (2.57), QEMU (3.74)

• Literature lacking an empirically selected
execution time for a “large” number of
samples [4]

Distributed Analytics and Security
Institute (DASI)

6

System Overview

• Cuckoo Sandbox [5]
– Collects API calls, network traffic, files dropped, memory dump, etc.

• Cuckoo Node:
– CentOS 7 VM running Cuckoo Sandbox
– 64 Gib of RAM and 28 virtual cores
– Network adapter connected to an isolated network
– The Cuckoo nodes each have 20 Cuckoo agent VMs within them.
– QEMU 2.5.1

• Cuckoo Agents:
– Windows 7 32-bit VMs, 512 Mib of RAM, 1 CPU Core, Adobe Reader 11 and

Python 2.7

Distributed Analytics and Security
Institute (DASI)

7

System Overview cont..

• INetSim
– Software suite to simulate internet services
– Agent VMs connected to same network as INetSim

• Results Server
– CentOS 7 VM used to collect Cuckoo samples from the

Cuckoo nodes
– Improves performance over using Cuckoo built-in API

• Database
– CouchDB database used as central location of malware

processing pipeline

Distributed Analytics and Security
Institute (DASI)

8

System Overview cont…

• Extended distribution script
– Runs on result server
– Uses the existing Cuckoo API and mounted

storage to submit binaries and compress results
for long term storage

– Updates database with the status and details of
samples

– Connect to Cuckoo nodes on different subnets
– Ability to add additional Cuckoo nodes

Distributed Analytics and Security
Institute (DASI)

9

Add Diagram

Distributed Analytics and Security
Institute (DASI)

10

Experiments: Distribution Time

• Goal
– Determine time overhead of distribution script

on processed samples

• Not focused on the time taken to execute
each binary on a Cuckoo agent

• Time delta from completion time to
placement on long-term storage

• # of Samples: 118,055

Distributed Analytics and Security
Institute (DASI)

11

• Most samples take between 50 and 150 seconds
• Average duration of 114 seconds
• With processing capability of 60 samples concurrently, the

distribution script adds ~1.9 seconds to the processing time

Distributed Analytics and Security
Institute (DASI)

12

Experiments: Machinery

• Goal
– Determine which machinery was most efficient for Cuckoo nodes

• ESXi, vSphere, and XenServer were not used because they host
the Cuckoo agents directly, removing one layer of isolation.

• QEMU vs. VMware
– VMware crashed three times during the processing of the 20,000

samples. Required manual restarts.
– QEMU ran the 20,000 samples 2.3 times faster than VMware and was

more stable.
– QEMU is also free and open source

Distributed Analytics and Security
Institute (DASI)

13

Experiments: Best Execution Timeout

• 30,346 samples gathered from VirusShare.com [6] to run experiment
• By 1,132 seconds, 100% of all the groups’ calls were completed.
• After 125 seconds all the enhanced groups completed at least 90% of

their calls, which became the time used for the Cuckoo timeout

Distributed Analytics and Security
Institute (DASI)

14

Experiments: Anti-VM

• Goal: Determine the virtualization architecture
that best evades detection

• Malware commonly uses anti-VM techniques
to determine if the malware is being run on a
VM

• Used Pafish [7] tool for identifying sandboxes
to test QEMU 2.5.1 and VMware 12

Distributed Analytics and Security
Institute (DASI)

15

Experiments: Anti-VM cont.

• VM Identifiers found for both
– CPU vendor

• QEMU - AuthenticAMD
• Vmware - GenuineIntel

– VM CPU for both
• Checking hypervisor bit in CPUID

– Under 60 Gib disk, under 2 Gib RAM, and
less than 2 CPU cores

Distributed Analytics and Security
Institute (DASI)

16

Experiments: Anti-VM cont..

• Found fixes for basic anti-VM techniques:
– Changes in disk/RAM/CPU sizes

• VMware also flagged additional identifiers
– Registry keys
– VMware MAC address
– VMware WMI Win32 bios serial number

• QEMU had less detectable virtualization
techniques

Distributed Analytics and Security
Institute (DASI)

17

Experiment: Hardware Specification

• Goal: Determine way to estimate the amount of RAM and # of CPU cores to select for a
Cuckoo node running 20 agents

• On average the agents used a fourth of the RAM they were given
• Cuckoo’s processing utility used 2 Gib RAM per parallel process
• QEMU used CPU cores no greater than half the number of agents running
• Processing utility used total CPU cores no more than half the number of parallel processing

configured.

• Equation used to estimate the min. number of Gib of RAM to give each Cuckoo node:

• Equation used to estimate the minimum number of CPU cores each Cuckoo node needed:

Distributed Analytics and Security
Institute (DASI)

18

Experiment: Improving Execution
• Goal: Determine if samples behavior would different depending on various

hardening configurations

• Added additional software and usage activity to Cuckoo agents to observe
variations in activity and sample execution

• Hardening configuration :
– Added documents

• “My Documents” has 5 JPGs, 1 txt, 5 PDFs, and 3 data files
• “My Music” has 3 MP3s
• “My Pictures” has 6 JPGs and 1 GIF
• “My Videos” has 4 MP4s

– New programs:
• Firefox 38.0.5, Notepad++ v7, VLC 2.2.4, 7-Zip 16.02, Adobe Flash player 10.1.4, Java 6.45

Distributed Analytics and Security
Institute (DASI)

19

Experiment: Improving Execution cont..

• New Frameworks:
– Microsoft Visual C++ 2005, 2008, 2010, 2012, 2013, and 2015

redistributable
– Microsoft .NET 3.5 and 4.6.1 frameworks

• Recent Documents/Programs:
– All the added documents were opened multiple times. Each new

program was run multiple times.
– Running programs
– Windows explorer
– Notepad
– All update services for new software were disabled

Distributed Analytics and Security
Institute (DASI)

20

Experiment: Improving Execution cont..

• 10,000 samples randomly selected from VirusShare.com
– 9,014 ran completely on the base configuration
– 9,421 ran on the hardened configuration.

• 1,166 samples that did not have a complete run on both base and
harden configuration.
– 363 samples immediately exited with no hooked APIs called

(the malware ran properly but decided to exit)
– 474 had a Cuckoo error unrelated to the sample
– 329 could not be determined

• 8,834 samples left for analysis

Distributed Analytics and Security
Institute (DASI)

21

Experiment: Improving Execution cont.

• Hardening differences:
– 54.98% of the samples exhibited an increased number of

unique API calls. The average increase of these samples was
7.88.

– 60.22% of the samples had more total API calls, 10.61% had
fewer, and 29.17% had the same amount.

– 89.28% of the samples ran for a longer duration.
– There were no new IP addresses or domains requested.

However, some samples made different network calls,
though there was no substantial difference as only 2.91% of
the malware did so.

Distributed Analytics and Security
Institute (DASI)

22

Experiment: Improving Execution cont.

Distributed Analytics and Security
Institute (DASI)

23

Lessons Learned: Virtual Architecture

• Lesson: Choose an appropriate dynamic analysis platform.

• This project’s requirements:
– System should be open sourced and freely available
– Available for download and not web-based
– Project under active development

• PANDA [8] vs. Cuckoo
– PANDA was not as mature as Cuckoo at the time of consideration.

• Lacked plugins to convert raw data, robust reporting engines

• Cuckoo-modified (Cuckoo version 1.3) [9]

Distributed Analytics and Security
Institute (DASI)

25

Lessons Learned: Dynamic Analysis
Issues

• Lesson: Check and truly understand your
analysis.

• Checks revealed:
– Misunderstanding of calculation done by

Cuckoo
• Duration

– Errors in Cuckoo
• Consistence issues

Distributed Analytics and Security
Institute (DASI)

26

Lessons Learned: Improving Analysis
Performance

• Lesson: Disable Unnecessary Functions

• Disabled Modules:
– Memory
– Dropped files
– Static modules
– String modules

• Separation of the processing of results from the
submitting of samples

Distributed Analytics and Security
Institute (DASI)

27

Lessons Learned: Database

• Lesson: Use a Database

• Provided a simple way of automating sample processing
• Pros for the use of NoSQL

– Large volume of data
– The ability to easily scale out the architecture

• Cons:
– Size of samples still required for samples to be stored on a

shared file system
– Database changes will require changes for all systems

Distributed Analytics and Security
Institute (DASI)

28

Future Work

• Automating the submission of samples for Cuckoo
generation with REST API

• Expand to support multiple operating systems and
versions

• Develop a system to extract information from each
Cuckoo sample, which could be used to support
machine learning classification and clustering.

Distributed Analytics and Security
Institute (DASI)

29

Conclusion

• Developed a dynamic analysis platform
using Cuckoo sandbox

• Optimize it by performing various
experiments

• Documented lessons learned during
development.

Distributed Analytics and Security
Institute (DASI)

30

References
[1] AV-Test. Malware statistics [Online]. https://www.av-test.org/en/statistics/malware/

[2] C. Kruegel, Full system emulation: Achieving successful automated dynamic analysis of evasive malware, in:
Proc. BlackHat USA Security Conference, pp. 1–7.

[3] D. Kirat, G. Vigna, C. Kruegel, BareBox: e cient malware analysis on bare-metal, in: Proceedings of the 27th
Annual Computer Security Applications Conference, ACM, pp. 403– 412.

[4] T. Kasama, A study on malware analysis leveraging sandbox evasive behaviors, phdthesis, Yokohama National
University.

[5] C. Guarnieri, A. Tanasi, J. Bremer, S. Mark, The cuckoo sand-box. URL https://www.cuckoosandbox.org/

[6] J.-M. Roberts. VirusShare [Online]. www.virusshare.com

[7] D. Deepen. Malicious documents leveraging new anti-vm and
anti-sandbox techniques [online].

[8] moyix/panda-malrec. [Online] https://github.com/moyix/panda-malrec

[9] spender-sandbox/cuckoo-modified. [Online] https://github.com/spender-sandbox/cuckoo-modified

Distributed Analytics and Security
Institute (DASI)

31

Questions

DeMarcus Thomas
dmt101@dasi.msstate.edu

Research Engineer
Mississippi State University

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.cuckoosandbox.org/
https://www.cuckoosandbox.org/
https://github.com/moyix/panda-malrec
https://github.com/moyix/panda-malrec
https://github.com/spender-sandbox/cuckoo-modified
https://github.com/spender-sandbox/cuckoo-modified

	Slide 1
	Outline
	Introduction
	Related Work
	Related Work cont..
	System Overview
	System Overview cont..
	System Overview cont…
	Add Diagram
	Experiments: Distribution Time
	Slide 11
	Experiments: Machinery
	Experiments: Best Execution Timeout
	Experiments: Anti-VM
	Experiments: Anti-VM cont.
	Experiments: Anti-VM cont..
	Experiment: Hardware Specification
	Experiment: Improving Execution
	Experiment: Improving Execution cont..
	Experiment: Improving Execution cont..
	Experiment: Improving Execution cont.
	Experiment: Improving Execution cont.
	Lessons Learned: Virtual Architecture
	Lessons Learned: Dynamic Analysis Issues
	Lessons Learned: Improving Analysis Performance
	Lessons Learned: Database
	Future Work
	Conclusion
	References
	Questions

