
11

Windows Memory Forensics:
Detecting (un)intentionally hidden injected Code by examining

Page Table Entries

Frank Block (a,b), Andreas Dewald (a,b)
a: ERNW Research GmbH, Heidelberg, Germany

b: Friedrich-Alexander University Erlangen-Nuremberg (FAU), Germany

22

Agenda

o Introduction

o Motivation

o Our detection approach

o Demo

o Evaluation results

o Conclusion & Future Work

3

Code Injection: Why and How

o Possible reasons:
o The parent process might die after exploitation (e.g. heap spraying).

o Malware does not want to be easily killed by a user (e.g. running
ransomware).

o Stealing/Manipulating data from the target process.

o Hiding from the user/investigator.

o …

o A simple and common, but also noisy approach is this API sequence:
o OpenProcess, VirtualAllocEx, WriteProcessMemory and

CreateRemoteThread

4

Evil.exe

Malicious
Code

Victim.exe

ntdll.dll

Evil Process Victim Process

5

Evil.exe

Malicious
Code

Victim.exe

ntdll.dll

Evil Process Victim Process

6

Evil.exe

Malicious
Code

Victim.exe

Malicious
Code

ntdll.dll

Evil Process Victim Process

7

Victim.exe

Malicious
Code

ntdll.dll

Victim Process

New Thread

executes

8

Example malfind output

Process: rs_target.exe Pid: 4748 Address: 0xc00000

Vad Tag: VadS Protection: EXECUTE_READWRITE

Flags: PrivateMemory: 1, Protection: 6

0xc00000 b8 e0 20 a7 98 db d1 d9 74 24 f4 5a 29 c9 b1 42 t$.Z)..B

0xc00010 31 42 12 83 c2 04 03 42 0e e2 f5 d9 eb 9b d9 74 1B.....B.......t

0xc00020 24 f4 31 d2 b2 77 31 c9 64 8b 71 30 8b 76 0c 8b $.1..w1.d.q0.v..

0xc00030 76 1c 8b 46 08 8b 7e 20 8b 36 38 4f 18 75 f3 59 v..F..~..68O.u.Y

9

Victim.exe

Malicious
Code

ntdll.dll

Victim Process

VAD struct

…

StartingVpn

EndingVpn

…

u.VadFlags.ProtectionEnum

…

1010

Agenda

o Introduction

o Motivation

o Our detection approach

o Demo

o Evaluation results

o Conclusion & Future Work

11

“One of the most misleading and poorly documented
aspects of the Protection field from the VAD flags is that

it’s only the initial protection specified for all pages in
the range when they were first reserved or committed.

Thus, the current protection can be
drastically different.” Ligh et. al.[1]

The Starting Point for this Research

12

On trusting VADs

o A VAD holds, for some of its meta data, only the initial state:
o Protection

o Mapped file (in regards to the content of its pages)

o But this state or the content of referenced memory might change
over time.

o One example is the following simple trick:
o VirtualAllocEx(…, READONLY, …)

o VirtualProtectEx(…, EXECUTE_READWRITE, ...)

13

Victim.exe

ntdll.dll

Victim Process

VAD struct

…

StartingVpn

EndingVpn

…

u.VadFlags.ProtectionEnum

…

14

15

16

Current detection plugins

o Detection mainly based on VADs/memory
o malfind

o hashtest

o Detection mainly based on other criteria (e.g. threads)
o threadmap

o malthfind

o hollowfind

o malfofind

o Psinfo

o gargoyle

17

Mapped Image Files

o Another example is the modification of mapped image files e.g.
through relocations, self decoding loops or code injections.

o When looking at memory regions belonging to mapped files (such
as the executable), prior detection techniques at most compared
the information from VADs and the PEB (Process Hollowing).

o One exception: White et. al.[2]

o But malware can use pages of mapped files for code too.

o EXECUTE_WRITECOPY

18

Further Hiding Techniques

o Mapped data files

o Shared memory with Copy-on-write protection

o Paged out pages: (un)intentional hiding.

1919

Agenda

o Introduction

o Motivation

o Our detection approach

o Demo

o Evaluation results

o Conclusion & Future Work

20

State of the Art Code Injections

o APC Injections

o Process Hollowing

o AtomBombing

o (Gargoyle)

o …

o All have one aspect in common: They result in new/modified
code/data in the target process’s domain.

21

What are we looking for?

o Rootkit Paradox (Kornblum[3])

o In Essence: While the rootkit tries to hide its existence, in order to do
nasty stuff, its code must (at least once) be locatable and executable.

o So, the goal is to identify any executable data in user space.

22

PTEs and the PFN Database

o PTE (Page Table Entry)

o 64bit (x64/x86-PAE) sized “struct”, defining a physical page (if valid).

o “The final truth”, as the CPU’s decision on reading/writing/executing
data from a given address is dependent on the bits in its PTE.

o PFN Database is the physical point of view on the available pages.

o In our case mainly used to answer one question: Has this page been
modified?

23

PML4 … Table Offset

Virtual Address

PML4E …

PTE

CR3

Source: Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A

Physical
Address

0 63

24

PML4 … Table Offset

Virtual Address

PML4E …

PTE

CR3

Source: Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A

Physical
Address

P W … PFN … X

0 63

0 63

25

PTE

P=1 W … PFN … X

0 63

P=0 W … Prot P=0 T=1 PFN …

MMPTE_HARDWARE

MMPTE_TRANSITION

…

P=0 PL Prot P=0 T=0 … PageFileHighMMPTE_SOFTWARE

26

P W … PFN … X

0 63

PFN Entry

PFN DB

… … P …

MMPFN struct

u4

PrototypePte Flag

27

PTEs and the PFN Database

o So what can we detect with those?

o Executable pages in general, no matter where they are (in mapped
files, not related to any file, swapped out, ...).

o E.g. executed code on the stack in a DEP disabled process.

o Executable and Modified pages for mapped image files.

o And how?

28

29

30

31

Case study DEP

o When DEP is not active for a running process, code can get
executed from pages with e.g. READWRITE protection.

o But per default, all non-executable pages have still the NX bit set.

o If instructions should be fetched from such a page, an access
violation occurs and the OS takes over.

o Windows will then unset the NX bit for that particular page and
the CPU can fetch instructions from it.

o This makes it easy with our approach to identify those.

32

3333

Agenda

o Introduction

o Motivation

o Our detection approach

o Demo

o Evaluation results

o Conclusion & Future Work

3434

Agenda

o Introduction

o Motivation

o Our detection approach

o Demo

o Evaluation results

o Conclusion & Future Work

35

Evaluation results

o No plugin detected all memory regions containing injected code.

o Also our failed for Gargoyle and the paged out DEP scenario.
o Expected result: not executable.

o With the VirtualAllocEx/VirtualProtectEx trick we’ve successfully
hidden injected code from malfind, hashtest and Psinfo.

o With paged out pages we’ve successfully hidden injected code
from malfind, hashtest, Psinfo and malthfind.

o hollowfind, malfofind and Psinfo were unimpressed by the hiding
techniques in regards to ProcessHollowing.

3636

Agenda

o Introduction

o Motivation

o Our detection approach

o Demo

o Evaluation results

o Conclusion & Future Work

37

Conclusion & Future Work

o It is possible to hide from current code injection plugins.

o Our approach detects injected code in executable pages despite
the described (un)intentional hiding techniques.

o Does not detect injected code/data in non executable pages.

o Does not work with paged out Paging Structures and no pagefile
(could do a fallback to malfind like approach – is however again
prone to attacks).

38

Conclusion & Future Work

o The amount of data to examine can be huge, mainly because of
modified pages of mapped image files.

o Approach is suitable as:

o Improved malfind.

o Before/After comparison.

o Usage in existing code injection plugins to improve their results.

39

www.ernw.de

www.insinuator.net

Thank you for your Attention

Questions/Criticism/Remarks/Suggestions?

The online repository can be found at:

https://github.com/f-block/DFRWS-USA-2019

fblock@ernw.de

https://www.ernw.de/
https://www.insinuator.net/
https://github.com/f-block/DFRWS-USA-2019

40

Sources

o [1] Ligh, M.H., Case, A., Levy, J., Walters, A.,
2014. The Art of Memory Forensics: Detecting
Malware and Threats in Windows, Linux, and
Mac Memory

o [2] Andrew White, Bradley Schatz, Ernest Foo,
2013. Integrity Verification of User Space Code,
https://dfrws.org/file/206/download?token=jDpt
_E9p

o [3] Jesse Kornblum, 2006.
https://pdfs.semanticscholar.org/dd79/86995b9
03a9c1ba16e228f6debfc3cf539cc.pdf

https://dfrws.org/file/206/download?token=jDpt_E9p
https://pdfs.semanticscholar.org/dd79/86995b903a9c1ba16e228f6debfc3cf539cc.pdf

