Forensic Analysis of Water Damaged Mobile Devices

By

Aya Fukami and Kazuhiro Nishimura

From the proceedings of
The Digital Forensic Research Conference
DFRWS 2019 USA
Portland, OR (July 15th - 19th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development.

https://dfrws.org
Forensic Analysis of Water Damaged Mobile Devices

Aya Fukami and Kazuhiro Nishimura
National Police Agency of Japan
Data Recovery from Damaged Devices

- Physical damage
- Fire damage
- Water damage

Data recovery is possible through *chip transplant* as long as the key components are undamaged
How We Receive Water Damaged Devices (In reality)

- Transported in liquid or in a dried state
 (after being left at a police station for a few days ...)
- Disassembling
- PCB cleaning
- Drying

What are those white contaminants?
Chip transplants really necessary?
Brief Summary of the Paper

• **Our Goal:**
 • Understand the board level reaction when a mobile device contacts with liquid
 • Update the forensic handling method for water damaged devices to improve successful data recovery

• **Our findings:**
 • *Metal corrosion* is the key about water damaged devices
 • Longer submersion time leads to more severe corrosion
Talk Outline

• Metal corrosion under humid environment
 • Electrochemical migration (ECM)
 • Galvanic corrosion

• Testing water damage to smartphones
 • Observing system failure of water-submerged smartphones
 • Repairing water damaged smartphones

• Conclusion
Smartphone Main Board
Metal Corrosion by Electrochemical Migration

Anodic reaction

- Metal ionization
 \[Cu \rightarrow Cu^{2+} + 2e^- \]

- Water
 \[H_2O \rightarrow H^+ + OH^- \]

- Precipitation of Copper hydroxides
 \[Cu^{2+} + 2OH^- \rightarrow Cu(OH)_2 \]

Cathodic reaction

- Copper deposition
 \[Cu^{2+} + 2e^- \rightarrow Cu \]

- Hydrogen production
 \[2H^+ + 2e^- \rightarrow H_2 \]

Inter-electrode reaction

\[Cu(OH)_2 \rightleftharpoons CuO + H_2O \rightleftharpoons Cu^{2+} + 2OH^- \]
Electrochemical Migration (ECM)

R: 330Ω

3.7V
Experiment (video - 2)
Before applying voltage ~7 minutes 8 minutes
Metal Corrosion by ECM

Open circuit

Short circuit
Galvanic Corrosion

Less noble metal
(i.e., Aluminum) Low potential

Al → Al^{3+} + 3e^-

Noble metal
(i.e., Copper) High potential

\[\frac{1}{2}O_2 + H_2O + 2e^- \rightarrow 2OH^- \]
Galvanic Corrosion - Example
Talk Outline

- Metal corrosion under humid environment
 - Electrochemical migration (ECM)
 - Galvanic corrosion
- Testing water damage to smartphones
 - Observing system failure of water-submerged smartphones
 - Repairing water damaged smartphones
- Conclusion
Testing water damage on Smartphones

• Samsung Galaxy 6s Edge & LG Nexus 5X
 • Two each, one submerged while running, another while turned off
 • Battery fully charged
 • Left in tap water for three days
Results

After being dried and PCB cleaned

<table>
<thead>
<tr>
<th></th>
<th>Samsung S6 edge</th>
<th>LG Nexus 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turned on</td>
<td>PMIC damaged, swap needed</td>
<td>Display connector corroded</td>
</tr>
<tr>
<td>Turned off</td>
<td>PMIC short circuited, no swap needed</td>
<td>No repair needed after cleaning</td>
</tr>
</tbody>
</table>
Results
LG display connector
~20V applied when display is working
LG Devices: Underfill protected

Samsung: no underfill

LG: Underfill protected
Metal Corrosion and Missing Components by Galvanic corrosion

Longer submersion time = severe corrosion = detachment of components
Conclusions

• Water damage = Metal corrosion (ECM/Galvanic) = System failure

• Corrosion severity factors
 • Liquid conductivity
 • Submersion time
 • Exposure of metal
 • State of the device
 • Voltage level

• Proper knowledge about water damage helps successful data retrieval
Forensic Analysis of Water Damaged Mobile Devices

Aya Fukami* and Kazuhiro Nishimura
National Police Agency of Japan