

DIGITAL FORENSIC RESEARCH CONFERENCE

Forensic Analysis of Water Damaged Mobile Devices

Aya Fukami and Kazuhiro Nishimura

From the proceedings of The Digital Forensic Research Conference **DFRWS 2019 USA** Portland, OR (July 15th - 19th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development.

https://dfrws.org

Forensic Analysis of Water Damaged Mobile Devices

Aya Fukami and Kazuhiro Nishimura

National Police Agency of Japan

Data Recovery from Damaged Devices

- Physical damage
- Fire damage
- Water damage

Data recovery is possible through chip transplant as long as the key components are undamaged

How We Receive Water Damaged Devices (In reality)

• Transported in liquid or in a dried state

(after being left at a police station for a few days ...)

- Disassembling
- PCB cleaning
- Drying

What are those white contaminants? Chip transplants really necessary?

Brief Summary of the Paper

• Our Goal:

- Understand the board level reaction when a mobile device contacts with liquid
- Update the forensic handling method for water damaged devices to improve successful data recovery

• Our findings:

- <u>Metal corrosion</u> is the key about water damaged devices
- Longer submersion time leads to more severe corrosion

Talk Outline

- Metal corrosion under humid environment
 - Electrochemical migration (ECM)
 - Galvanic corrosion
- Testing water damage to smartphones
 - Observing system failure of water-submerged smartphones
 - Repairing water damaged smartphones
- Conclusion

Smartphone Main Board

Inter-electrode reaction $Cu(OH)_2 \rightleftharpoons CuO + H_2O \rightleftharpoons Cu^{2+} + 2OH^-$

Metal Corrosion by ECM

Galvanic Corrosion

Galvanic Corrosion - Example

Talk Outline

- Metal corrosion under humid environment
 - Electrochemical migration (ECM)
 - Galvanic corrosion
- Testing water damage to smartphones
 - Observing system failure of water-submerged smartphones
 - Repairing water damaged smartphones
- Conclusion

Testing water damage on Smartphones

- Samsung Galaxy 6s Edge & LG Nexus 5X
 - Two each, one submerged while running, another while turned off
 - Battery fully charged
 - Left in tap water for three days

Results

After being dried and PCB cleaned

	Samsung S6 edge	LG Nexus 5
Turned on	PMIC damaged, swap needed	Display connector corroded
Turned off	PMIC short circuited no swap needed	No repair needed after cleaning

Results

LG display connector ~20V applied when display is working

LG Devices: Underfill protected

Samsung: no underfill

LG: Underfill protected²¹

Metal Corrosion and Missing Components by Galvanic corrosion

Longer submersion time = severe corrosion = detachment of components

Conclusions

- Water damage = Metal corrosion (ECM/Galvanic)
 = System failure
- Corrosion severity factors
 - Liquid conductivity
 - Submersion time
 - Exposure of metal
 - State of the device
 - Voltage level
- Proper knowledge about water damage helps successful data retrieval

Forensic Analysis of Water Damaged Mobile Devices

Aya Fukami* and Kazuhiro Nishimura National Police Agency of Japan