
Design and Security Analysis of Approximate Matching Algorithms

FbHash: A new similarity hashing
scheme for digital forensics

Donghoon Chang, Mohona Ghosh, Somitra Kumar Sanadhya,
Monika Singh, Douglas R. White

Indraprastha Institute of Information Technology, Delhi (IIIT-D)
National Institute of Standards and Technology (NIST)

monikas@iiitd.ac.in

July 17, 2019

Design and Security Analysis of Approximate Matching Algorithms

Overview

1 Introduction

2 Frequency-Based Similarity Hashing: FbHash
FbHash Design

Digest generation
Similarity Score Calculation

Comparative Analysis

3 Future Work

Design and Security Analysis of Approximate Matching Algorithms

Introduction

Overview

1 Introduction

2 Frequency-Based Similarity Hashing: FbHash
FbHash Design

Digest generation
Similarity Score Calculation

Comparative Analysis

3 Future Work

Design and Security Analysis of Approximate Matching Algorithms

Introduction

Preliminaries

A major requirement of modern digital forensic investigations is an
automatic filtering of the correlated/relevant data, that otherwise
requires a manual examination by the investigator.

Design and Security Analysis of Approximate Matching Algorithms

Introduction

Approximate Matching

Approximate Matching algorithms is one of the techniques that
reduces the amount of data an investigator has to examine
manually by finding similarity at the byte level.

Design and Security Analysis of Approximate Matching Algorithms

Introduction

Approximate Matching

The approximate matching works in two phases:

Design and Security Analysis of Approximate Matching Algorithms

Introduction

Approximate Matching

The approximate matching works in two phases:

Design and Security Analysis of Approximate Matching Algorithms

Introduction

Approximate Matching

The approximate matching works in two phases:

Design and Security Analysis of Approximate Matching Algorithms

Introduction

Existing Schemes

ssdeep (Jesse Kornblum, 2006)

sdhash (Vassil Roussev, 2010)

mvHash-B(Frank Breitinger and Harald Baier 2013)

mrsh-v2(Breitinger et al. 2013)

Design and Security Analysis of Approximate Matching Algorithms

Introduction

Active adversary attacks

Multiple previous studies have shown that these schemes do not
withstand an attack by active adversaries.

An active attackers is a malicious entity, who can modify the final
hash digest of file in such a way so that it can evade detection or

bypass the filtering process by performing minor but intelligent
modifications in the content of the file.

Design and Security Analysis of Approximate Matching Algorithms

Introduction

Active adversary attacks on existing schemes

Ssdeep:

The paper Security Aspects of Piecewise Hashing in Computer
Forensics by Baier et al. shows an anti-blacklisting attack on
ssdeep hashes by performing intentional modification and
practically proves that this approach does not withstand an
active adversary against a blacklist.

Design and Security Analysis of Approximate Matching Algorithms

Introduction

Active adversary attacks on existing schemes

Sdhash:

Paper Security and Implementation Analysis of the Similarity
Digest sdhash shows that given a file it is easy to tamper with
the file to come down to a similarity score of approximately
28, but that it is hard to overcome the matching algorithm
completely.

Paper A Collision Attack On Sdhash Similarity Hashing a
novel approach to do maximum number of byte modification
with maximal similarity score of 100. We also provided a
method to do an anti-forensic attack in order to confuse or
delay the investigation process.

Design and Security Analysis of Approximate Matching Algorithms

Introduction

Active adversary attacks on existing schemes

mvHash:

Paper Security Analysis of MVhash-B Similarity Hashing
shows that it is possible for an attacker to fool it by causing
the similarity score to be close to zero even when the objects
are very similar.

Design and Security Analysis of Approximate Matching Algorithms

Introduction

Existing Schemes

Bottom line is none of the existing schemes are secure against
active adversary attacks.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Overview

1 Introduction

2 Frequency-Based Similarity Hashing: FbHash
FbHash Design

Digest generation
Similarity Score Calculation

Comparative Analysis

3 Future Work

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Frequency-Based Similarity Hashing

We present a new Similarity hashing scheme called ’FbHash :
Frequency-Based Similarity Hashing’, which is secure against
active adversary attacks.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Overview

1 Introduction

2 Frequency-Based Similarity Hashing: FbHash
FbHash Design

Digest generation
Similarity Score Calculation

Comparative Analysis

3 Future Work

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing

FbHash works in the following phases:

Similarity Digest Generation

Similarity Score Calculation

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing

Digest generation: In order to generate similarity digest
following two values needs to be calculated:

1 Chunk frequency

2 Document frequency

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing

Let D be a N byte long data object. (A chunk is k consecutive
bytes of D:)

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing

Identify the chunks in document D (A chunk is k consecutive
bytes of D:) Presently we are considering k=7.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing

Identify the chunks in document D (A chunk is k consecutive
bytes of D:) Presently we are considering k=7.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing

Identify the chunks in document D (A chunk is k consecutive
bytes of D:) Presently we are considering k=7.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing

Identify the chunks in document D (A chunk is k consecutive
bytes of D:) Presently we are considering k=7.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing

Rolling hash of each chunk will be calculated. (A chunk is k
consecutive bytes of D:) Presently we are considering k=7.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing: Rolling Hash

A rolling hash is a non-cryptographic hash function where the
input is hashed in a window that moves through the input.

We are using Rabin-Karp rolling hash function, which uses a
very simple function and allows very quick computation.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing: Rolling Hash

H = c1a
k−1 + c2a

k−2 + c3a
k−3 + ... + cka

0 modulus n

Where a is a constant, k is window size, n are large prime
number, and c1, c2,, cn are the input characters (ASCII
values). e window, and the new va

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing: Rolling Hash

The next hash value is rapidly calculated given only the old
hash value, the old value removed from the window, and the
new value added to the window.

Hnew = a ∗H − c0a
k+ incoming byte modulus n

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing: Rolling Hash

Maximum value of H can be an unsigned 64 bit number.

Hence we need to choose window size accordingly.

All possible values of ci (input characters)=256 (ASCII value)

all possible values of a (constant)=256 (size of alphabet)

Value of k should satisfy following condition

264 − 1 ≥ 256 ∗ 256k−1

Let k=7
264 > 28 ∗ (28)6 = 256

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing: Rolling Hash

Insert the rolling hash value of
each chunk into a hash table.
Where:

Index of the hash table is the
rolling hash value of a chunk

Value of the hash table is
the number of times a chunk
appears in a document.
chfDi represents the chunk
frequency of ith chunk.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing

Chunk Frequency: Number of times a chunk(ch) appears in a
document(D). Represented as chfDch.

Chunk Weight: Based on chunk frequency a weight will be
assigned to each chunk. (Higher for higher frequency and
vice-versa).

chunk-weightDch =1+log10(chfDch)

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing

Similarly we will compute the document frequency.

Document Frequency: Number of documents that contain
chunk, ch. Represented as dfch.

Document weight: Measure of chunk ch informativeness or
uniqueness. Represented as idfch.
document-weightch = log10 (N/dfch)

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing

Chunk score:

WD
ch = chunk-weightDch * document-weightch

Now every document can be represented as vector of chunk
scores.

digest(D)=WD
ch0

, WD
ch1

, WD
ch2

, . . ., WD
chn−1

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing

Similarity Score Calculation:

Let D1 and D2 are documents and following is the digest of
both documents:

digest(D1)=WD1
ch0

, WD1
ch1

, WD1
ch2

, . . ., WD1
chn−1

digest(D2)=WD2
ch0

, WD2
ch1

, WD2
ch2,

, . . ., WD2
chn−1,

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Frequency-Based Similarity Hashing

Final similarity score between D1 and D2 is calculated using
cosine similarity as follows:

Similarity(D1,D2) =
∑n−1

i=0 W
D1
chi
∗WD2

chi√
∑n−1

i=0 W
D1
chi

2∗
√
∑n−1

i=0 W
D2
chi

2
∗ 100

Final similarity score ranges between 0 to 100. where, 100
indicates the files are exactly the same whereas score of 0
indicates no similarity.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Why our scheme is not prone to these attacks:

Ssdeep:

The paper Security Aspects of Piecewise Hashing in Computer
Forensics by Baier and Breitinger shows and states

This attack was possible on ssdeep because it divides the file
into big non-overlapping blocks and performs MD-5 on each
chunk. One byte modification in each block will change the
final hash completely.

Our scheme: Each chunk differs by the neighboring chunk by
only one byte, rest of the bytes are overlapped. Hence in order
to change the final score each chunk needs to be modified.
And the chuck size is smaller (7Bytes) in order to modify
similarity score every 7th byte has to be modified, which is
huge amount of modification.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Why our scheme is not prone to these attacks:

Ssdeep:

The paper Security Aspects of Piecewise Hashing in Computer
Forensics by Baier and Breitinger shows and states

This attack was possible on ssdeep because it divides the file
into big non-overlapping blocks and performs MD-5 on each
chunk. One byte modification in each block will change the
final hash completely.

Our scheme: Each chunk differs by the neighboring chunk by
only one byte, rest of the bytes are overlapped. Hence in order
to change the final score each chunk needs to be modified.
And the chuck size is smaller (7Bytes) in order to modify
similarity score every 7th byte has to be modified, which is
huge amount of modification.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Why our scheme is not prone to these attacks:

sdhash:

Attacks mentioned in Paper Security and Implementation
Analysis of the Similarity Digest sdhash and A Collision
Attack On Sdhash Similarity Hashing were possible because
entire content of a file doesnt contributes to final sdhash
digest generation. Only some of the selected chunks
participates to final hash generation.

Our scheme: In our scheme each and every byte of the chunks
contributes to the final score and their influence on the final
score depends on their importance to the document (which we
decide using tf-idf calculation). In order to bring similarity
score really low or close to zero almost every chunk has to be
modified.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

FbHash Design

Why our scheme is not prone to these attacks:

mvHash:

The attack mentioned in the paper was possible because
during digest generation mvhash compresses the data using
run-length encoding which gives the attacker freedom to bring
the similarity score down with very few modification.

Our scheme: No such compression is performed in our scheme
every byte contributes to final score calculation

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Overview

1 Introduction

2 Frequency-Based Similarity Hashing: FbHash
FbHash Design

Digest generation
Similarity Score Calculation

Comparative Analysis

3 Future Work

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Comparative Analysis

We present a comparative analysis of Fbhash with the two most
prominent approximate matching algorithms, (i.e., ssdeep and
sdhash) on following two test-cases:

Fragment Identification
Identify the presence of traces/fragments of a known artifact,
e.g., identify the presence of a file in a network stream based
on individual packets.

Single-common-block correlation
This test aims to identify the ability of a tool to correlate the
related documents, i.e., those which share a common single
block of data.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Fragment Identification

Dataset Generation:

Dataset type: Text, Docx

Fragment size: 95%,90%,85%,80%,..5%,4%,3%,2%,1%.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Fragment Identification

Dataset Generation:

It sequentially cuts X% of the original input length and
generates the match score where X = 5 by default.

For example file size= 100,000 bytes

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Fragment Identification

Dataset Generation:

Maximum cuts : ⌈100x ⌉ − 1

So for a 100000 bytes long document there will be total 19
cuts of 5000 bytes.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Fragment Identification

Dataset Generation:

In case that the algorithm still identifies similarity we continue
with a further reduction in 1% steps until only 1% of the
input is left.

So the algorithm continues cutting in 1000 byte long pieces
until only 1% of the input is left.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Fragment Identification

Dataset Generation:

Random fragment is the first mode. The framework
randomly decides whether to start cutting at the beginning or
the end of an input and then continues randomly.

Sequential Fragment is the second mode and only cuts
blocks at the beginning of an input.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Fragment Identification

Test cases:

Fragment detection identifies similarity tools ability to
correlate a an input and a fragment.

Smallest Fragment Correlation test identifies what is the
smallest piece or fragment, for which the similarity tool
reliably correlates the fragment to the original file?

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Fragment Identification

Measures:

True Positive

True Negative

False Positive

False Negative

False positive rate (FPR)

False negative rate (FNR)

Precision : A perfect precision score of 1.0 means that every
result retrieved by a search was relevant.

Recall : A perfect recall score of 1.0 means that all relevant
documents were retrieved by the search.

F-score : A measure of a test’s accuracy (best value at 1 and
worst at 0)

MCC : A measure of the quality of Test(best value at 1 and
worst at -1)

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Fragment Identification:

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Fragment Identification:

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Fragment Identification:

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Fragment Identification:

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Fragment Identification:

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Single-common-block file correlation:

Dataset Generation the data-set is generated following the steps
given below.

3 files of the same size are taken from the T5 corpus.

The following 10 different sized fragments of the first file is
created: 100%, 66.66%, 42.86%, 25%, 11.11%, 5.2%, 4.1%,
3.09%, 2.04%, 1.01%.

Each fragment will be inserted in randomly chosen positions
in the second and third file one by one. This will result in the
creation of 10 pairs of the second and third file with shared
common block of 50%, 40%, 30%, 20%, 10%, 5%, 4%, 3%,
2%, 1% respectively.

Take another triplet of files and repeat from step 1 to step 3
for various file sizes.

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Single-common-block file correlation:

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Single-common-block file correlation:

Design and Security Analysis of Approximate Matching Algorithms

Frequency-Based Similarity Hashing: FbHash

Comparative Analysis

Single-common-block file correlation:

Design and Security Analysis of Approximate Matching Algorithms

Future Work

Overview

1 Introduction

2 Frequency-Based Similarity Hashing: FbHash
FbHash Design

Digest generation
Similarity Score Calculation

Comparative Analysis

3 Future Work

Design and Security Analysis of Approximate Matching Algorithms

Future Work

Future Work

To analyze the runtime performance of our tool on various
data-sets as a future work.

We also plan to explore the capabilities of our tool on a few
other test cases such as embedded object identification,
related document detection, etc. with different types of data
objects (e.g., pdf, xml etc).

Design and Security Analysis of Approximate Matching Algorithms

Future Work

Future Work

Thank You ,

	Introduction
	Frequency-Based Similarity Hashing: FbHash
	FbHash Design
	Comparative Analysis

	Future Work

